blob: 17865d6d2cfe9a85a45d6974995f912a7c0a5a10 [file] [log] [blame]
/* vi:set ts=8 sts=4 sw=4:
*
* NFA regular expression implementation.
*
* This file is included in "regexp.c".
*/
/*
* Logging of NFA engine.
*
* The NFA engine can write four log files:
* - Error log: Contains NFA engine's fatal errors.
* - Dump log: Contains compiled NFA state machine's information.
* - Run log: Contains information of matching procedure.
* - Debug log: Contains detailed information of matching procedure. Can be
* disabled by undefining NFA_REGEXP_DEBUG_LOG.
* The first one can also be used without debug mode.
* The last three are enabled when compiled as debug mode and individually
* disabled by commenting them out.
* The log files can get quite big!
* Do disable all of this when compiling Vim for debugging, undefine DEBUG in
* regexp.c
*/
#ifdef DEBUG
# define NFA_REGEXP_ERROR_LOG "nfa_regexp_error.log"
# define ENABLE_LOG
# define NFA_REGEXP_DUMP_LOG "nfa_regexp_dump.log"
# define NFA_REGEXP_RUN_LOG "nfa_regexp_run.log"
# define NFA_REGEXP_DEBUG_LOG "nfa_regexp_debug.log"
#endif
enum
{
NFA_SPLIT = -1024,
NFA_MATCH,
NFA_SKIP_CHAR, /* matches a 0-length char */
NFA_END_NEG_RANGE, /* Used when expanding [^ab] */
NFA_CONCAT,
NFA_OR,
NFA_STAR, /* greedy * */
NFA_STAR_NONGREEDY, /* non-greedy * */
NFA_QUEST, /* greedy \? */
NFA_QUEST_NONGREEDY, /* non-greedy \? */
NFA_NOT, /* used for [^ab] negated char ranges */
NFA_BOL, /* ^ Begin line */
NFA_EOL, /* $ End line */
NFA_BOW, /* \< Begin word */
NFA_EOW, /* \> End word */
NFA_BOF, /* \%^ Begin file */
NFA_EOF, /* \%$ End file */
NFA_NEWL,
NFA_ZSTART, /* Used for \zs */
NFA_ZEND, /* Used for \ze */
NFA_NOPEN, /* Start of subexpression marked with \%( */
NFA_NCLOSE, /* End of subexpr. marked with \%( ... \) */
NFA_START_INVISIBLE,
NFA_START_INVISIBLE_BEFORE,
NFA_END_INVISIBLE,
NFA_COMPOSING, /* Next nodes in NFA are part of the
composing multibyte char */
NFA_END_COMPOSING, /* End of a composing char in the NFA */
/* The following are used only in the postfix form, not in the NFA */
NFA_PREV_ATOM_NO_WIDTH, /* Used for \@= */
NFA_PREV_ATOM_NO_WIDTH_NEG, /* Used for \@! */
NFA_PREV_ATOM_JUST_BEFORE, /* Used for \@<= */
NFA_PREV_ATOM_JUST_BEFORE_NEG, /* Used for \@<! */
NFA_PREV_ATOM_LIKE_PATTERN, /* Used for \@> */
NFA_BACKREF1, /* \1 */
NFA_BACKREF2, /* \2 */
NFA_BACKREF3, /* \3 */
NFA_BACKREF4, /* \4 */
NFA_BACKREF5, /* \5 */
NFA_BACKREF6, /* \6 */
NFA_BACKREF7, /* \7 */
NFA_BACKREF8, /* \8 */
NFA_BACKREF9, /* \9 */
NFA_SKIP, /* Skip characters */
NFA_MOPEN,
NFA_MCLOSE = NFA_MOPEN + NSUBEXP,
/* NFA_FIRST_NL */
NFA_ANY = NFA_MCLOSE + NSUBEXP, /* Match any one character. */
NFA_ANYOF, /* Match any character in this string. */
NFA_ANYBUT, /* Match any character not in this string. */
NFA_IDENT, /* Match identifier char */
NFA_SIDENT, /* Match identifier char but no digit */
NFA_KWORD, /* Match keyword char */
NFA_SKWORD, /* Match word char but no digit */
NFA_FNAME, /* Match file name char */
NFA_SFNAME, /* Match file name char but no digit */
NFA_PRINT, /* Match printable char */
NFA_SPRINT, /* Match printable char but no digit */
NFA_WHITE, /* Match whitespace char */
NFA_NWHITE, /* Match non-whitespace char */
NFA_DIGIT, /* Match digit char */
NFA_NDIGIT, /* Match non-digit char */
NFA_HEX, /* Match hex char */
NFA_NHEX, /* Match non-hex char */
NFA_OCTAL, /* Match octal char */
NFA_NOCTAL, /* Match non-octal char */
NFA_WORD, /* Match word char */
NFA_NWORD, /* Match non-word char */
NFA_HEAD, /* Match head char */
NFA_NHEAD, /* Match non-head char */
NFA_ALPHA, /* Match alpha char */
NFA_NALPHA, /* Match non-alpha char */
NFA_LOWER, /* Match lowercase char */
NFA_NLOWER, /* Match non-lowercase char */
NFA_UPPER, /* Match uppercase char */
NFA_NUPPER, /* Match non-uppercase char */
NFA_CURSOR, /* Match cursor pos */
NFA_LNUM, /* Match line number */
NFA_LNUM_GT, /* Match > line number */
NFA_LNUM_LT, /* Match < line number */
NFA_COL, /* Match cursor column */
NFA_COL_GT, /* Match > cursor column */
NFA_COL_LT, /* Match < cursor column */
NFA_VCOL, /* Match cursor virtual column */
NFA_VCOL_GT, /* Match > cursor virtual column */
NFA_VCOL_LT, /* Match < cursor virtual column */
NFA_FIRST_NL = NFA_ANY + ADD_NL,
NFA_LAST_NL = NFA_NUPPER + ADD_NL,
/* Character classes [:alnum:] etc */
NFA_CLASS_ALNUM,
NFA_CLASS_ALPHA,
NFA_CLASS_BLANK,
NFA_CLASS_CNTRL,
NFA_CLASS_DIGIT,
NFA_CLASS_GRAPH,
NFA_CLASS_LOWER,
NFA_CLASS_PRINT,
NFA_CLASS_PUNCT,
NFA_CLASS_SPACE,
NFA_CLASS_UPPER,
NFA_CLASS_XDIGIT,
NFA_CLASS_TAB,
NFA_CLASS_RETURN,
NFA_CLASS_BACKSPACE,
NFA_CLASS_ESCAPE
};
/* Keep in sync with classchars. */
static int nfa_classcodes[] = {
NFA_ANY, NFA_IDENT, NFA_SIDENT, NFA_KWORD,NFA_SKWORD,
NFA_FNAME, NFA_SFNAME, NFA_PRINT, NFA_SPRINT,
NFA_WHITE, NFA_NWHITE, NFA_DIGIT, NFA_NDIGIT,
NFA_HEX, NFA_NHEX, NFA_OCTAL, NFA_NOCTAL,
NFA_WORD, NFA_NWORD, NFA_HEAD, NFA_NHEAD,
NFA_ALPHA, NFA_NALPHA, NFA_LOWER, NFA_NLOWER,
NFA_UPPER, NFA_NUPPER
};
static char_u e_misplaced[] = N_("E866: (NFA regexp) Misplaced %c");
/*
* NFA errors can be of 3 types:
* *** NFA runtime errors, when something unknown goes wrong. The NFA fails
* silently and revert the to backtracking engine.
* syntax_error = FALSE;
* *** Regexp syntax errors, when the input regexp is not syntactically correct.
* The NFA engine displays an error message, and nothing else happens.
* syntax_error = TRUE
* *** Unsupported features, when the input regexp uses an operator that is not
* implemented in the NFA. The NFA engine fails silently, and reverts to the
* old backtracking engine.
* syntax_error = FALSE
* "The NFA fails" means that "compiling the regexp with the NFA fails":
* nfa_regcomp() returns FAIL.
*/
static int syntax_error = FALSE;
/* NFA regexp \ze operator encountered. */
static int nfa_has_zend;
/* NFA regexp \1 .. \9 encountered. */
static int nfa_has_backref;
/* Number of sub expressions actually being used during execution. 1 if only
* the whole match (subexpr 0) is used. */
static int nfa_nsubexpr;
static int *post_start; /* holds the postfix form of r.e. */
static int *post_end;
static int *post_ptr;
static int nstate; /* Number of states in the NFA. Also used when
* executing. */
static int istate; /* Index in the state vector, used in new_state() */
static int nfa_regcomp_start __ARGS((char_u*expr, int re_flags));
static int nfa_recognize_char_class __ARGS((char_u *start, char_u *end, int extra_newl));
static int nfa_emit_equi_class __ARGS((int c, int neg));
static int nfa_regatom __ARGS((void));
static int nfa_regpiece __ARGS((void));
static int nfa_regconcat __ARGS((void));
static int nfa_regbranch __ARGS((void));
static int nfa_reg __ARGS((int paren));
#ifdef DEBUG
static void nfa_set_code __ARGS((int c));
static void nfa_postfix_dump __ARGS((char_u *expr, int retval));
static void nfa_print_state __ARGS((FILE *debugf, nfa_state_T *state));
static void nfa_print_state2 __ARGS((FILE *debugf, nfa_state_T *state, garray_T *indent));
static void nfa_dump __ARGS((nfa_regprog_T *prog));
#endif
static int *re2post __ARGS((void));
static nfa_state_T *new_state __ARGS((int c, nfa_state_T *out, nfa_state_T *out1));
static nfa_state_T *post2nfa __ARGS((int *postfix, int *end, int nfa_calc_size));
static int check_char_class __ARGS((int class, int c));
static void st_error __ARGS((int *postfix, int *end, int *p));
static void nfa_set_neg_listids __ARGS((nfa_state_T *start));
static void nfa_set_null_listids __ARGS((nfa_state_T *start));
static void nfa_save_listids __ARGS((nfa_state_T *start, int *list));
static void nfa_restore_listids __ARGS((nfa_state_T *start, int *list));
static int nfa_re_num_cmp __ARGS((long_u val, int op, long_u pos));
static long nfa_regtry __ARGS((nfa_state_T *start, colnr_T col));
static long nfa_regexec_both __ARGS((char_u *line, colnr_T col));
static regprog_T *nfa_regcomp __ARGS((char_u *expr, int re_flags));
static int nfa_regexec __ARGS((regmatch_T *rmp, char_u *line, colnr_T col));
static long nfa_regexec_multi __ARGS((regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col, proftime_T *tm));
/* helper functions used when doing re2post() ... regatom() parsing */
#define EMIT(c) do { \
if (post_ptr >= post_end && realloc_post_list() == FAIL) \
return FAIL; \
*post_ptr++ = c; \
} while (0)
/*
* Initialize internal variables before NFA compilation.
* Return OK on success, FAIL otherwise.
*/
static int
nfa_regcomp_start(expr, re_flags)
char_u *expr;
int re_flags; /* see vim_regcomp() */
{
size_t postfix_size;
int nstate_max;
nstate = 0;
istate = 0;
/* A reasonable estimation for maximum size */
nstate_max = (int)(STRLEN(expr) + 1) * 25;
/* Some items blow up in size, such as [A-z]. Add more space for that.
* When it is still not enough realloc_post_list() will be used. */
nstate_max += 1000;
/* Size for postfix representation of expr. */
postfix_size = sizeof(int) * nstate_max;
post_start = (int *)lalloc(postfix_size, TRUE);
if (post_start == NULL)
return FAIL;
vim_memset(post_start, 0, postfix_size);
post_ptr = post_start;
post_end = post_start + nstate_max;
nfa_has_zend = FALSE;
nfa_has_backref = FALSE;
regcomp_start(expr, re_flags);
return OK;
}
/*
* Allocate more space for post_start. Called when
* running above the estimated number of states.
*/
static int
realloc_post_list()
{
int nstate_max = (int)(post_end - post_start);
int new_max = nstate_max + 1000;
int *new_start;
int *old_start;
new_start = (int *)lalloc(new_max * sizeof(int), TRUE);
if (new_start == NULL)
return FAIL;
mch_memmove(new_start, post_start, nstate_max * sizeof(int));
vim_memset(new_start + nstate_max, 0, 1000 * sizeof(int));
old_start = post_start;
post_start = new_start;
post_ptr = new_start + (post_ptr - old_start);
post_end = post_start + new_max;
vim_free(old_start);
return OK;
}
/*
* Search between "start" and "end" and try to recognize a
* character class in expanded form. For example [0-9].
* On success, return the id the character class to be emitted.
* On failure, return 0 (=FAIL)
* Start points to the first char of the range, while end should point
* to the closing brace.
*/
static int
nfa_recognize_char_class(start, end, extra_newl)
char_u *start;
char_u *end;
int extra_newl;
{
int i;
/* Each of these variables takes up a char in "config[]",
* in the order they are here. */
int not = FALSE, af = FALSE, AF = FALSE, az = FALSE, AZ = FALSE,
o7 = FALSE, o9 = FALSE, underscore = FALSE, newl = FALSE;
char_u *p;
#define NCONFIGS 16
int classid[NCONFIGS] = {
NFA_DIGIT, NFA_NDIGIT, NFA_HEX, NFA_NHEX,
NFA_OCTAL, NFA_NOCTAL, NFA_WORD, NFA_NWORD,
NFA_HEAD, NFA_NHEAD, NFA_ALPHA, NFA_NALPHA,
NFA_LOWER, NFA_NLOWER, NFA_UPPER, NFA_NUPPER
};
char_u myconfig[10];
char_u config[NCONFIGS][9] = {
"000000100", /* digit */
"100000100", /* non digit */
"011000100", /* hex-digit */
"111000100", /* non hex-digit */
"000001000", /* octal-digit */
"100001000", /* [^0-7] */
"000110110", /* [0-9A-Za-z_] */
"100110110", /* [^0-9A-Za-z_] */
"000110010", /* head of word */
"100110010", /* not head of word */
"000110000", /* alphabetic char a-z */
"100110000", /* non alphabetic char */
"000100000", /* lowercase letter */
"100100000", /* non lowercase */
"000010000", /* uppercase */
"100010000" /* non uppercase */
};
if (extra_newl == TRUE)
newl = TRUE;
if (*end != ']')
return FAIL;
p = start;
if (*p == '^')
{
not = TRUE;
p ++;
}
while (p < end)
{
if (p + 2 < end && *(p + 1) == '-')
{
switch (*p)
{
case '0':
if (*(p + 2) == '9')
{
o9 = TRUE;
break;
}
else
if (*(p + 2) == '7')
{
o7 = TRUE;
break;
}
case 'a':
if (*(p + 2) == 'z')
{
az = TRUE;
break;
}
else
if (*(p + 2) == 'f')
{
af = TRUE;
break;
}
case 'A':
if (*(p + 2) == 'Z')
{
AZ = TRUE;
break;
}
else
if (*(p + 2) == 'F')
{
AF = TRUE;
break;
}
/* FALLTHROUGH */
default:
return FAIL;
}
p += 3;
}
else if (p + 1 < end && *p == '\\' && *(p + 1) == 'n')
{
newl = TRUE;
p += 2;
}
else if (*p == '_')
{
underscore = TRUE;
p ++;
}
else if (*p == '\n')
{
newl = TRUE;
p ++;
}
else
return FAIL;
} /* while (p < end) */
if (p != end)
return FAIL;
/* build the config that represents the ranges we gathered */
STRCPY(myconfig, "000000000");
if (not == TRUE)
myconfig[0] = '1';
if (af == TRUE)
myconfig[1] = '1';
if (AF == TRUE)
myconfig[2] = '1';
if (az == TRUE)
myconfig[3] = '1';
if (AZ == TRUE)
myconfig[4] = '1';
if (o7 == TRUE)
myconfig[5] = '1';
if (o9 == TRUE)
myconfig[6] = '1';
if (underscore == TRUE)
myconfig[7] = '1';
if (newl == TRUE)
{
myconfig[8] = '1';
extra_newl = ADD_NL;
}
/* try to recognize character classes */
for (i = 0; i < NCONFIGS; i++)
if (STRNCMP(myconfig, config[i], 8) == 0)
return classid[i] + extra_newl;
/* fallthrough => no success so far */
return FAIL;
#undef NCONFIGS
}
/*
* Produce the bytes for equivalence class "c".
* Currently only handles latin1, latin9 and utf-8.
* Emits bytes in postfix notation: 'a,b,NFA_OR,c,NFA_OR' is
* equivalent to 'a OR b OR c'
*
* NOTE! When changing this function, also update reg_equi_class()
*/
static int
nfa_emit_equi_class(c, neg)
int c;
int neg;
{
int first = TRUE;
int glue = neg == TRUE ? NFA_CONCAT : NFA_OR;
#define EMIT2(c) \
EMIT(c); \
if (neg == TRUE) { \
EMIT(NFA_NOT); \
} \
if (first == FALSE) \
EMIT(glue); \
else \
first = FALSE; \
#ifdef FEAT_MBYTE
if (enc_utf8 || STRCMP(p_enc, "latin1") == 0
|| STRCMP(p_enc, "iso-8859-15") == 0)
#endif
{
switch (c)
{
case 'A': case '\300': case '\301': case '\302':
case '\303': case '\304': case '\305':
EMIT2('A'); EMIT2('\300'); EMIT2('\301');
EMIT2('\302'); EMIT2('\303'); EMIT2('\304');
EMIT2('\305');
return OK;
case 'C': case '\307':
EMIT2('C'); EMIT2('\307');
return OK;
case 'E': case '\310': case '\311': case '\312': case '\313':
EMIT2('E'); EMIT2('\310'); EMIT2('\311');
EMIT2('\312'); EMIT2('\313');
return OK;
case 'I': case '\314': case '\315': case '\316': case '\317':
EMIT2('I'); EMIT2('\314'); EMIT2('\315');
EMIT2('\316'); EMIT2('\317');
return OK;
case 'N': case '\321':
EMIT2('N'); EMIT2('\321');
return OK;
case 'O': case '\322': case '\323': case '\324': case '\325':
case '\326':
EMIT2('O'); EMIT2('\322'); EMIT2('\323');
EMIT2('\324'); EMIT2('\325'); EMIT2('\326');
return OK;
case 'U': case '\331': case '\332': case '\333': case '\334':
EMIT2('U'); EMIT2('\331'); EMIT2('\332');
EMIT2('\333'); EMIT2('\334');
return OK;
case 'Y': case '\335':
EMIT2('Y'); EMIT2('\335');
return OK;
case 'a': case '\340': case '\341': case '\342':
case '\343': case '\344': case '\345':
EMIT2('a'); EMIT2('\340'); EMIT2('\341');
EMIT2('\342'); EMIT2('\343'); EMIT2('\344');
EMIT2('\345');
return OK;
case 'c': case '\347':
EMIT2('c'); EMIT2('\347');
return OK;
case 'e': case '\350': case '\351': case '\352': case '\353':
EMIT2('e'); EMIT2('\350'); EMIT2('\351');
EMIT2('\352'); EMIT2('\353');
return OK;
case 'i': case '\354': case '\355': case '\356': case '\357':
EMIT2('i'); EMIT2('\354'); EMIT2('\355');
EMIT2('\356'); EMIT2('\357');
return OK;
case 'n': case '\361':
EMIT2('n'); EMIT2('\361');
return OK;
case 'o': case '\362': case '\363': case '\364': case '\365':
case '\366':
EMIT2('o'); EMIT2('\362'); EMIT2('\363');
EMIT2('\364'); EMIT2('\365'); EMIT2('\366');
return OK;
case 'u': case '\371': case '\372': case '\373': case '\374':
EMIT2('u'); EMIT2('\371'); EMIT2('\372');
EMIT2('\373'); EMIT2('\374');
return OK;
case 'y': case '\375': case '\377':
EMIT2('y'); EMIT2('\375'); EMIT2('\377');
return OK;
default:
return FAIL;
}
}
EMIT(c);
return OK;
#undef EMIT2
}
/*
* Code to parse regular expression.
*
* We try to reuse parsing functions in regexp.c to
* minimize surprise and keep the syntax consistent.
*/
/*
* Parse the lowest level.
*
* An atom can be one of a long list of items. Many atoms match one character
* in the text. It is often an ordinary character or a character class.
* Braces can be used to make a pattern into an atom. The "\z(\)" construct
* is only for syntax highlighting.
*
* atom ::= ordinary-atom
* or \( pattern \)
* or \%( pattern \)
* or \z( pattern \)
*/
static int
nfa_regatom()
{
int c;
int charclass;
int equiclass;
int collclass;
int got_coll_char;
char_u *p;
char_u *endp;
#ifdef FEAT_MBYTE
char_u *old_regparse = regparse;
#endif
int extra = 0;
int first;
int emit_range;
int negated;
int result;
int startc = -1;
int endc = -1;
int oldstartc = -1;
int cpo_lit; /* 'cpoptions' contains 'l' flag */
int cpo_bsl; /* 'cpoptions' contains '\' flag */
int glue; /* ID that will "glue" nodes together */
cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL;
cpo_bsl = vim_strchr(p_cpo, CPO_BACKSL) != NULL;
c = getchr();
switch (c)
{
case NUL:
syntax_error = TRUE;
EMSG_RET_FAIL(_("E865: (NFA) Regexp end encountered prematurely"));
case Magic('^'):
EMIT(NFA_BOL);
break;
case Magic('$'):
EMIT(NFA_EOL);
#if defined(FEAT_SYN_HL) || defined(PROTO)
had_eol = TRUE;
#endif
break;
case Magic('<'):
EMIT(NFA_BOW);
break;
case Magic('>'):
EMIT(NFA_EOW);
break;
case Magic('_'):
c = no_Magic(getchr());
if (c == '^') /* "\_^" is start-of-line */
{
EMIT(NFA_BOL);
break;
}
if (c == '$') /* "\_$" is end-of-line */
{
EMIT(NFA_EOL);
#if defined(FEAT_SYN_HL) || defined(PROTO)
had_eol = TRUE;
#endif
break;
}
extra = ADD_NL;
/* "\_[" is collection plus newline */
if (c == '[')
goto collection;
/* "\_x" is character class plus newline */
/*FALLTHROUGH*/
/*
* Character classes.
*/
case Magic('.'):
case Magic('i'):
case Magic('I'):
case Magic('k'):
case Magic('K'):
case Magic('f'):
case Magic('F'):
case Magic('p'):
case Magic('P'):
case Magic('s'):
case Magic('S'):
case Magic('d'):
case Magic('D'):
case Magic('x'):
case Magic('X'):
case Magic('o'):
case Magic('O'):
case Magic('w'):
case Magic('W'):
case Magic('h'):
case Magic('H'):
case Magic('a'):
case Magic('A'):
case Magic('l'):
case Magic('L'):
case Magic('u'):
case Magic('U'):
p = vim_strchr(classchars, no_Magic(c));
if (p == NULL)
{
EMSGN("INTERNAL: Unknown character class char: %ld", c);
return FAIL;
}
#ifdef FEAT_MBYTE
/* When '.' is followed by a composing char ignore the dot, so that
* the composing char is matched here. */
if (enc_utf8 && c == Magic('.') && utf_iscomposing(peekchr()))
{
old_regparse = regparse;
c = getchr();
goto nfa_do_multibyte;
}
#endif
EMIT(nfa_classcodes[p - classchars]);
if (extra == ADD_NL)
{
EMIT(NFA_NEWL);
EMIT(NFA_OR);
regflags |= RF_HASNL;
}
break;
case Magic('n'):
if (reg_string)
/* In a string "\n" matches a newline character. */
EMIT(NL);
else
{
/* In buffer text "\n" matches the end of a line. */
EMIT(NFA_NEWL);
regflags |= RF_HASNL;
}
break;
case Magic('('):
if (nfa_reg(REG_PAREN) == FAIL)
return FAIL; /* cascaded error */
break;
case Magic('|'):
case Magic('&'):
case Magic(')'):
syntax_error = TRUE;
EMSGN(_(e_misplaced), no_Magic(c));
return FAIL;
case Magic('='):
case Magic('?'):
case Magic('+'):
case Magic('@'):
case Magic('*'):
case Magic('{'):
/* these should follow an atom, not form an atom */
syntax_error = TRUE;
EMSGN(_(e_misplaced), no_Magic(c));
return FAIL;
case Magic('~'): /* previous substitute pattern */
/* TODO: Not supported yet */
return FAIL;
case Magic('1'):
case Magic('2'):
case Magic('3'):
case Magic('4'):
case Magic('5'):
case Magic('6'):
case Magic('7'):
case Magic('8'):
case Magic('9'):
EMIT(NFA_BACKREF1 + (no_Magic(c) - '1'));
nfa_has_backref = TRUE;
break;
case Magic('z'):
c = no_Magic(getchr());
switch (c)
{
case 's':
EMIT(NFA_ZSTART);
break;
case 'e':
EMIT(NFA_ZEND);
nfa_has_zend = TRUE;
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case '(':
/* TODO: \z1...\z9 and \z( not yet supported */
return FAIL;
default:
syntax_error = TRUE;
EMSGN(_("E867: (NFA) Unknown operator '\\z%c'"),
no_Magic(c));
return FAIL;
}
break;
case Magic('%'):
c = no_Magic(getchr());
switch (c)
{
/* () without a back reference */
case '(':
if (nfa_reg(REG_NPAREN) == FAIL)
return FAIL;
EMIT(NFA_NOPEN);
break;
case 'd': /* %d123 decimal */
case 'o': /* %o123 octal */
case 'x': /* %xab hex 2 */
case 'u': /* %uabcd hex 4 */
case 'U': /* %U1234abcd hex 8 */
{
int nr;
switch (c)
{
case 'd': nr = getdecchrs(); break;
case 'o': nr = getoctchrs(); break;
case 'x': nr = gethexchrs(2); break;
case 'u': nr = gethexchrs(4); break;
case 'U': nr = gethexchrs(8); break;
default: nr = -1; break;
}
if (nr < 0)
EMSG2_RET_FAIL(
_("E678: Invalid character after %s%%[dxouU]"),
reg_magic == MAGIC_ALL);
/* TODO: what if a composing character follows? */
EMIT(nr);
}
break;
/* Catch \%^ and \%$ regardless of where they appear in the
* pattern -- regardless of whether or not it makes sense. */
case '^':
EMIT(NFA_BOF);
break;
case '$':
EMIT(NFA_EOF);
break;
case '#':
EMIT(NFA_CURSOR);
break;
case 'V':
/* TODO: not supported yet */
return FAIL;
break;
case '[':
/* TODO: \%[abc] not supported yet */
return FAIL;
default:
{
int n = 0;
int cmp = c;
if (c == '<' || c == '>')
c = getchr();
while (VIM_ISDIGIT(c))
{
n = n * 10 + (c - '0');
c = getchr();
}
if (c == 'l' || c == 'c' || c == 'v')
{
EMIT(n);
if (c == 'l')
EMIT(cmp == '<' ? NFA_LNUM_LT :
cmp == '>' ? NFA_LNUM_GT : NFA_LNUM);
else if (c == 'c')
EMIT(cmp == '<' ? NFA_COL_LT :
cmp == '>' ? NFA_COL_GT : NFA_COL);
else
EMIT(cmp == '<' ? NFA_VCOL_LT :
cmp == '>' ? NFA_VCOL_GT : NFA_VCOL);
break;
}
else if (c == '\'')
/* TODO: \%'m not supported yet */
return FAIL;
}
syntax_error = TRUE;
EMSGN(_("E867: (NFA) Unknown operator '\\%%%c'"),
no_Magic(c));
return FAIL;
}
break;
case Magic('['):
collection:
/*
* Glue is emitted between several atoms from the [].
* It is either NFA_OR, or NFA_CONCAT.
*
* [abc] expands to 'a b NFA_OR c NFA_OR' (in postfix notation)
* [^abc] expands to 'a NFA_NOT b NFA_NOT NFA_CONCAT c NFA_NOT
* NFA_CONCAT NFA_END_NEG_RANGE NFA_CONCAT' (in postfix
* notation)
*
*/
/* Emit negation atoms, if needed.
* The CONCAT below merges the NOT with the previous node. */
#define TRY_NEG() \
if (negated == TRUE) \
{ \
EMIT(NFA_NOT); \
}
/* Emit glue between important nodes : CONCAT or OR. */
#define EMIT_GLUE() \
if (first == FALSE) \
EMIT(glue); \
else \
first = FALSE;
p = regparse;
endp = skip_anyof(p);
if (*endp == ']')
{
/*
* Try to reverse engineer character classes. For example,
* recognize that [0-9] stands for \d and [A-Za-z_] with \h,
* and perform the necessary substitutions in the NFA.
*/
result = nfa_recognize_char_class(regparse, endp,
extra == ADD_NL);
if (result != FAIL)
{
if (result >= NFA_DIGIT && result <= NFA_NUPPER)
EMIT(result);
else /* must be char class + newline */
{
EMIT(result - ADD_NL);
EMIT(NFA_NEWL);
EMIT(NFA_OR);
}
regparse = endp;
mb_ptr_adv(regparse);
return OK;
}
/*
* Failed to recognize a character class. Use the simple
* version that turns [abc] into 'a' OR 'b' OR 'c'
*/
startc = endc = oldstartc = -1;
first = TRUE; /* Emitting first atom in this sequence? */
negated = FALSE;
glue = NFA_OR;
if (*regparse == '^') /* negated range */
{
negated = TRUE;
glue = NFA_CONCAT;
mb_ptr_adv(regparse);
}
if (*regparse == '-')
{
startc = '-';
EMIT(startc);
TRY_NEG();
EMIT_GLUE();
mb_ptr_adv(regparse);
}
/* Emit the OR branches for each character in the [] */
emit_range = FALSE;
while (regparse < endp)
{
oldstartc = startc;
startc = -1;
got_coll_char = FALSE;
if (*regparse == '[')
{
/* Check for [: :], [= =], [. .] */
equiclass = collclass = 0;
charclass = get_char_class(&regparse);
if (charclass == CLASS_NONE)
{
equiclass = get_equi_class(&regparse);
if (equiclass == 0)
collclass = get_coll_element(&regparse);
}
/* Character class like [:alpha:] */
if (charclass != CLASS_NONE)
{
switch (charclass)
{
case CLASS_ALNUM:
EMIT(NFA_CLASS_ALNUM);
break;
case CLASS_ALPHA:
EMIT(NFA_CLASS_ALPHA);
break;
case CLASS_BLANK:
EMIT(NFA_CLASS_BLANK);
break;
case CLASS_CNTRL:
EMIT(NFA_CLASS_CNTRL);
break;
case CLASS_DIGIT:
EMIT(NFA_CLASS_DIGIT);
break;
case CLASS_GRAPH:
EMIT(NFA_CLASS_GRAPH);
break;
case CLASS_LOWER:
EMIT(NFA_CLASS_LOWER);
break;
case CLASS_PRINT:
EMIT(NFA_CLASS_PRINT);
break;
case CLASS_PUNCT:
EMIT(NFA_CLASS_PUNCT);
break;
case CLASS_SPACE:
EMIT(NFA_CLASS_SPACE);
break;
case CLASS_UPPER:
EMIT(NFA_CLASS_UPPER);
break;
case CLASS_XDIGIT:
EMIT(NFA_CLASS_XDIGIT);
break;
case CLASS_TAB:
EMIT(NFA_CLASS_TAB);
break;
case CLASS_RETURN:
EMIT(NFA_CLASS_RETURN);
break;
case CLASS_BACKSPACE:
EMIT(NFA_CLASS_BACKSPACE);
break;
case CLASS_ESCAPE:
EMIT(NFA_CLASS_ESCAPE);
break;
}
TRY_NEG();
EMIT_GLUE();
continue;
}
/* Try equivalence class [=a=] and the like */
if (equiclass != 0)
{
result = nfa_emit_equi_class(equiclass, negated);
if (result == FAIL)
{
/* should never happen */
EMSG_RET_FAIL(_("E868: Error building NFA with equivalence class!"));
}
EMIT_GLUE();
continue;
}
/* Try collating class like [. .] */
if (collclass != 0)
{
startc = collclass; /* allow [.a.]-x as a range */
/* Will emit the proper atom at the end of the
* while loop. */
}
}
/* Try a range like 'a-x' or '\t-z'. Also allows '-' as a
* start character. */
if (*regparse == '-' && oldstartc != -1)
{
emit_range = TRUE;
startc = oldstartc;
mb_ptr_adv(regparse);
continue; /* reading the end of the range */
}
/* Now handle simple and escaped characters.
* Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
* accepts "\t", "\e", etc., but only when the 'l' flag in
* 'cpoptions' is not included.
* Posix doesn't recognize backslash at all.
*/
if (*regparse == '\\'
&& !cpo_bsl
&& regparse + 1 <= endp
&& (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL
|| (!cpo_lit
&& vim_strchr(REGEXP_ABBR, regparse[1])
!= NULL)
)
)
{
mb_ptr_adv(regparse);
if (*regparse == 'n')
startc = reg_string ? NL : NFA_NEWL;
else
if (*regparse == 'd'
|| *regparse == 'o'
|| *regparse == 'x'
|| *regparse == 'u'
|| *regparse == 'U'
)
{
/* TODO(RE) This needs more testing */
startc = coll_get_char();
got_coll_char = TRUE;
mb_ptr_back(old_regparse, regparse);
}
else
{
/* \r,\t,\e,\b */
startc = backslash_trans(*regparse);
}
}
/* Normal printable char */
if (startc == -1)
startc = PTR2CHAR(regparse);
/* Previous char was '-', so this char is end of range. */
if (emit_range)
{
endc = startc;
startc = oldstartc;
if (startc > endc)
EMSG_RET_FAIL(_(e_invrange));
#ifdef FEAT_MBYTE
if (has_mbyte && ((*mb_char2len)(startc) > 1
|| (*mb_char2len)(endc) > 1))
{
if (endc > startc + 256)
EMSG_RET_FAIL(_(e_invrange));
/* Emit the range. "startc" was already emitted, so
* skip it. */
for (c = startc + 1; c <= endc; c++)
{
EMIT(c);
TRY_NEG();
EMIT_GLUE();
}
}
else
#endif
{
#ifdef EBCDIC
int alpha_only = FALSE;
/* for alphabetical range skip the gaps
* 'i'-'j', 'r'-'s', 'I'-'J' and 'R'-'S'. */
if (isalpha(startc) && isalpha(endc))
alpha_only = TRUE;
#endif
/* Emit the range. "startc" was already emitted, so
* skip it. */
for (c = startc + 1; c <= endc; c++)
#ifdef EBCDIC
if (!alpha_only || isalpha(startc))
#endif
{
EMIT(c);
TRY_NEG();
EMIT_GLUE();
}
}
emit_range = FALSE;
startc = -1;
}
else
{
/*
* This char (startc) is not part of a range. Just
* emit it.
*
* Normally, simply emit startc. But if we get char
* code=0 from a collating char, then replace it with
* 0x0a.
*
* This is needed to completely mimic the behaviour of
* the backtracking engine.
*/
if (got_coll_char == TRUE && startc == 0)
EMIT(0x0a);
else
EMIT(startc);
TRY_NEG();
EMIT_GLUE();
}
mb_ptr_adv(regparse);
} /* while (p < endp) */
mb_ptr_back(old_regparse, regparse);
if (*regparse == '-') /* if last, '-' is just a char */
{
EMIT('-');
TRY_NEG();
EMIT_GLUE();
}
mb_ptr_adv(regparse);
/* skip the trailing ] */
regparse = endp;
mb_ptr_adv(regparse);
if (negated == TRUE)
{
/* Mark end of negated char range */
EMIT(NFA_END_NEG_RANGE);
EMIT(NFA_CONCAT);
}
/* \_[] also matches \n but it's not negated */
if (extra == ADD_NL)
{
EMIT(reg_string ? NL : NFA_NEWL);
EMIT(NFA_OR);
}
return OK;
} /* if exists closing ] */
if (reg_strict)
{
syntax_error = TRUE;
EMSG_RET_FAIL(_(e_missingbracket));
}
/* FALLTHROUGH */
default:
{
#ifdef FEAT_MBYTE
int plen;
nfa_do_multibyte:
/* plen is length of current char with composing chars */
if (enc_utf8 && ((*mb_char2len)(c)
!= (plen = (*mb_ptr2len)(old_regparse))
|| utf_iscomposing(c)))
{
int i = 0;
/* A base character plus composing characters, or just one
* or more composing characters.
* This requires creating a separate atom as if enclosing
* the characters in (), where NFA_COMPOSING is the ( and
* NFA_END_COMPOSING is the ). Note that right now we are
* building the postfix form, not the NFA itself;
* a composing char could be: a, b, c, NFA_COMPOSING
* where 'b' and 'c' are chars with codes > 256. */
for (;;)
{
EMIT(c);
if (i > 0)
EMIT(NFA_CONCAT);
if ((i += utf_char2len(c)) >= plen)
break;
c = utf_ptr2char(old_regparse + i);
}
EMIT(NFA_COMPOSING);
regparse = old_regparse + plen;
}
else
#endif
{
c = no_Magic(c);
EMIT(c);
}
return OK;
}
}
#undef TRY_NEG
#undef EMIT_GLUE
return OK;
}
/*
* Parse something followed by possible [*+=].
*
* A piece is an atom, possibly followed by a multi, an indication of how many
* times the atom can be matched. Example: "a*" matches any sequence of "a"
* characters: "", "a", "aa", etc.
*
* piece ::= atom
* or atom multi
*/
static int
nfa_regpiece()
{
int i;
int op;
int ret;
long minval, maxval;
int greedy = TRUE; /* Braces are prefixed with '-' ? */
parse_state_T old_state;
parse_state_T new_state;
int c2;
int old_post_pos;
int my_post_start;
int quest;
/* Save the current parse state, so that we can use it if <atom>{m,n} is
* next. */
save_parse_state(&old_state);
/* store current pos in the postfix form, for \{m,n} involving 0s */
my_post_start = (int)(post_ptr - post_start);
ret = nfa_regatom();
if (ret == FAIL)
return FAIL; /* cascaded error */
op = peekchr();
if (re_multi_type(op) == NOT_MULTI)
return OK;
skipchr();
switch (op)
{
case Magic('*'):
EMIT(NFA_STAR);
break;
case Magic('+'):
/*
* Trick: Normally, (a*)\+ would match the whole input "aaa". The
* first and only submatch would be "aaa". But the backtracking
* engine interprets the plus as "try matching one more time", and
* a* matches a second time at the end of the input, the empty
* string.
* The submatch will the empty string.
*
* In order to be consistent with the old engine, we replace
* <atom>+ with <atom><atom>*
*/
restore_parse_state(&old_state);
curchr = -1;
if (nfa_regatom() == FAIL)
return FAIL;
EMIT(NFA_STAR);
EMIT(NFA_CONCAT);
skipchr(); /* skip the \+ */
break;
case Magic('@'):
c2 = getdecchrs();
op = no_Magic(getchr());
i = 0;
switch(op)
{
case '=':
/* \@= */
i = NFA_PREV_ATOM_NO_WIDTH;
break;
case '!':
/* \@! */
i = NFA_PREV_ATOM_NO_WIDTH_NEG;
break;
case '<':
op = no_Magic(getchr());
if (op == '=')
/* \@<= */
i = NFA_PREV_ATOM_JUST_BEFORE;
else if (op == '!')
/* \@<! */
i = NFA_PREV_ATOM_JUST_BEFORE_NEG;
break;
case '>':
/* \@> Not supported yet */
/* i = NFA_PREV_ATOM_LIKE_PATTERN; */
return FAIL;
}
if (i == 0)
{
syntax_error = TRUE;
EMSGN(_("E869: (NFA) Unknown operator '\\@%c'"), op);
return FAIL;
}
EMIT(i);
if (i == NFA_PREV_ATOM_JUST_BEFORE
|| i == NFA_PREV_ATOM_JUST_BEFORE_NEG)
EMIT(c2);
break;
case Magic('?'):
case Magic('='):
EMIT(NFA_QUEST);
break;
case Magic('{'):
/* a{2,5} will expand to 'aaa?a?a?'
* a{-1,3} will expand to 'aa??a??', where ?? is the nongreedy
* version of '?'
* \v(ab){2,3} will expand to '(ab)(ab)(ab)?', where all the
* parenthesis have the same id
*/
greedy = TRUE;
c2 = peekchr();
if (c2 == '-' || c2 == Magic('-'))
{
skipchr();
greedy = FALSE;
}
if (!read_limits(&minval, &maxval))
{
syntax_error = TRUE;
EMSG_RET_FAIL(_("E870: (NFA regexp) Error reading repetition limits"));
}
/* <atom>{0,inf}, <atom>{0,} and <atom>{} are equivalent to
* <atom>* */
if (minval == 0 && maxval == MAX_LIMIT)
{
if (greedy)
/* \{}, \{0,} */
EMIT(NFA_STAR);
else
/* \{-}, \{-0,} */
EMIT(NFA_STAR_NONGREEDY);
break;
}
/* Special case: x{0} or x{-0} */
if (maxval == 0)
{
/* Ignore result of previous call to nfa_regatom() */
post_ptr = post_start + my_post_start;
/* NFA_SKIP_CHAR has 0-length and works everywhere */
EMIT(NFA_SKIP_CHAR);
return OK;
}
/* Ignore previous call to nfa_regatom() */
post_ptr = post_start + my_post_start;
/* Save parse state after the repeated atom and the \{} */
save_parse_state(&new_state);
quest = (greedy == TRUE? NFA_QUEST : NFA_QUEST_NONGREEDY);
for (i = 0; i < maxval; i++)
{
/* Goto beginning of the repeated atom */
restore_parse_state(&old_state);
old_post_pos = (int)(post_ptr - post_start);
if (nfa_regatom() == FAIL)
return FAIL;
/* after "minval" times, atoms are optional */
if (i + 1 > minval)
{
if (maxval == MAX_LIMIT)
{
if (greedy)
EMIT(NFA_STAR);
else
EMIT(NFA_STAR_NONGREEDY);
}
else
EMIT(quest);
}
if (old_post_pos != my_post_start)
EMIT(NFA_CONCAT);
if (i + 1 > minval && maxval == MAX_LIMIT)
break;
}
/* Go to just after the repeated atom and the \{} */
restore_parse_state(&new_state);
curchr = -1;
break;
default:
break;
} /* end switch */
if (re_multi_type(peekchr()) != NOT_MULTI)
{
/* Can't have a multi follow a multi. */
syntax_error = TRUE;
EMSG_RET_FAIL(_("E871: (NFA regexp) Can't have a multi follow a multi !"));
}
return OK;
}
/*
* Parse one or more pieces, concatenated. It matches a match for the
* first piece, followed by a match for the second piece, etc. Example:
* "f[0-9]b", first matches "f", then a digit and then "b".
*
* concat ::= piece
* or piece piece
* or piece piece piece
* etc.
*/
static int
nfa_regconcat()
{
int cont = TRUE;
int first = TRUE;
while (cont)
{
switch (peekchr())
{
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
cont = FALSE;
break;
case Magic('Z'):
#ifdef FEAT_MBYTE
regflags |= RF_ICOMBINE;
#endif
skipchr_keepstart();
break;
case Magic('c'):
regflags |= RF_ICASE;
skipchr_keepstart();
break;
case Magic('C'):
regflags |= RF_NOICASE;
skipchr_keepstart();
break;
case Magic('v'):
reg_magic = MAGIC_ALL;
skipchr_keepstart();
curchr = -1;
break;
case Magic('m'):
reg_magic = MAGIC_ON;
skipchr_keepstart();
curchr = -1;
break;
case Magic('M'):
reg_magic = MAGIC_OFF;
skipchr_keepstart();
curchr = -1;
break;
case Magic('V'):
reg_magic = MAGIC_NONE;
skipchr_keepstart();
curchr = -1;
break;
default:
if (nfa_regpiece() == FAIL)
return FAIL;
if (first == FALSE)
EMIT(NFA_CONCAT);
else
first = FALSE;
break;
}
}
return OK;
}
/*
* Parse a branch, one or more concats, separated by "\&". It matches the
* last concat, but only if all the preceding concats also match at the same
* position. Examples:
* "foobeep\&..." matches "foo" in "foobeep".
* ".*Peter\&.*Bob" matches in a line containing both "Peter" and "Bob"
*
* branch ::= concat
* or concat \& concat
* or concat \& concat \& concat
* etc.
*/
static int
nfa_regbranch()
{
int ch;
int old_post_pos;
old_post_pos = (int)(post_ptr - post_start);
/* First branch, possibly the only one */
if (nfa_regconcat() == FAIL)
return FAIL;
ch = peekchr();
/* Try next concats */
while (ch == Magic('&'))
{
skipchr();
EMIT(NFA_NOPEN);
EMIT(NFA_PREV_ATOM_NO_WIDTH);
old_post_pos = (int)(post_ptr - post_start);
if (nfa_regconcat() == FAIL)
return FAIL;
/* if concat is empty, skip a input char. But do emit a node */
if (old_post_pos == (int)(post_ptr - post_start))
EMIT(NFA_SKIP_CHAR);
EMIT(NFA_CONCAT);
ch = peekchr();
}
/* Even if a branch is empty, emit one node for it */
if (old_post_pos == (int)(post_ptr - post_start))
EMIT(NFA_SKIP_CHAR);
return OK;
}
/*
* Parse a pattern, one or more branches, separated by "\|". It matches
* anything that matches one of the branches. Example: "foo\|beep" matches
* "foo" and matches "beep". If more than one branch matches, the first one
* is used.
*
* pattern ::= branch
* or branch \| branch
* or branch \| branch \| branch
* etc.
*/
static int
nfa_reg(paren)
int paren; /* REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN */
{
int parno = 0;
#ifdef FEAT_SYN_HL
#endif
if (paren == REG_PAREN)
{
if (regnpar >= NSUBEXP) /* Too many `(' */
{
syntax_error = TRUE;
EMSG_RET_FAIL(_("E872: (NFA regexp) Too many '('"));
}
parno = regnpar++;
}
if (nfa_regbranch() == FAIL)
return FAIL; /* cascaded error */
while (peekchr() == Magic('|'))
{
skipchr();
if (nfa_regbranch() == FAIL)
return FAIL; /* cascaded error */
EMIT(NFA_OR);
}
/* Check for proper termination. */
if (paren != REG_NOPAREN && getchr() != Magic(')'))
{
syntax_error = TRUE;
if (paren == REG_NPAREN)
EMSG2_RET_FAIL(_(e_unmatchedpp), reg_magic == MAGIC_ALL);
else
EMSG2_RET_FAIL(_(e_unmatchedp), reg_magic == MAGIC_ALL);
}
else if (paren == REG_NOPAREN && peekchr() != NUL)
{
syntax_error = TRUE;
if (peekchr() == Magic(')'))
EMSG2_RET_FAIL(_(e_unmatchedpar), reg_magic == MAGIC_ALL);
else
EMSG_RET_FAIL(_("E873: (NFA regexp) proper termination error"));
}
/*
* Here we set the flag allowing back references to this set of
* parentheses.
*/
if (paren == REG_PAREN)
{
had_endbrace[parno] = TRUE; /* have seen the close paren */
EMIT(NFA_MOPEN + parno);
}
return OK;
}
#ifdef DEBUG
static char_u code[50];
static void
nfa_set_code(c)
int c;
{
int addnl = FALSE;
if (c >= NFA_FIRST_NL && c <= NFA_LAST_NL)
{
addnl = TRUE;
c -= ADD_NL;
}
STRCPY(code, "");
switch (c)
{
case NFA_MATCH: STRCPY(code, "NFA_MATCH "); break;
case NFA_SPLIT: STRCPY(code, "NFA_SPLIT "); break;
case NFA_CONCAT: STRCPY(code, "NFA_CONCAT "); break;
case NFA_NEWL: STRCPY(code, "NFA_NEWL "); break;
case NFA_ZSTART: STRCPY(code, "NFA_ZSTART"); break;
case NFA_ZEND: STRCPY(code, "NFA_ZEND"); break;
case NFA_BACKREF1: STRCPY(code, "NFA_BACKREF1"); break;
case NFA_BACKREF2: STRCPY(code, "NFA_BACKREF2"); break;
case NFA_BACKREF3: STRCPY(code, "NFA_BACKREF3"); break;
case NFA_BACKREF4: STRCPY(code, "NFA_BACKREF4"); break;
case NFA_BACKREF5: STRCPY(code, "NFA_BACKREF5"); break;
case NFA_BACKREF6: STRCPY(code, "NFA_BACKREF6"); break;
case NFA_BACKREF7: STRCPY(code, "NFA_BACKREF7"); break;
case NFA_BACKREF8: STRCPY(code, "NFA_BACKREF8"); break;
case NFA_BACKREF9: STRCPY(code, "NFA_BACKREF9"); break;
case NFA_SKIP: STRCPY(code, "NFA_SKIP"); break;
case NFA_PREV_ATOM_NO_WIDTH:
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH"); break;
case NFA_PREV_ATOM_NO_WIDTH_NEG:
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH_NEG"); break;
case NFA_PREV_ATOM_JUST_BEFORE:
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE"); break;
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE_NEG"); break;
case NFA_NOPEN: STRCPY(code, "NFA_NOPEN"); break;
case NFA_NCLOSE: STRCPY(code, "NFA_NCLOSE"); break;
case NFA_START_INVISIBLE: STRCPY(code, "NFA_START_INVISIBLE"); break;
case NFA_START_INVISIBLE_BEFORE:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE"); break;
case NFA_END_INVISIBLE: STRCPY(code, "NFA_END_INVISIBLE"); break;
case NFA_COMPOSING: STRCPY(code, "NFA_COMPOSING"); break;
case NFA_END_COMPOSING: STRCPY(code, "NFA_END_COMPOSING"); break;
case NFA_MOPEN + 0:
case NFA_MOPEN + 1:
case NFA_MOPEN + 2:
case NFA_MOPEN + 3:
case NFA_MOPEN + 4:
case NFA_MOPEN + 5:
case NFA_MOPEN + 6:
case NFA_MOPEN + 7:
case NFA_MOPEN + 8:
case NFA_MOPEN + 9:
STRCPY(code, "NFA_MOPEN(x)");
code[10] = c - NFA_MOPEN + '0';
break;
case NFA_MCLOSE + 0:
case NFA_MCLOSE + 1:
case NFA_MCLOSE + 2:
case NFA_MCLOSE + 3:
case NFA_MCLOSE + 4:
case NFA_MCLOSE + 5:
case NFA_MCLOSE + 6:
case NFA_MCLOSE + 7:
case NFA_MCLOSE + 8:
case NFA_MCLOSE + 9:
STRCPY(code, "NFA_MCLOSE(x)");
code[11] = c - NFA_MCLOSE + '0';
break;
case NFA_EOL: STRCPY(code, "NFA_EOL "); break;
case NFA_BOL: STRCPY(code, "NFA_BOL "); break;
case NFA_EOW: STRCPY(code, "NFA_EOW "); break;
case NFA_BOW: STRCPY(code, "NFA_BOW "); break;
case NFA_EOF: STRCPY(code, "NFA_EOF "); break;
case NFA_BOF: STRCPY(code, "NFA_BOF "); break;
case NFA_STAR: STRCPY(code, "NFA_STAR "); break;
case NFA_STAR_NONGREEDY: STRCPY(code, "NFA_STAR_NONGREEDY "); break;
case NFA_QUEST: STRCPY(code, "NFA_QUEST"); break;
case NFA_QUEST_NONGREEDY: STRCPY(code, "NFA_QUEST_NON_GREEDY"); break;
case NFA_NOT: STRCPY(code, "NFA_NOT "); break;
case NFA_SKIP_CHAR: STRCPY(code, "NFA_SKIP_CHAR"); break;
case NFA_OR: STRCPY(code, "NFA_OR"); break;
case NFA_END_NEG_RANGE: STRCPY(code, "NFA_END_NEG_RANGE"); break;
case NFA_CLASS_ALNUM: STRCPY(code, "NFA_CLASS_ALNUM"); break;
case NFA_CLASS_ALPHA: STRCPY(code, "NFA_CLASS_ALPHA"); break;
case NFA_CLASS_BLANK: STRCPY(code, "NFA_CLASS_BLANK"); break;
case NFA_CLASS_CNTRL: STRCPY(code, "NFA_CLASS_CNTRL"); break;
case NFA_CLASS_DIGIT: STRCPY(code, "NFA_CLASS_DIGIT"); break;
case NFA_CLASS_GRAPH: STRCPY(code, "NFA_CLASS_GRAPH"); break;
case NFA_CLASS_LOWER: STRCPY(code, "NFA_CLASS_LOWER"); break;
case NFA_CLASS_PRINT: STRCPY(code, "NFA_CLASS_PRINT"); break;
case NFA_CLASS_PUNCT: STRCPY(code, "NFA_CLASS_PUNCT"); break;
case NFA_CLASS_SPACE: STRCPY(code, "NFA_CLASS_SPACE"); break;
case NFA_CLASS_UPPER: STRCPY(code, "NFA_CLASS_UPPER"); break;
case NFA_CLASS_XDIGIT: STRCPY(code, "NFA_CLASS_XDIGIT"); break;
case NFA_CLASS_TAB: STRCPY(code, "NFA_CLASS_TAB"); break;
case NFA_CLASS_RETURN: STRCPY(code, "NFA_CLASS_RETURN"); break;
case NFA_CLASS_BACKSPACE: STRCPY(code, "NFA_CLASS_BACKSPACE"); break;
case NFA_CLASS_ESCAPE: STRCPY(code, "NFA_CLASS_ESCAPE"); break;
case NFA_ANY: STRCPY(code, "NFA_ANY"); break;
case NFA_IDENT: STRCPY(code, "NFA_IDENT"); break;
case NFA_SIDENT:STRCPY(code, "NFA_SIDENT"); break;
case NFA_KWORD: STRCPY(code, "NFA_KWORD"); break;
case NFA_SKWORD:STRCPY(code, "NFA_SKWORD"); break;
case NFA_FNAME: STRCPY(code, "NFA_FNAME"); break;
case NFA_SFNAME:STRCPY(code, "NFA_SFNAME"); break;
case NFA_PRINT: STRCPY(code, "NFA_PRINT"); break;
case NFA_SPRINT:STRCPY(code, "NFA_SPRINT"); break;
case NFA_WHITE: STRCPY(code, "NFA_WHITE"); break;
case NFA_NWHITE:STRCPY(code, "NFA_NWHITE"); break;
case NFA_DIGIT: STRCPY(code, "NFA_DIGIT"); break;
case NFA_NDIGIT:STRCPY(code, "NFA_NDIGIT"); break;
case NFA_HEX: STRCPY(code, "NFA_HEX"); break;
case NFA_NHEX: STRCPY(code, "NFA_NHEX"); break;
case NFA_OCTAL: STRCPY(code, "NFA_OCTAL"); break;
case NFA_NOCTAL:STRCPY(code, "NFA_NOCTAL"); break;
case NFA_WORD: STRCPY(code, "NFA_WORD"); break;
case NFA_NWORD: STRCPY(code, "NFA_NWORD"); break;
case NFA_HEAD: STRCPY(code, "NFA_HEAD"); break;
case NFA_NHEAD: STRCPY(code, "NFA_NHEAD"); break;
case NFA_ALPHA: STRCPY(code, "NFA_ALPHA"); break;
case NFA_NALPHA:STRCPY(code, "NFA_NALPHA"); break;
case NFA_LOWER: STRCPY(code, "NFA_LOWER"); break;
case NFA_NLOWER:STRCPY(code, "NFA_NLOWER"); break;
case NFA_UPPER: STRCPY(code, "NFA_UPPER"); break;
case NFA_NUPPER:STRCPY(code, "NFA_NUPPER"); break;
default:
STRCPY(code, "CHAR(x)");
code[5] = c;
}
if (addnl == TRUE)
STRCAT(code, " + NEWLINE ");
}
#ifdef ENABLE_LOG
static FILE *log_fd;
/*
* Print the postfix notation of the current regexp.
*/
static void
nfa_postfix_dump(expr, retval)
char_u *expr;
int retval;
{
int *p;
FILE *f;
f = fopen(NFA_REGEXP_DUMP_LOG, "a");
if (f != NULL)
{
fprintf(f, "\n-------------------------\n");
if (retval == FAIL)
fprintf(f, ">>> NFA engine failed ... \n");
else if (retval == OK)
fprintf(f, ">>> NFA engine succeeded !\n");
fprintf(f, "Regexp: \"%s\"\nPostfix notation (char): \"", expr);
for (p = post_start; *p && p < post_end; p++)
{
nfa_set_code(*p);
fprintf(f, "%s, ", code);
}
fprintf(f, "\"\nPostfix notation (int): ");
for (p = post_start; *p && p < post_end; p++)
fprintf(f, "%d ", *p);
fprintf(f, "\n\n");
fclose(f);
}
}
/*
* Print the NFA starting with a root node "state".
*/
static void
nfa_print_state(debugf, state)
FILE *debugf;
nfa_state_T *state;
{
garray_T indent;
ga_init2(&indent, 1, 64);
ga_append(&indent, '\0');
nfa_print_state2(debugf, state, &indent);
ga_clear(&indent);
}
static void
nfa_print_state2(debugf, state, indent)
FILE *debugf;
nfa_state_T *state;
garray_T *indent;
{
char_u *p;
if (state == NULL)
return;
fprintf(debugf, "(%2d)", abs(state->id));
/* Output indent */
p = (char_u *)indent->ga_data;
if (indent->ga_len >= 3)
{
int last = indent->ga_len - 3;
char_u save[2];
STRNCPY(save, &p[last], 2);
STRNCPY(&p[last], "+-", 2);
fprintf(debugf, " %s", p);
STRNCPY(&p[last], save, 2);
}
else
fprintf(debugf, " %s", p);
nfa_set_code(state->c);
fprintf(debugf, "%s%s (%d) (id=%d)\n",
state->negated ? "NOT " : "", code, state->c, abs(state->id));
if (state->id < 0)
return;
state->id = abs(state->id) * -1;
/* grow indent for state->out */
indent->ga_len -= 1;
if (state->out1)
ga_concat(indent, (char_u *)"| ");
else
ga_concat(indent, (char_u *)" ");
ga_append(indent, '\0');
nfa_print_state2(debugf, state->out, indent);
/* replace last part of indent for state->out1 */
indent->ga_len -= 3;
ga_concat(indent, (char_u *)" ");
ga_append(indent, '\0');
nfa_print_state2(debugf, state->out1, indent);
/* shrink indent */
indent->ga_len -= 3;
ga_append(indent, '\0');
}
/*
* Print the NFA state machine.
*/
static void
nfa_dump(prog)
nfa_regprog_T *prog;
{
FILE *debugf = fopen(NFA_REGEXP_DUMP_LOG, "a");
if (debugf != NULL)
{
nfa_print_state(debugf, prog->start);
fclose(debugf);
}
}
#endif /* ENABLE_LOG */
#endif /* DEBUG */
/*
* Parse r.e. @expr and convert it into postfix form.
* Return the postfix string on success, NULL otherwise.
*/
static int *
re2post()
{
if (nfa_reg(REG_NOPAREN) == FAIL)
return NULL;
EMIT(NFA_MOPEN);
return post_start;
}
/* NB. Some of the code below is inspired by Russ's. */
/*
* Represents an NFA state plus zero or one or two arrows exiting.
* if c == MATCH, no arrows out; matching state.
* If c == SPLIT, unlabeled arrows to out and out1 (if != NULL).
* If c < 256, labeled arrow with character c to out.
*/
static nfa_state_T *state_ptr; /* points to nfa_prog->state */
/*
* Allocate and initialize nfa_state_T.
*/
static nfa_state_T *
new_state(c, out, out1)
int c;
nfa_state_T *out;
nfa_state_T *out1;
{
nfa_state_T *s;
if (istate >= nstate)
return NULL;
s = &state_ptr[istate++];
s->c = c;
s->out = out;
s->out1 = out1;
s->id = istate;
s->lastlist = 0;
s->negated = FALSE;
return s;
}
/*
* A partially built NFA without the matching state filled in.
* Frag_T.start points at the start state.
* Frag_T.out is a list of places that need to be set to the
* next state for this fragment.
*/
/* Since the out pointers in the list are always
* uninitialized, we use the pointers themselves
* as storage for the Ptrlists. */
typedef union Ptrlist Ptrlist;
union Ptrlist
{
Ptrlist *next;
nfa_state_T *s;
};
struct Frag
{
nfa_state_T *start;
Ptrlist *out;
};
typedef struct Frag Frag_T;
static Frag_T frag __ARGS((nfa_state_T *start, Ptrlist *out));
static Ptrlist *list1 __ARGS((nfa_state_T **outp));
static void patch __ARGS((Ptrlist *l, nfa_state_T *s));
static Ptrlist *append __ARGS((Ptrlist *l1, Ptrlist *l2));
static void st_push __ARGS((Frag_T s, Frag_T **p, Frag_T *stack_end));
static Frag_T st_pop __ARGS((Frag_T **p, Frag_T *stack));
/*
* Initialize a Frag_T struct and return it.
*/
static Frag_T
frag(start, out)
nfa_state_T *start;
Ptrlist *out;
{
Frag_T n;
n.start = start;
n.out = out;
return n;
}
/*
* Create singleton list containing just outp.
*/
static Ptrlist *
list1(outp)
nfa_state_T **outp;
{
Ptrlist *l;
l = (Ptrlist *)outp;
l->next = NULL;
return l;
}
/*
* Patch the list of states at out to point to start.
*/
static void
patch(l, s)
Ptrlist *l;
nfa_state_T *s;
{
Ptrlist *next;
for (; l; l = next)
{
next = l->next;
l->s = s;
}
}
/*
* Join the two lists l1 and l2, returning the combination.
*/
static Ptrlist *
append(l1, l2)
Ptrlist *l1;
Ptrlist *l2;
{
Ptrlist *oldl1;
oldl1 = l1;
while (l1->next)
l1 = l1->next;
l1->next = l2;
return oldl1;
}
/*
* Stack used for transforming postfix form into NFA.
*/
static Frag_T empty;
static void
st_error(postfix, end, p)
int *postfix UNUSED;
int *end UNUSED;
int *p UNUSED;
{
#ifdef NFA_REGEXP_ERROR_LOG
FILE *df;
int *p2;
df = fopen(NFA_REGEXP_ERROR_LOG, "a");
if (df)
{
fprintf(df, "Error popping the stack!\n");
#ifdef DEBUG
fprintf(df, "Current regexp is \"%s\"\n", nfa_regengine.expr);
#endif
fprintf(df, "Postfix form is: ");
#ifdef DEBUG
for (p2 = postfix; p2 < end; p2++)
{
nfa_set_code(*p2);
fprintf(df, "%s, ", code);
}
nfa_set_code(*p);
fprintf(df, "\nCurrent position is: ");
for (p2 = postfix; p2 <= p; p2 ++)
{
nfa_set_code(*p2);
fprintf(df, "%s, ", code);
}
#else
for (p2 = postfix; p2 < end; p2++)
{
fprintf(df, "%d, ", *p2);
}
fprintf(df, "\nCurrent position is: ");
for (p2 = postfix; p2 <= p; p2 ++)
{
fprintf(df, "%d, ", *p2);
}
#endif
fprintf(df, "\n--------------------------\n");
fclose(df);
}
#endif
EMSG(_("E874: (NFA) Could not pop the stack !"));
}
/*
* Push an item onto the stack.
*/
static void
st_push(s, p, stack_end)
Frag_T s;
Frag_T **p;
Frag_T *stack_end;
{
Frag_T *stackp = *p;
if (stackp >= stack_end)
return;
*stackp = s;
*p = *p + 1;
}
/*
* Pop an item from the stack.
*/
static Frag_T
st_pop(p, stack)
Frag_T **p;
Frag_T *stack;
{
Frag_T *stackp;
*p = *p - 1;
stackp = *p;
if (stackp < stack)
return empty;
return **p;
}
/*
* Convert a postfix form into its equivalent NFA.
* Return the NFA start state on success, NULL otherwise.
*/
static nfa_state_T *
post2nfa(postfix, end, nfa_calc_size)
int *postfix;
int *end;
int nfa_calc_size;
{
int *p;
int mopen;
int mclose;
Frag_T *stack = NULL;
Frag_T *stackp = NULL;
Frag_T *stack_end = NULL;
Frag_T e1;
Frag_T e2;
Frag_T e;
nfa_state_T *s;
nfa_state_T *s1;
nfa_state_T *matchstate;
nfa_state_T *ret = NULL;
if (postfix == NULL)
return NULL;
#define PUSH(s) st_push((s), &stackp, stack_end)
#define POP() st_pop(&stackp, stack); \
if (stackp < stack) \
{ \
st_error(postfix, end, p); \
return NULL; \
}
if (nfa_calc_size == FALSE)
{
/* Allocate space for the stack. Max states on the stack : nstate */
stack = (Frag_T *)lalloc((nstate + 1) * sizeof(Frag_T), TRUE);
stackp = stack;
stack_end = stack + (nstate + 1);
}
for (p = postfix; p < end; ++p)
{
switch (*p)
{
case NFA_CONCAT:
/* Catenation.
* Pay attention: this operator does not exist
* in the r.e. itself (it is implicit, really).
* It is added when r.e. is translated to postfix
* form in re2post().
*
* No new state added here. */
if (nfa_calc_size == TRUE)
{
/* nstate += 0; */
break;
}
e2 = POP();
e1 = POP();
patch(e1.out, e2.start);
PUSH(frag(e1.start, e2.out));
break;
case NFA_NOT:
/* Negation of a character */
if (nfa_calc_size == TRUE)
{
/* nstate += 0; */
break;
}
e1 = POP();
e1.start->negated = TRUE;
#ifdef FEAT_MBYTE
if (e1.start->c == NFA_COMPOSING)
e1.start->out1->negated = TRUE;
#endif
PUSH(e1);
break;
case NFA_OR:
/* Alternation */
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e2 = POP();
e1 = POP();
s = new_state(NFA_SPLIT, e1.start, e2.start);
if (s == NULL)
goto theend;
PUSH(frag(s, append(e1.out, e2.out)));
break;
case NFA_STAR:
/* Zero or more, prefer more */
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e = POP();
s = new_state(NFA_SPLIT, e.start, NULL);
if (s == NULL)
goto theend;
patch(e.out, s);
PUSH(frag(s, list1(&s->out1)));
break;
case NFA_STAR_NONGREEDY:
/* Zero or more, prefer zero */
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e = POP();
s = new_state(NFA_SPLIT, NULL, e.start);
if (s == NULL)
goto theend;
patch(e.out, s);
PUSH(frag(s, list1(&s->out)));
break;
case NFA_QUEST:
/* one or zero atoms=> greedy match */
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e = POP();
s = new_state(NFA_SPLIT, e.start, NULL);
if (s == NULL)
goto theend;
PUSH(frag(s, append(e.out, list1(&s->out1))));
break;
case NFA_QUEST_NONGREEDY:
/* zero or one atoms => non-greedy match */
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
e = POP();
s = new_state(NFA_SPLIT, NULL, e.start);
if (s == NULL)
goto theend;
PUSH(frag(s, append(e.out, list1(&s->out))));
break;
case NFA_SKIP_CHAR:
/* Symbol of 0-length, Used in a repetition
* with max/min count of 0 */
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
s = new_state(NFA_SKIP_CHAR, NULL, NULL);
if (s == NULL)
goto theend;
PUSH(frag(s, list1(&s->out)));
break;
case NFA_PREV_ATOM_NO_WIDTH:
case NFA_PREV_ATOM_NO_WIDTH_NEG:
case NFA_PREV_ATOM_JUST_BEFORE:
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
/* The \@= operator: match the preceding atom with zero width.
* The \@! operator: no match for the preceding atom.
* The \@<= operator: match for the preceding atom.
* The \@<! operator: no match for the preceding atom.
* Surrounds the preceding atom with START_INVISIBLE and
* END_INVISIBLE, similarly to MOPEN. */
if (nfa_calc_size == TRUE)
{
nstate += 2;
break;
}
e = POP();
s1 = new_state(NFA_END_INVISIBLE, NULL, NULL);
if (s1 == NULL)
goto theend;
patch(e.out, s1);
s = new_state(NFA_START_INVISIBLE, e.start, s1);
if (s == NULL)
goto theend;
if (*p == NFA_PREV_ATOM_NO_WIDTH_NEG
|| *p == NFA_PREV_ATOM_JUST_BEFORE_NEG)
{
s->negated = TRUE;
s1->negated = TRUE;
}
if (*p == NFA_PREV_ATOM_JUST_BEFORE
|| *p == NFA_PREV_ATOM_JUST_BEFORE_NEG)
{
s->val = *++p; /* get the count */
++s->c; /* NFA_START_INVISIBLE -> NFA_START_INVISIBLE_BEFORE */
}
PUSH(frag(s, list1(&s1->out)));
break;
#ifdef FEAT_MBYTE
case NFA_COMPOSING: /* char with composing char */
#if 0
/* TODO */
if (regflags & RF_ICOMBINE)
{
/* use the base character only */
}
#endif
/* FALLTHROUGH */
#endif
case NFA_MOPEN + 0: /* Submatch */
case NFA_MOPEN + 1:
case NFA_MOPEN + 2:
case NFA_MOPEN + 3:
case NFA_MOPEN + 4:
case NFA_MOPEN + 5:
case NFA_MOPEN + 6:
case NFA_MOPEN + 7:
case NFA_MOPEN + 8:
case NFA_MOPEN + 9:
case NFA_NOPEN: /* \%( "Invisible Submatch" */
if (nfa_calc_size == TRUE)
{
nstate += 2;
break;
}
mopen = *p;
switch (*p)
{
case NFA_NOPEN:
mclose = NFA_NCLOSE;
break;
#ifdef FEAT_MBYTE
case NFA_COMPOSING:
mclose = NFA_END_COMPOSING;
break;
#endif
default:
/* NFA_MOPEN(0) ... NFA_MOPEN(9) */
mclose = *p + NSUBEXP;
break;
}
/* Allow "NFA_MOPEN" as a valid postfix representation for
* the empty regexp "". In this case, the NFA will be
* NFA_MOPEN -> NFA_MCLOSE. Note that this also allows
* empty groups of parenthesis, and empty mbyte chars */
if (stackp == stack)
{
s = new_state(mopen, NULL, NULL);
if (s == NULL)
goto theend;
s1 = new_state(mclose, NULL, NULL);
if (s1 == NULL)
goto theend;
patch(list1(&s->out), s1);
PUSH(frag(s, list1(&s1->out)));
break;
}
/* At least one node was emitted before NFA_MOPEN, so
* at least one node will be between NFA_MOPEN and NFA_MCLOSE */
e = POP();
s = new_state(mopen, e.start, NULL); /* `(' */
if (s == NULL)
goto theend;
s1 = new_state(mclose, NULL, NULL); /* `)' */
if (s1 == NULL)
goto theend;
patch(e.out, s1);
#ifdef FEAT_MBYTE
if (mopen == NFA_COMPOSING)
/* COMPOSING->out1 = END_COMPOSING */
patch(list1(&s->out1), s1);
#endif
PUSH(frag(s, list1(&s1->out)));
break;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
if (nfa_calc_size == TRUE)
{
nstate += 2;
break;
}
s = new_state(*p, NULL, NULL);
if (s == NULL)
goto theend;
s1 = new_state(NFA_SKIP, NULL, NULL);
if (s1 == NULL)
goto theend;
patch(list1(&s->out), s1);
PUSH(frag(s, list1(&s1->out)));
break;
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
if (nfa_calc_size == TRUE)
{
nstate += 1;
break;
}
e1 = POP();
s = new_state(*p, NULL, NULL);
if (s == NULL)
goto theend;
s->val = e1.start->c;
PUSH(frag(s, list1(&s->out)));
break;
case NFA_ZSTART:
case NFA_ZEND:
default:
/* Operands */
if (nfa_calc_size == TRUE)
{
nstate++;
break;
}
s = new_state(*p, NULL, NULL);
if (s == NULL)
goto theend;
PUSH(frag(s, list1(&s->out)));
break;
} /* switch(*p) */
} /* for(p = postfix; *p; ++p) */
if (nfa_calc_size == TRUE)
{
nstate++;
goto theend; /* Return value when counting size is ignored anyway */
}
e = POP();
if (stackp != stack)
EMSG_RET_NULL(_("E875: (NFA regexp) (While converting from postfix to NFA), too many states left on stack"));
if (istate >= nstate)
EMSG_RET_NULL(_("E876: (NFA regexp) Not enough space to store the whole NFA "));
matchstate = &state_ptr[istate++]; /* the match state */
matchstate->c = NFA_MATCH;
matchstate->out = matchstate->out1 = NULL;
patch(e.out, matchstate);
ret = e.start;
theend:
vim_free(stack);
return ret;
#undef POP1
#undef PUSH1
#undef POP2
#undef PUSH2
#undef POP
#undef PUSH
}
/****************************************************************
* NFA execution code.
****************************************************************/
typedef struct
{
int in_use; /* number of subexpr with useful info */
/* When REG_MULTI is TRUE list.multi is used, otherwise list.line. */
union
{
struct multipos
{
lpos_T start;
lpos_T end;
} multi[NSUBEXP];
struct linepos
{
char_u *start;
char_u *end;
} line[NSUBEXP];
} list;
} regsub_T;
/* nfa_thread_T contains execution information of a NFA state */
typedef struct
{
nfa_state_T *state;
int count;
regsub_T sub; /* submatch info, only party used */
} nfa_thread_T;
/* nfa_list_T contains the alternative NFA execution states. */
typedef struct
{
nfa_thread_T *t; /* allocated array of states */
int n; /* nr of states currently in "t" */
int len; /* max nr of states in "t" */
int id; /* ID of the list */
} nfa_list_T;
#ifdef ENABLE_LOG
static void
log_subexpr(sub)
regsub_T *sub;
{
int j;
for (j = 0; j < sub->in_use; j++)
if (REG_MULTI)
fprintf(log_fd, "\n *** group %d, start: c=%d, l=%d, end: c=%d, l=%d",
j,
sub->list.multi[j].start.col,
(int)sub->list.multi[j].start.lnum,
sub->list.multi[j].end.col,
(int)sub->list.multi[j].end.lnum);
else
fprintf(log_fd, "\n *** group %d, start: \"%s\", end: \"%s\"",
j,
(char *)sub->list.line[j].start,
(char *)sub->list.line[j].end);
fprintf(log_fd, "\n");
}
#endif
/* Used during execution: whether a match has been found. */
static int nfa_match;
static int sub_equal __ARGS((regsub_T *sub1, regsub_T *sub2));
static void addstate __ARGS((nfa_list_T *l, nfa_state_T *state, regsub_T *sub, int off));
static void addstate_here __ARGS((nfa_list_T *l, nfa_state_T *state, regsub_T *sub, int *ip));
/*
* Return TRUE if "sub1" and "sub2" have the same positions.
*/
static int
sub_equal(sub1, sub2)
regsub_T *sub1;
regsub_T *sub2;
{
int i;
int todo;
linenr_T s1, e1;
linenr_T s2, e2;
char_u *sp1, *ep1;
char_u *sp2, *ep2;
todo = sub1->in_use > sub2->in_use ? sub1->in_use : sub2->in_use;
if (REG_MULTI)
{
for (i = 0; i < todo; ++i)
{
if (i < sub1->in_use)
{
s1 = sub1->list.multi[i].start.lnum;
e1 = sub1->list.multi[i].end.lnum;
}
else
{
s1 = 0;
e1 = 0;
}
if (i < sub2->in_use)
{
s2 = sub2->list.multi[i].start.lnum;
e2 = sub2->list.multi[i].end.lnum;
}
else
{
s2 = 0;
e2 = 0;
}
if (s1 != s2 || e1 != e2)
return FALSE;
if (s1 != 0 && sub1->list.multi[i].start.col
!= sub2->list.multi[i].start.col)
return FALSE;
if (e1 != 0 && sub1->list.multi[i].end.col
!= sub2->list.multi[i].end.col)
return FALSE;
}
}
else
{
for (i = 0; i < todo; ++i)
{
if (i < sub1->in_use)
{
sp1 = sub1->list.line[i].start;
ep1 = sub1->list.line[i].end;
}
else
{
sp1 = NULL;
ep1 = NULL;
}
if (i < sub2->in_use)
{
sp2 = sub2->list.line[i].start;
ep2 = sub2->list.line[i].end;
}
else
{
sp2 = NULL;
ep2 = NULL;
}
if (sp1 != sp2 || ep1 != ep2)
return FALSE;
}
}
return TRUE;
}
static void
addstate(l, state, sub, off)
nfa_list_T *l; /* runtime state list */
nfa_state_T *state; /* state to update */
regsub_T *sub; /* pointers to subexpressions */
int off; /* byte offset, when -1 go to next line */
{
int subidx;
nfa_thread_T *thread;
lpos_T save_lpos;
int save_in_use;
char_u *save_ptr;
int i;
#ifdef ENABLE_LOG
int did_print = FALSE;
#endif
if (l == NULL || state == NULL)
return;
switch (state->c)
{
case NFA_SPLIT:
case NFA_NOT:
case NFA_NOPEN:
case NFA_NCLOSE:
case NFA_MCLOSE:
case NFA_MCLOSE + 1:
case NFA_MCLOSE + 2:
case NFA_MCLOSE + 3:
case NFA_MCLOSE + 4:
case NFA_MCLOSE + 5:
case NFA_MCLOSE + 6:
case NFA_MCLOSE + 7:
case NFA_MCLOSE + 8:
case NFA_MCLOSE + 9:
/* These nodes are not added themselves but their "out" and/or
* "out1" may be added below. */
break;
case NFA_MOPEN:
case NFA_MOPEN + 1:
case NFA_MOPEN + 2:
case NFA_MOPEN + 3:
case NFA_MOPEN + 4:
case NFA_MOPEN + 5:
case NFA_MOPEN + 6:
case NFA_MOPEN + 7:
case NFA_MOPEN + 8:
case NFA_MOPEN + 9:
/* These nodes do not need to be added, but we need to bail out
* when it was tried to be added to this list before. */
if (state->lastlist == l->id)
goto skip_add;
state->lastlist = l->id;
break;
default:
if (state->lastlist == l->id)
{
/* This state is already in the list, don't add it again,
* unless it is an MOPEN that is used for a backreference. */
if (!nfa_has_backref)
{
skip_add:
#ifdef ENABLE_LOG
nfa_set_code(state->c);
fprintf(log_fd, "> Not adding state %d to list %d. char %d: %s\n",
abs(state->id), l->id, state->c, code);
#endif
return;
}
/* See if the same state is already in the list with the same
* positions. */
for (i = 0; i < l->n; ++i)
{
thread = &l->t[i];
if (thread->state->id == state->id
&& sub_equal(&thread->sub, sub))
goto skip_add;
}
}
/* when there are backreferences the number of states may be (a
* lot) bigger */
if (nfa_has_backref && l->n == l->len)
{
int newlen = l->len * 3 / 2 + 50;
l->t = vim_realloc(l->t, newlen * sizeof(nfa_thread_T));
l->len = newlen;
}
/* add the state to the list */
state->lastlist = l->id;
thread = &l->t[l->n++];
thread->state = state;
thread->sub.in_use = sub->in_use;
if (sub->in_use > 0)
{
/* Copy the match start and end positions. */
if (REG_MULTI)
mch_memmove(&thread->sub.list.multi[0],
&sub->list.multi[0],
sizeof(struct multipos) * sub->in_use);
else
mch_memmove(&thread->sub.list.line[0],
&sub->list.line[0],
sizeof(struct linepos) * sub->in_use);
}
#ifdef ENABLE_LOG
{
int col;
if (thread->sub.in_use <= 0)
col = -1;
else if (REG_MULTI)
col = thread->sub.list.multi[0].start.col;
else
col = (int)(thread->sub.list.line[0].start - regline);
nfa_set_code(state->c);
fprintf(log_fd, "> Adding state %d to list %d. char %d: %s (start col %d)\n",
abs(state->id), l->id, state->c, code, col);
did_print = TRUE;
}
#endif
}
#ifdef ENABLE_LOG
if (!did_print)
{
int col;
if (sub->in_use <= 0)
col = -1;
else if (REG_MULTI)
col = sub->list.multi[0].start.col;
else
col = (int)(sub->list.line[0].start - regline);
nfa_set_code(state->c);
fprintf(log_fd, "> Processing state %d for list %d. char %d: %s (start col %d)\n",
abs(state->id), l->id, state->c, code, col);
}
#endif
switch (state->c)
{
case NFA_MATCH:
nfa_match = TRUE;
break;
case NFA_SPLIT:
addstate(l, state->out, sub, off);
addstate(l, state->out1, sub, off);
break;
#if 0
case NFA_END_NEG_RANGE:
/* Nothing to handle here. nfa_regmatch() will take care of it */
break;
case NFA_NOT:
EMSG(_("E999: (NFA regexp internal error) Should not process NOT node !"));
#ifdef ENABLE_LOG
fprintf(f, "\n\n>>> E999: Added state NFA_NOT to a list ... Something went wrong ! Why wasn't it processed already? \n\n");
#endif
break;
case NFA_COMPOSING:
/* nfa_regmatch() will match all the bytes of this composing char. */
break;
#endif
case NFA_SKIP_CHAR:
case NFA_NOPEN:
case NFA_NCLOSE:
addstate(l, state->out, sub, off);
break;
case NFA_MOPEN + 0:
case NFA_MOPEN + 1:
case NFA_MOPEN + 2:
case NFA_MOPEN + 3:
case NFA_MOPEN + 4:
case NFA_MOPEN + 5:
case NFA_MOPEN + 6:
case NFA_MOPEN + 7:
case NFA_MOPEN + 8:
case NFA_MOPEN + 9:
case NFA_ZSTART:
if (state->c == NFA_ZSTART)
subidx = 0;
else
subidx = state->c - NFA_MOPEN;
/* Set the position (with "off") in the subexpression. Save and
* restore it when it was in use. Otherwise fill any gap. */
save_ptr = NULL;
if (REG_MULTI)
{
if (subidx < sub->in_use)
{
save_lpos = sub->list.multi[subidx].start;
save_in_use = -1;
}
else
{
save_in_use = sub->in_use;
for (i = sub->in_use; i < subidx; ++i)
{
sub->list.multi[i].start.lnum = -1;
sub->list.multi[i].end.lnum = -1;
}
sub->in_use = subidx + 1;
}
if (off == -1)
{
sub->list.multi[subidx].start.lnum = reglnum + 1;
sub->list.multi[subidx].start.col = 0;
}
else
{
sub->list.multi[subidx].start.lnum = reglnum;
sub->list.multi[subidx].start.col =
(colnr_T)(reginput - regline + off);
}
}
else
{
if (subidx < sub->in_use)
{
save_ptr = sub->list.line[subidx].start;
save_in_use = -1;
}
else
{
save_in_use = sub->in_use;
for (i = sub->in_use; i < subidx; ++i)
{
sub->list.line[i].start = NULL;
sub->list.line[i].end = NULL;
}
sub->in_use = subidx + 1;
}
sub->list.line[subidx].start = reginput + off;
}
addstate(l, state->out, sub, off);
if (save_in_use == -1)
{
if (REG_MULTI)
sub->list.multi[subidx].start = save_lpos;
else
sub->list.line[subidx].start = save_ptr;
}
else
sub->in_use = save_in_use;
break;
case NFA_MCLOSE + 0:
if (nfa_has_zend)
{
/* Do not overwrite the position set by \ze. If no \ze
* encountered end will be set in nfa_regtry(). */
addstate(l, state->out, sub, off);
break;
}
case NFA_MCLOSE + 1:
case NFA_MCLOSE + 2:
case NFA_MCLOSE + 3:
case NFA_MCLOSE + 4:
case NFA_MCLOSE + 5:
case NFA_MCLOSE + 6:
case NFA_MCLOSE + 7:
case NFA_MCLOSE + 8:
case NFA_MCLOSE + 9:
case NFA_ZEND:
if (state->c == NFA_ZEND)
subidx = 0;
else
subidx = state->c - NFA_MCLOSE;
/* We don't fill in gaps here, there must have been an MOPEN that
* has done that. */
save_in_use = sub->in_use;
if (sub->in_use <= subidx)
sub->in_use = subidx + 1;
if (REG_MULTI)
{
save_lpos = sub->list.multi[subidx].end;
if (off == -1)
{
sub->list.multi[subidx].end.lnum = reglnum + 1;
sub->list.multi[subidx].end.col = 0;
}
else
{
sub->list.multi[subidx].end.lnum = reglnum;
sub->list.multi[subidx].end.col =
(colnr_T)(reginput - regline + off);
}
}
else
{
save_ptr = sub->list.line[subidx].end;
sub->list.line[subidx].end = reginput + off;
}
addstate(l, state->out, sub, off);
if (REG_MULTI)
sub->list.multi[subidx].end = save_lpos;
else
sub->list.line[subidx].end = save_ptr;
sub->in_use = save_in_use;
break;
}
}
/*
* Like addstate(), but the new state(s) are put at position "*ip".
* Used for zero-width matches, next state to use is the added one.
* This makes sure the order of states to be tried does not change, which
* matters for alternatives.
*/
static void
addstate_here(l, state, sub, ip)
nfa_list_T *l; /* runtime state list */
nfa_state_T *state; /* state to update */
regsub_T *sub; /* pointers to subexpressions */
int *ip;
{
int tlen = l->n;
int count;
int i = *ip;
/* first add the state(s) at the end, so that we know how many there are */
addstate(l, state, sub, 0);
/* when "*ip" was at the end of the list, nothing to do */
if (i + 1 == tlen)
return;
/* re-order to put the new state at the current position */
count = l->n - tlen;
if (count == 1)
{
/* overwrite the current state */
l->t[i] = l->t[l->n - 1];
}
else if (count > 1)
{
/* make space for new states, then move them from the
* end to the current position */
mch_memmove(&(l->t[i + count]),
&(l->t[i + 1]),
sizeof(nfa_thread_T) * (l->n - i - 1));
mch_memmove(&(l->t[i]),
&(l->t[l->n - 1]),
sizeof(nfa_thread_T) * count);
}
--l->n;
*ip = i - 1;
}
/*
* Check character class "class" against current character c.
*/
static int
check_char_class(class, c)
int class;
int c;
{
switch (class)
{
case NFA_CLASS_ALNUM:
if (c >= 1 && c <= 255 && isalnum(c))
return OK;
break;
case NFA_CLASS_ALPHA:
if (c >= 1 && c <= 255 && isalpha(c))
return OK;
break;
case NFA_CLASS_BLANK:
if (c == ' ' || c == '\t')
return OK;
break;
case NFA_CLASS_CNTRL:
if (c >= 1 && c <= 255 && iscntrl(c))
return OK;
break;
case NFA_CLASS_DIGIT:
if (VIM_ISDIGIT(c))
return OK;
break;
case NFA_CLASS_GRAPH:
if (c >= 1 && c <= 255 && isgraph(c))
return OK;
break;
case NFA_CLASS_LOWER:
if (MB_ISLOWER(c))
return OK;
break;
case NFA_CLASS_PRINT:
if (vim_isprintc(c))
return OK;
break;
case NFA_CLASS_PUNCT:
if (c >= 1 && c <= 255 && ispunct(c))
return OK;
break;
case NFA_CLASS_SPACE:
if ((c >=9 && c <= 13) || (c == ' '))
return OK;
break;
case NFA_CLASS_UPPER:
if (MB_ISUPPER(c))
return OK;
break;
case NFA_CLASS_XDIGIT:
if (vim_isxdigit(c))
return OK;
break;
case NFA_CLASS_TAB:
if (c == '\t')
return OK;
break;
case NFA_CLASS_RETURN:
if (c == '\r')
return OK;
break;
case NFA_CLASS_BACKSPACE:
if (c == '\b')
return OK;
break;
case NFA_CLASS_ESCAPE:
if (c == '\033')
return OK;
break;
default:
/* should not be here :P */
EMSG_RET_FAIL(_("E877: (NFA regexp) Invalid character class "));
}
return FAIL;
}
static int match_backref __ARGS((regsub_T *sub, int subidx, int *bytelen));
/*
* Check for a match with subexpression "subidx".
* return TRUE if it matches.
*/
static int
match_backref(sub, subidx, bytelen)
regsub_T *sub; /* pointers to subexpressions */
int subidx;
int *bytelen; /* out: length of match in bytes */
{
int len;
if (sub->in_use <= subidx)
{
retempty:
/* backref was not set, match an empty string */
*bytelen = 0;
return TRUE;
}
if (REG_MULTI)
{
if (sub->list.multi[subidx].start.lnum < 0
|| sub->list.multi[subidx].end.lnum < 0)
goto retempty;
/* TODO: line breaks */
len = sub->list.multi[subidx].end.col
- sub->list.multi[subidx].start.col;
if (cstrncmp(regline + sub->list.multi[subidx].start.col,
reginput, &len) == 0)
{
*bytelen = len;
return TRUE;
}
}
else
{
if (sub->list.line[subidx].start == NULL
|| sub->list.line[subidx].end == NULL)
goto retempty;
len = (int)(sub->list.line[subidx].end - sub->list.line[subidx].start);
if (cstrncmp(sub->list.line[subidx].start, reginput, &len) == 0)
{
*bytelen = len;
return TRUE;
}
}
return FALSE;
}
/*
* Set all NFA nodes' list ID equal to -1.
*/
static void
nfa_set_neg_listids(start)
nfa_state_T *start;
{
if (start != NULL && start->lastlist >= 0)
{
start->lastlist = -1;
nfa_set_neg_listids(start->out);
nfa_set_neg_listids(start->out1);
}
}
/*
* Set all NFA nodes' list ID equal to 0.
*/
static void
nfa_set_null_listids(start)
nfa_state_T *start;
{
if (start != NULL && start->lastlist == -1)
{
start->lastlist = 0;
nfa_set_null_listids(start->out);
nfa_set_null_listids(start->out1);
}
}
/*
* Save list IDs for all NFA states in "list".
*/
static void
nfa_save_listids(start, list)
nfa_state_T *start;
int *list;
{
if (start != NULL && start->lastlist != -1)
{
list[abs(start->id)] = start->lastlist;
start->lastlist = -1;
nfa_save_listids(start->out, list);
nfa_save_listids(start->out1, list);
}
}
/*
* Restore list IDs from "list" to all NFA states.
*/
static void
nfa_restore_listids(start, list)
nfa_state_T *start;
int *list;
{
if (start != NULL && start->lastlist == -1)
{
start->lastlist = list[abs(start->id)];
nfa_restore_listids(start->out, list);
nfa_restore_listids(start->out1, list);
}
}
static int
nfa_re_num_cmp(val, op, pos)
long_u val;
int op;
long_u pos;
{
if (op == 1) return pos > val;
if (op == 2) return pos < val;
return val == pos;
}
static int nfa_regmatch __ARGS((nfa_state_T *start, regsub_T *submatch, regsub_T *m, save_se_T *endp));
/*
* Main matching routine.
*
* Run NFA to determine whether it matches reginput.
*
* When "endp" is not NULL it is a required end-of-match position.
*
* Return TRUE if there is a match, FALSE otherwise.
* Note: Caller must ensure that: start != NULL.
*/
static int
nfa_regmatch(start, submatch, m, endp)
nfa_state_T *start;
regsub_T *submatch;
regsub_T *m;
save_se_T *endp;
{
int result;
int size = 0;
int flag = 0;
int go_to_nextline = FALSE;
nfa_thread_T *t;
nfa_list_T list[3];
nfa_list_T *listtbl[2][2];
nfa_list_T *ll;
int listid = 1;
int listidx;
nfa_list_T *thislist;
nfa_list_T *nextlist;
nfa_list_T *neglist;
int *listids = NULL;
#ifdef NFA_REGEXP_DEBUG_LOG
FILE *debug = fopen(NFA_REGEXP_DEBUG_LOG, "a");
if (debug == NULL)
{
EMSG2(_("(NFA) COULD NOT OPEN %s !"), NFA_REGEXP_DEBUG_LOG);
return FALSE;
}
#endif
nfa_match = FALSE;
/* Allocate memory for the lists of nodes. */
size = (nstate + 1) * sizeof(nfa_thread_T);
list[0].t = (nfa_thread_T *)lalloc_clear(size, TRUE);
list[0].len = nstate + 1;
list[1].t = (nfa_thread_T *)lalloc_clear(size, TRUE);
list[1].len = nstate + 1;
list[2].t = (nfa_thread_T *)lalloc_clear(size, TRUE);
list[2].len = nstate + 1;
if (list[0].t == NULL || list[1].t == NULL || list[2].t == NULL)
goto theend;
#ifdef ENABLE_LOG
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
if (log_fd != NULL)
{
fprintf(log_fd, "**********************************\n");
nfa_set_code(start->c);
fprintf(log_fd, " RUNNING nfa_regmatch() starting with state %d, code %s\n",
abs(start->id), code);
fprintf(log_fd, "**********************************\n");
}
else
{
EMSG(_("Could not open temporary log file for writing, displaying on stderr ... "));
log_fd = stderr;
}
#endif
thislist = &list[0];
thislist->n = 0;
nextlist = &list[1];
nextlist->n = 0;
neglist = &list[2];
neglist->n = 0;
#ifdef ENABLE_LOG
fprintf(log_fd, "(---) STARTSTATE\n");
#endif
thislist->id = listid;
addstate(thislist, start, m, 0);
/* There are two cases when the NFA advances: 1. input char matches the
* NFA node and 2. input char does not match the NFA node, but the next
* node is NFA_NOT. The following macro calls addstate() according to
* these rules. It is used A LOT, so use the "listtbl" table for speed */
listtbl[0][0] = NULL;
listtbl[0][1] = neglist;
listtbl[1][0] = nextlist;
listtbl[1][1] = NULL;
#define ADD_POS_NEG_STATE(node) \
ll = listtbl[result ? 1 : 0][node->negated]; \
if (ll != NULL) \
addstate(ll, node->out , &t->sub, clen);
/*
* Run for each character.
*/
for (;;)
{
int curc;
int clen;
#ifdef FEAT_MBYTE
if (has_mbyte)
{
curc = (*mb_ptr2char)(reginput);
clen = (*mb_ptr2len)(reginput);
}
else
#endif
{
curc = *reginput;
clen = 1;
}
if (curc == NUL)
{
clen = 0;
go_to_nextline = FALSE;
}
/* swap lists */
thislist = &list[flag];
nextlist = &list[flag ^= 1];
nextlist->n = 0; /* clear nextlist */
listtbl[1][0] = nextlist;
++listid;
thislist->id = listid;
nextlist->id = listid + 1;
neglist->id = listid + 1;
#ifdef ENABLE_LOG
fprintf(log_fd, "------------------------------------------\n");
fprintf(log_fd, ">>> Reginput is \"%s\"\n", reginput);
fprintf(log_fd, ">>> Advanced one character ... Current char is %c (code %d) \n", curc, (int)curc);
fprintf(log_fd, ">>> Thislist has %d states available: ", thislist->n);
{
int i;
for (i = 0; i < thislist->n; i++)
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
}
fprintf(log_fd, "\n");
#endif
#ifdef NFA_REGEXP_DEBUG_LOG
fprintf(debug, "\n-------------------\n");
#endif
/*
* If the state lists are empty we can stop.
*/
if (thislist->n == 0 && neglist->n == 0)
break;
/* compute nextlist */
for (listidx = 0; listidx < thislist->n || neglist->n > 0; ++listidx)
{
if (neglist->n > 0)
{
t = &neglist->t[0];
neglist->n--;
listidx--;
}
else
t = &thislist->t[listidx];
#ifdef NFA_REGEXP_DEBUG_LOG
nfa_set_code(t->state->c);
fprintf(debug, "%s, ", code);
#endif
#ifdef ENABLE_LOG
{
int col;
if (t->sub.in_use <= 0)
col = -1;
else if (REG_MULTI)
col = t->sub.list.multi[0].start.col;
else
col = (int)(t->sub.list.line[0].start - regline);
nfa_set_code(t->state->c);
fprintf(log_fd, "(%d) char %d %s (start col %d) ... \n",
abs(t->state->id), (int)t->state->c, code, col);
}
#endif
/*
* Handle the possible codes of the current state.
* The most important is NFA_MATCH.
*/
switch (t->state->c)
{
case NFA_MATCH:
{
int j;
nfa_match = TRUE;
submatch->in_use = t->sub.in_use;
if (REG_MULTI)
for (j = 0; j < submatch->in_use; j++)
{
submatch->list.multi[j].start =
t->sub.list.multi[j].start;
submatch->list.multi[j].end = t->sub.list.multi[j].end;
}
else
for (j = 0; j < submatch->in_use; j++)
{
submatch->list.line[j].start =
t->sub.list.line[j].start;
submatch->list.line[j].end = t->sub.list.line[j].end;
}
#ifdef ENABLE_LOG
log_subexpr(&t->sub);
#endif
/* Found the left-most longest match, do not look at any other
* states at this position. When the list of states is going
* to be empty quit without advancing, so that "reginput" is
* correct. */
if (nextlist->n == 0 && neglist->n == 0)
clen = 0;
goto nextchar;
}
case NFA_END_INVISIBLE:
/* This is only encountered after a NFA_START_INVISIBLE or
* NFA_START_INVISIBLE_BEFORE node.
* They surround a zero-width group, used with "\@=", "\&",
* "\@!", "\@<=" and "\@<!".
* If we got here, it means that the current "invisible" group
* finished successfully, so return control to the parent
* nfa_regmatch(). Submatches are stored in *m, and used in
* the parent call. */
if (start->c == NFA_MOPEN + 0)
/* TODO: do we ever get here? */
addstate_here(thislist, t->state->out, &t->sub, &listidx);
else
{
#ifdef ENABLE_LOG
if (endp != NULL)
{
if (REG_MULTI)
fprintf(log_fd, "Current lnum: %d, endp lnum: %d; current col: %d, endp col: %d\n",
(int)reglnum,
(int)endp->se_u.pos.lnum,
(int)(reginput - regline),
endp->se_u.pos.col);
else
fprintf(log_fd, "Current col: %d, endp col: %d\n",
(int)(reginput - regline),
(int)(endp->se_u.ptr - reginput));
}
#endif
/* It's only a match if it ends at "endp" */
if (endp != NULL && (REG_MULTI
? (reglnum != endp->se_u.pos.lnum
|| (int)(reginput - regline)
!= endp->se_u.pos.col)
: reginput != endp->se_u.ptr))
break;
/* do not set submatches for \@! */
if (!t->state->negated)
/* TODO: only copy positions in use. */
*m = t->sub;
nfa_match = TRUE;
}
break;
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_BEFORE:
{
char_u *save_reginput = reginput;
char_u *save_regline = regline;
int save_reglnum = reglnum;
int save_nfa_match = nfa_match;
save_se_T endpos;
save_se_T *endposp = NULL;
if (t->state->c == NFA_START_INVISIBLE_BEFORE)
{
/* The recursive match must end at the current position. */
endposp = &endpos;
if (REG_MULTI)
{
endpos.se_u.pos.col = (int)(reginput - regline);
endpos.se_u.pos.lnum = reglnum;
}
else
endpos.se_u.ptr = reginput;
/* Go back the specified number of bytes, or as far as the
* start of the previous line, to try matching "\@<=" or
* not matching "\@<!". */
if (t->state->val <= 0)
{
if (REG_MULTI)
{
regline = reg_getline(--reglnum);
if (regline == NULL)
/* can't go before the first line */
regline = reg_getline(++reglnum);
}
reginput = regline;
}
else
{
if (REG_MULTI
&& (int)(reginput - regline) < t->state->val)
{
/* Not enough bytes in this line, go to end of
* previous line. */
regline = reg_getline(--reglnum);
if (regline == NULL)
{
/* can't go before the first line */
regline = reg_getline(++reglnum);
reginput = regline;
}
else
reginput = regline + STRLEN(regline);
}
if ((int)(reginput - regline) >= t->state->val)
{
reginput -= t->state->val;
#ifdef FEAT_MBYTE
if (has_mbyte)
reginput -= mb_head_off(regline, reginput);
#endif
}
else
reginput = regline;
}
}
/* Call nfa_regmatch() to check if the current concat matches
* at this position. The concat ends with the node
* NFA_END_INVISIBLE */
if (listids == NULL)
{
listids = (int *)lalloc(sizeof(int) * nstate, TRUE);
if (listids == NULL)
{
EMSG(_("E878: (NFA) Could not allocate memory for branch traversal!"));
return 0;
}
}
#ifdef ENABLE_LOG
if (log_fd != stderr)
fclose(log_fd);
log_fd = NULL;
#endif
/* Have to clear the listid field of the NFA nodes, so that
* nfa_regmatch() and addstate() can run properly after
* recursion. */
nfa_save_listids(start, listids);
nfa_set_null_listids(start);
result = nfa_regmatch(t->state->out, submatch, m, endposp);
nfa_set_neg_listids(start);
nfa_restore_listids(start, listids);
/* restore position in input text */
reginput = save_reginput;
regline = save_regline;
reglnum = save_reglnum;
nfa_match = save_nfa_match;
#ifdef ENABLE_LOG
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
if (log_fd != NULL)
{
fprintf(log_fd, "****************************\n");
fprintf(log_fd, "FINISHED RUNNING nfa_regmatch() recursively\n");
fprintf(log_fd, "MATCH = %s\n", result == TRUE ? "OK" : "FALSE");
fprintf(log_fd, "****************************\n");
}
else
{
EMSG(_("Could not open temporary log file for writing, displaying on stderr ... "));
log_fd = stderr;
}
#endif
/* for \@! it is a match when result is FALSE */
if (result != t->state->negated)
{
int j;
/* Copy submatch info from the recursive call */
if (REG_MULTI)
for (j = 1; j < m->in_use; j++)
{
t->sub.list.multi[j].start = m->list.multi[j].start;
t->sub.list.multi[j].end = m->list.multi[j].end;
}
else
for (j = 1; j < m->in_use; j++)
{
t->sub.list.line[j].start = m->list.line[j].start;
t->sub.list.line[j].end = m->list.line[j].end;
}
if (m->in_use > t->sub.in_use)
t->sub.in_use = m->in_use;
/* t->state->out1 is the corresponding END_INVISIBLE node;
* Add it to the current list (zero-width match). */
addstate_here(thislist, t->state->out1->out, &t->sub,
&listidx);
}
break;
}
case NFA_BOL:
if (reginput == regline)
addstate_here(thislist, t->state->out, &t->sub, &listidx);
break;
case NFA_EOL:
if (curc == NUL)
addstate_here(thislist, t->state->out, &t->sub, &listidx);
break;
case NFA_BOW:
{
int bow = TRUE;
if (curc == NUL)
bow = FALSE;
#ifdef FEAT_MBYTE
else if (has_mbyte)
{
int this_class;
/* Get class of current and previous char (if it exists). */
this_class = mb_get_class_buf(reginput, reg_buf);
if (this_class <= 1)
bow = FALSE;
else if (reg_prev_class() == this_class)
bow = FALSE;
}
#endif
else if (!vim_iswordc_buf(curc, reg_buf)
|| (reginput > regline
&& vim_iswordc_buf(reginput[-1], reg_buf)))
bow = FALSE;
if (bow)
addstate_here(thislist, t->state->out, &t->sub, &listidx);
break;
}
case NFA_EOW:
{
int eow = TRUE;
if (reginput == regline)
eow = FALSE;
#ifdef FEAT_MBYTE
else if (has_mbyte)
{
int this_class, prev_class;
/* Get class of current and previous char (if it exists). */
this_class = mb_get_class_buf(reginput, reg_buf);
prev_class = reg_prev_class();
if (this_class == prev_class
|| prev_class == 0 || prev_class == 1)
eow = FALSE;
}
#endif
else if (!vim_iswordc_buf(reginput[-1], reg_buf)
|| (reginput[0] != NUL
&& vim_iswordc_buf(curc, reg_buf)))
eow = FALSE;
if (eow)
addstate_here(thislist, t->state->out, &t->sub, &listidx);
break;
}
case NFA_BOF:
if (reglnum == 0 && reginput == regline
&& (!REG_MULTI || reg_firstlnum == 1))
addstate_here(thislist, t->state->out, &t->sub, &listidx);
break;
case NFA_EOF:
if (reglnum == reg_maxline && curc == NUL)
addstate_here(thislist, t->state->out, &t->sub, &listidx);
break;
#ifdef FEAT_MBYTE
case NFA_COMPOSING:
{
int mc = curc;
int len = 0;
nfa_state_T *end;
nfa_state_T *sta;
int cchars[MAX_MCO];
int ccount = 0;
int j;
sta = t->state->out;
len = 0;
if (utf_iscomposing(sta->c))
{
/* Only match composing character(s), ignore base
* character. Used for ".{composing}" and "{composing}"
* (no preceding character). */
len += mb_char2len(mc);
}
if (ireg_icombine && len == 0)
{
/* If \Z was present, then ignore composing characters.
* When ignoring the base character this always matches. */
/* TODO: How about negated? */
if (len == 0 && sta->c != curc)
result = FAIL;
else
result = OK;
while (sta->c != NFA_END_COMPOSING)
sta = sta->out;
}
/* Check base character matches first, unless ignored. */
else if (len > 0 || mc == sta->c)
{
if (len == 0)
{
len += mb_char2len(mc);
sta = sta->out;
}
/* We don't care about the order of composing characters.
* Get them into cchars[] first. */
while (len < clen)
{
mc = mb_ptr2char(reginput + len);
cchars[ccount++] = mc;
len += mb_char2len(mc);
if (ccount == MAX_MCO)
break;
}
/* Check that each composing char in the pattern matches a
* composing char in the text. We do not check if all
* composing chars are matched. */
result = OK;
while (sta->c != NFA_END_COMPOSING)
{
for (j = 0; j < ccount; ++j)
if (cchars[j] == sta->c)
break;
if (j == ccount)
{
result = FAIL;
break;
}
sta = sta->out;
}
}
else
result = FAIL;
end = t->state->out1; /* NFA_END_COMPOSING */
ADD_POS_NEG_STATE(end);
break;
}
#endif
case NFA_NEWL:
if (curc == NUL && !reg_line_lbr && REG_MULTI
&& reglnum <= reg_maxline)
{
go_to_nextline = TRUE;
/* Pass -1 for the offset, which means taking the position
* at the start of the next line. */
addstate(nextlist, t->state->out, &t->sub, -1);
}
else if (curc == '\n' && reg_line_lbr)
{
/* match \n as if it is an ordinary character */
addstate(nextlist, t->state->out, &t->sub, 1);
}
break;
case NFA_CLASS_ALNUM:
case NFA_CLASS_ALPHA:
case NFA_CLASS_BLANK:
case NFA_CLASS_CNTRL:
case NFA_CLASS_DIGIT:
case NFA_CLASS_GRAPH:
case NFA_CLASS_LOWER:
case NFA_CLASS_PRINT:
case NFA_CLASS_PUNCT:
case NFA_CLASS_SPACE:
case NFA_CLASS_UPPER:
case NFA_CLASS_XDIGIT:
case NFA_CLASS_TAB:
case NFA_CLASS_RETURN:
case NFA_CLASS_BACKSPACE:
case NFA_CLASS_ESCAPE:
result = check_char_class(t->state->c, curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_END_NEG_RANGE:
/* This follows a series of negated nodes, like:
* CHAR(x), NFA_NOT, CHAR(y), NFA_NOT etc. */
if (curc > 0)
addstate(nextlist, t->state->out, &t->sub, clen);
break;
case NFA_ANY:
/* Any char except '\0', (end of input) does not match. */
if (curc > 0)
addstate(nextlist, t->state->out, &t->sub, clen);
break;
/*
* Character classes like \a for alpha, \d for digit etc.
*/
case NFA_IDENT: /* \i */
result = vim_isIDc(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_SIDENT: /* \I */
result = !VIM_ISDIGIT(curc) && vim_isIDc(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_KWORD: /* \k */
result = vim_iswordp_buf(reginput, reg_buf);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_SKWORD: /* \K */
result = !VIM_ISDIGIT(curc)
&& vim_iswordp_buf(reginput, reg_buf);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_FNAME: /* \f */
result = vim_isfilec(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_SFNAME: /* \F */
result = !VIM_ISDIGIT(curc) && vim_isfilec(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_PRINT: /* \p */
result = ptr2cells(reginput) == 1;
ADD_POS_NEG_STATE(t->state);
break;
case NFA_SPRINT: /* \P */
result = !VIM_ISDIGIT(curc) && ptr2cells(reginput) == 1;
ADD_POS_NEG_STATE(t->state);
break;
case NFA_WHITE: /* \s */
result = vim_iswhite(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_NWHITE: /* \S */
result = curc != NUL && !vim_iswhite(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_DIGIT: /* \d */
result = ri_digit(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_NDIGIT: /* \D */
result = curc != NUL && !ri_digit(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_HEX: /* \x */
result = ri_hex(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_NHEX: /* \X */
result = curc != NUL && !ri_hex(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_OCTAL: /* \o */
result = ri_octal(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_NOCTAL: /* \O */
result = curc != NUL && !ri_octal(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_WORD: /* \w */
result = ri_word(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_NWORD: /* \W */
result = curc != NUL && !ri_word(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_HEAD: /* \h */
result = ri_head(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_NHEAD: /* \H */
result = curc != NUL && !ri_head(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_ALPHA: /* \a */
result = ri_alpha(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_NALPHA: /* \A */
result = curc != NUL && !ri_alpha(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_LOWER: /* \l */
result = ri_lower(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_NLOWER: /* \L */
result = curc != NUL && !ri_lower(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_UPPER: /* \u */
result = ri_upper(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_NUPPER: /* \U */
result = curc != NUL && !ri_upper(curc);
ADD_POS_NEG_STATE(t->state);
break;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
/* \1 .. \9 */
{
int subidx = t->state->c - NFA_BACKREF1 + 1;
int bytelen;
result = match_backref(&t->sub, subidx, &bytelen);
if (result)
{
if (bytelen == 0)
{
/* empty match always works, add NFA_SKIP with zero to
* be used next */
addstate_here(thislist, t->state->out, &t->sub,
&listidx);
thislist->t[listidx + 1].count = 0;
}
else if (bytelen <= clen)
{
/* match current character, jump ahead to out of
* NFA_SKIP */
addstate(nextlist, t->state->out->out, &t->sub, clen);
#ifdef ENABLE_LOG
log_subexpr(&nextlist->t[nextlist->n - 1].sub);
#endif
}
else
{
/* skip ofer the matched characters, set character
* count in NFA_SKIP */
addstate(nextlist, t->state->out, &t->sub, bytelen);
nextlist->t[nextlist->n - 1].count = bytelen - clen;
#ifdef ENABLE_LOG
log_subexpr(&nextlist->t[nextlist->n - 1].sub);
#endif
}
}
break;
}
case NFA_SKIP:
/* charater of previous matching \1 .. \9 */
if (t->count - clen <= 0)
{
/* end of match, go to what follows */
addstate(nextlist, t->state->out, &t->sub, clen);
#ifdef ENABLE_LOG
log_subexpr(&nextlist->t[nextlist->n - 1].sub);
#endif
}
else
{
/* add state again with decremented count */
addstate(nextlist, t->state, &t->sub, 0);
nextlist->t[nextlist->n - 1].count = t->count - clen;
#ifdef ENABLE_LOG
log_subexpr(&nextlist->t[nextlist->n - 1].sub);
#endif
}
break;
case NFA_SKIP_CHAR:
case NFA_ZSTART:
case NFA_ZEND:
/* TODO: should not happen? */
break;
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
result = (REG_MULTI &&
nfa_re_num_cmp(t->state->val, t->state->c - NFA_LNUM,
(long_u)(reglnum + reg_firstlnum)));
if (result)
addstate_here(thislist, t->state->out, &t->sub, &listidx);
break;
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
result = nfa_re_num_cmp(t->state->val, t->state->c - NFA_COL,
(long_u)(reginput - regline) + 1);
if (result)
addstate_here(thislist, t->state->out, &t->sub, &listidx);
break;
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
result = nfa_re_num_cmp(t->state->val, t->state->c - NFA_VCOL,
(long_u)win_linetabsize(
reg_win == NULL ? curwin : reg_win,
regline, (colnr_T)(reginput - regline)) + 1);
if (result)
addstate_here(thislist, t->state->out, &t->sub, &listidx);
break;
case NFA_CURSOR:
result = (reg_win != NULL
&& (reglnum + reg_firstlnum == reg_win->w_cursor.lnum)
&& ((colnr_T)(reginput - regline)
== reg_win->w_cursor.col));
if (result)
addstate_here(thislist, t->state->out, &t->sub, &listidx);
break;
default: /* regular character */
{
int c = t->state->c;
/* TODO: put this in #ifdef later */
if (c < -256)
EMSGN("INTERNAL: Negative state char: %ld", c);
if (is_Magic(c))
c = un_Magic(c);
result = (c == curc);
if (!result && ireg_ic)
result = MB_TOLOWER(c) == MB_TOLOWER(curc);
#ifdef FEAT_MBYTE
/* If there is a composing character which is not being
* ignored there can be no match. Match with composing
* character uses NFA_COMPOSING above. */
if (result && enc_utf8 && !ireg_icombine
&& clen != utf_char2len(curc))
result = FALSE;
#endif
ADD_POS_NEG_STATE(t->state);
break;
}
}
} /* for (thislist = thislist; thislist->state; thislist++) */
/* Look for the start of a match in the current position by adding the
* start state to the list of states.
* The first found match is the leftmost one, thus the order of states
* matters!
* Do not add the start state in recursive calls of nfa_regmatch(),
* because recursive calls should only start in the first position.
* Unless "endp" is not NULL, then we match the end position.
* Also don't start a match past the first line. */
if (nfa_match == FALSE
&& ((start->c == NFA_MOPEN + 0
&& reglnum == 0
&& clen != 0
&& (ireg_maxcol == 0
|| (colnr_T)(reginput - regline) < ireg_maxcol))
|| (endp != NULL
&& (REG_MULTI
? (reglnum < endp->se_u.pos.lnum
|| (reglnum == endp->se_u.pos.lnum
&& (int)(reginput - regline)
< endp->se_u.pos.col))
: reginput < endp->se_u.ptr))))
{
#ifdef ENABLE_LOG
fprintf(log_fd, "(---) STARTSTATE\n");
#endif
addstate(nextlist, start, m, clen);
}
#ifdef ENABLE_LOG
fprintf(log_fd, ">>> Thislist had %d states available: ", thislist->n);
{
int i;
for (i = 0; i < thislist->n; i++)
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
}
fprintf(log_fd, "\n");
#endif
nextchar:
/* Advance to the next character, or advance to the next line, or
* finish. */
if (clen != 0)
reginput += clen;
else if (go_to_nextline || (endp != NULL && REG_MULTI
&& reglnum < endp->se_u.pos.lnum))
reg_nextline();
else
break;
}
#ifdef ENABLE_LOG
if (log_fd != stderr)
fclose(log_fd);
log_fd = NULL;
#endif
theend:
/* Free memory */
vim_free(list[0].t);
vim_free(list[1].t);
vim_free(list[2].t);
vim_free(listids);
#undef ADD_POS_NEG_STATE
#ifdef NFA_REGEXP_DEBUG_LOG
fclose(debug);
#endif
return nfa_match;
}
/*
* Try match of "prog" with at regline["col"].
* Returns 0 for failure, number of lines contained in the match otherwise.
*/
static long
nfa_regtry(start, col)
nfa_state_T *start;
colnr_T col;
{
int i;
regsub_T sub, m;
#ifdef ENABLE_LOG
FILE *f;
#endif
reginput = regline + col;
need_clear_subexpr = TRUE;
#ifdef ENABLE_LOG
f = fopen(NFA_REGEXP_RUN_LOG, "a");
if (f != NULL)
{
fprintf(f, "\n\n\n\n\n\n\t\t=======================================================\n");
fprintf(f, " =======================================================\n");
#ifdef DEBUG
fprintf(f, "\tRegexp is \"%s\"\n", nfa_regengine.expr);
#endif
fprintf(f, "\tInput text is \"%s\" \n", reginput);
fprintf(f, " =======================================================\n\n");
nfa_print_state(f, start);
fprintf(f, "\n\n");
fclose(f);
}
else
EMSG(_("Could not open temporary log file for writing "));
#endif
if (REG_MULTI)
{
/* Use 0xff to set lnum to -1 */
vim_memset(sub.list.multi, 0xff, sizeof(struct multipos) * nfa_nsubexpr);
vim_memset(m.list.multi, 0xff, sizeof(struct multipos) * nfa_nsubexpr);
}
else
{
vim_memset(sub.list.line, 0, sizeof(struct linepos) * nfa_nsubexpr);
vim_memset(m.list.line, 0, sizeof(struct linepos) * nfa_nsubexpr);
}
sub.in_use = 0;
m.in_use = 0;
if (nfa_regmatch(start, &sub, &m, NULL) == FALSE)
return 0;
cleanup_subexpr();
if (REG_MULTI)
{
for (i = 0; i < sub.in_use; i++)
{
reg_startpos[i] = sub.list.multi[i].start;
reg_endpos[i] = sub.list.multi[i].end;
}
if (reg_startpos[0].lnum < 0)
{
reg_startpos[0].lnum = 0;
reg_startpos[0].col = col;
}
if (reg_endpos[0].lnum < 0)
{
/* pattern has a \ze but it didn't match, use current end */
reg_endpos[0].lnum = reglnum;
reg_endpos[0].col = (int)(reginput - regline);
}
else
/* Use line number of "\ze". */
reglnum = reg_endpos[0].lnum;
}
else
{
for (i = 0; i < sub.in_use; i++)
{
reg_startp[i] = sub.list.line[i].start;
reg_endp[i] = sub.list.line[i].end;
}
if (reg_startp[0] == NULL)
reg_startp[0] = regline + col;
if (reg_endp[0] == NULL)
reg_endp[0] = reginput;
}
return 1 + reglnum;
}
/*
* Match a regexp against a string ("line" points to the string) or multiple
* lines ("line" is NULL, use reg_getline()).
*
* Returns 0 for failure, number of lines contained in the match otherwise.
*/
static long
nfa_regexec_both(line, col)
char_u *line;
colnr_T col; /* column to start looking for match */
{
nfa_regprog_T *prog;
long retval = 0L;
int i;
if (REG_MULTI)
{
prog = (nfa_regprog_T *)reg_mmatch->regprog;
line = reg_getline((linenr_T)0); /* relative to the cursor */
reg_startpos = reg_mmatch->startpos;
reg_endpos = reg_mmatch->endpos;
}
else
{
prog = (nfa_regprog_T *)reg_match->regprog;
reg_startp = reg_match->startp;
reg_endp = reg_match->endp;
}
/* Be paranoid... */
if (prog == NULL || line == NULL)
{
EMSG(_(e_null));
goto theend;
}
/* If the start column is past the maximum column: no need to try. */
if (ireg_maxcol > 0 && col >= ireg_maxcol)
goto theend;
/* If pattern contains "\c" or "\C": overrule value of ireg_ic */
if (prog->regflags & RF_ICASE)
ireg_ic = TRUE;
else if (prog->regflags & RF_NOICASE)
ireg_ic = FALSE;
#ifdef FEAT_MBYTE
/* If pattern contains "\Z" overrule value of ireg_icombine */
if (prog->regflags & RF_ICOMBINE)
ireg_icombine = TRUE;
#endif
regline = line;
reglnum = 0; /* relative to line */
nfa_has_zend = prog->has_zend;
nfa_has_backref = prog->has_backref;
nfa_nsubexpr = prog->nsubexp;
nstate = prog->nstate;
for (i = 0; i < nstate; ++i)
{
prog->state[i].id = i;
prog->state[i].lastlist = 0;
}
retval = nfa_regtry(prog->start, col);
theend:
return retval;
}
/*
* Compile a regular expression into internal code for the NFA matcher.
* Returns the program in allocated space. Returns NULL for an error.
*/
static regprog_T *
nfa_regcomp(expr, re_flags)
char_u *expr;
int re_flags;
{
nfa_regprog_T *prog = NULL;
size_t prog_size;
int *postfix;
if (expr == NULL)
return NULL;
#ifdef DEBUG
nfa_regengine.expr = expr;
#endif
init_class_tab();
if (nfa_regcomp_start(expr, re_flags) == FAIL)
return NULL;
/* Build postfix form of the regexp. Needed to build the NFA
* (and count its size). */
postfix = re2post();
if (postfix == NULL)
{
/* TODO: only give this error for debugging? */
if (post_ptr >= post_end)
EMSGN("Internal error: estimated max number of states insufficient: %ld", post_end - post_start);
goto fail; /* Cascaded (syntax?) error */
}
/*
* In order to build the NFA, we parse the input regexp twice:
* 1. first pass to count size (so we can allocate space)
* 2. second to emit code
*/
#ifdef ENABLE_LOG
{
FILE *f = fopen(NFA_REGEXP_RUN_LOG, "a");
if (f != NULL)
{
fprintf(f, "\n*****************************\n\n\n\n\tCompiling regexp \"%s\" ... hold on !\n", expr);
fclose(f);
}
}
#endif
/*
* PASS 1
* Count number of NFA states in "nstate". Do not build the NFA.
*/
post2nfa(postfix, post_ptr, TRUE);
/* Space for compiled regexp */
prog_size = sizeof(nfa_regprog_T) + sizeof(nfa_state_T) * nstate;
prog = (nfa_regprog_T *)lalloc(prog_size, TRUE);
if (prog == NULL)
goto fail;
vim_memset(prog, 0, prog_size);
state_ptr = prog->state;
/*
* PASS 2
* Build the NFA
*/
prog->start = post2nfa(postfix, post_ptr, FALSE);
if (prog->start == NULL)
goto fail;
prog->regflags = regflags;
prog->engine = &nfa_regengine;
prog->nstate = nstate;
prog->has_zend = nfa_has_zend;
prog->has_backref = nfa_has_backref;
prog->nsubexp = regnpar;
#ifdef ENABLE_LOG
nfa_postfix_dump(expr, OK);
nfa_dump(prog);
#endif
out:
vim_free(post_start);
post_start = post_ptr = post_end = NULL;
state_ptr = NULL;
return (regprog_T *)prog;
fail:
vim_free(prog);
prog = NULL;
#ifdef ENABLE_LOG
nfa_postfix_dump(expr, FAIL);
#endif
#ifdef DEBUG
nfa_regengine.expr = NULL;
#endif
goto out;
}
/*
* Match a regexp against a string.
* "rmp->regprog" is a compiled regexp as returned by nfa_regcomp().
* Uses curbuf for line count and 'iskeyword'.
*
* Return TRUE if there is a match, FALSE if not.
*/
static int
nfa_regexec(rmp, line, col)
regmatch_T *rmp;
char_u *line; /* string to match against */
colnr_T col; /* column to start looking for match */
{
reg_match = rmp;
reg_mmatch = NULL;
reg_maxline = 0;
reg_line_lbr = FALSE;
reg_buf = curbuf;
reg_win = NULL;
ireg_ic = rmp->rm_ic;
#ifdef FEAT_MBYTE
ireg_icombine = FALSE;
#endif
ireg_maxcol = 0;
return (nfa_regexec_both(line, col) != 0);
}
#if defined(FEAT_MODIFY_FNAME) || defined(FEAT_EVAL) \
|| defined(FIND_REPLACE_DIALOG) || defined(PROTO)
static int nfa_regexec_nl __ARGS((regmatch_T *rmp, char_u *line, colnr_T col));
/*
* Like nfa_regexec(), but consider a "\n" in "line" to be a line break.
*/
static int
nfa_regexec_nl(rmp, line, col)
regmatch_T *rmp;
char_u *line; /* string to match against */
colnr_T col; /* column to start looking for match */
{
reg_match = rmp;
reg_mmatch = NULL;
reg_maxline = 0;
reg_line_lbr = TRUE;
reg_buf = curbuf;
reg_win = NULL;
ireg_ic = rmp->rm_ic;
#ifdef FEAT_MBYTE
ireg_icombine = FALSE;
#endif
ireg_maxcol = 0;
return (nfa_regexec_both(line, col) != 0);
}
#endif
/*
* Match a regexp against multiple lines.
* "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
* Uses curbuf for line count and 'iskeyword'.
*
* Return zero if there is no match. Return number of lines contained in the
* match otherwise.
*
* Note: the body is the same as bt_regexec() except for nfa_regexec_both()
*
* ! Also NOTE : match may actually be in another line. e.g.:
* when r.e. is \nc, cursor is at 'a' and the text buffer looks like
*
* +-------------------------+
* |a |
* |b |
* |c |
* | |
* +-------------------------+
*
* then nfa_regexec_multi() returns 3. while the original
* vim_regexec_multi() returns 0 and a second call at line 2 will return 2.
*
* FIXME if this behavior is not compatible.
*/
static long
nfa_regexec_multi(rmp, win, buf, lnum, col, tm)
regmmatch_T *rmp;
win_T *win; /* window in which to search or NULL */
buf_T *buf; /* buffer in which to search */
linenr_T lnum; /* nr of line to start looking for match */
colnr_T col; /* column to start looking for match */
proftime_T *tm UNUSED; /* timeout limit or NULL */
{
reg_match = NULL;
reg_mmatch = rmp;
reg_buf = buf;
reg_win = win;
reg_firstlnum = lnum;
reg_maxline = reg_buf->b_ml.ml_line_count - lnum;
reg_line_lbr = FALSE;
ireg_ic = rmp->rmm_ic;
#ifdef FEAT_MBYTE
ireg_icombine = FALSE;
#endif
ireg_maxcol = rmp->rmm_maxcol;
return nfa_regexec_both(NULL, col);
}
#ifdef DEBUG
# undef ENABLE_LOG
#endif