blob: 3eaf74dd93b2daac89dcc0d0caa30b2b36a9ded1 [file] [log] [blame]
/* vi:set ts=8 sts=4 sw=4:
*
* Handling of regular expressions: vim_regcomp(), vim_regexec(), vim_regsub()
*
* NOTICE:
*
* This is NOT the original regular expression code as written by Henry
* Spencer. This code has been modified specifically for use with the VIM
* editor, and should not be used separately from Vim. If you want a good
* regular expression library, get the original code. The copyright notice
* that follows is from the original.
*
* END NOTICE
*
* Copyright (c) 1986 by University of Toronto.
* Written by Henry Spencer. Not derived from licensed software.
*
* Permission is granted to anyone to use this software for any
* purpose on any computer system, and to redistribute it freely,
* subject to the following restrictions:
*
* 1. The author is not responsible for the consequences of use of
* this software, no matter how awful, even if they arise
* from defects in it.
*
* 2. The origin of this software must not be misrepresented, either
* by explicit claim or by omission.
*
* 3. Altered versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
*
* Beware that some of this code is subtly aware of the way operator
* precedence is structured in regular expressions. Serious changes in
* regular-expression syntax might require a total rethink.
*
* Changes have been made by Tony Andrews, Olaf 'Rhialto' Seibert, Robert
* Webb, Ciaran McCreesh and Bram Moolenaar.
* Named character class support added by Walter Briscoe (1998 Jul 01)
*/
/* Uncomment the first if you do not want to see debugging logs or files
* related to regular expressions, even when compiling with -DDEBUG.
* Uncomment the second to get the regexp debugging. */
/* #undef DEBUG */
/* #define DEBUG */
#include "vim.h"
#ifdef DEBUG
/* show/save debugging data when BT engine is used */
# define BT_REGEXP_DUMP
/* save the debugging data to a file instead of displaying it */
# define BT_REGEXP_LOG
# define BT_REGEXP_DEBUG_LOG
# define BT_REGEXP_DEBUG_LOG_NAME "bt_regexp_debug.log"
#endif
/*
* The "internal use only" fields in regexp.h are present to pass info from
* compile to execute that permits the execute phase to run lots faster on
* simple cases. They are:
*
* regstart char that must begin a match; NUL if none obvious; Can be a
* multi-byte character.
* reganch is the match anchored (at beginning-of-line only)?
* regmust string (pointer into program) that match must include, or NULL
* regmlen length of regmust string
* regflags RF_ values or'ed together
*
* Regstart and reganch permit very fast decisions on suitable starting points
* for a match, cutting down the work a lot. Regmust permits fast rejection
* of lines that cannot possibly match. The regmust tests are costly enough
* that vim_regcomp() supplies a regmust only if the r.e. contains something
* potentially expensive (at present, the only such thing detected is * or +
* at the start of the r.e., which can involve a lot of backup). Regmlen is
* supplied because the test in vim_regexec() needs it and vim_regcomp() is
* computing it anyway.
*/
/*
* Structure for regexp "program". This is essentially a linear encoding
* of a nondeterministic finite-state machine (aka syntax charts or
* "railroad normal form" in parsing technology). Each node is an opcode
* plus a "next" pointer, possibly plus an operand. "Next" pointers of
* all nodes except BRANCH and BRACES_COMPLEX implement concatenation; a "next"
* pointer with a BRANCH on both ends of it is connecting two alternatives.
* (Here we have one of the subtle syntax dependencies: an individual BRANCH
* (as opposed to a collection of them) is never concatenated with anything
* because of operator precedence). The "next" pointer of a BRACES_COMPLEX
* node points to the node after the stuff to be repeated.
* The operand of some types of node is a literal string; for others, it is a
* node leading into a sub-FSM. In particular, the operand of a BRANCH node
* is the first node of the branch.
* (NB this is *not* a tree structure: the tail of the branch connects to the
* thing following the set of BRANCHes.)
*
* pattern is coded like:
*
* +-----------------+
* | V
* <aa>\|<bb> BRANCH <aa> BRANCH <bb> --> END
* | ^ | ^
* +------+ +----------+
*
*
* +------------------+
* V |
* <aa>* BRANCH BRANCH <aa> --> BACK BRANCH --> NOTHING --> END
* | | ^ ^
* | +---------------+ |
* +---------------------------------------------+
*
*
* +----------------------+
* V |
* <aa>\+ BRANCH <aa> --> BRANCH --> BACK BRANCH --> NOTHING --> END
* | | ^ ^
* | +-----------+ |
* +--------------------------------------------------+
*
*
* +-------------------------+
* V |
* <aa>\{} BRANCH BRACE_LIMITS --> BRACE_COMPLEX <aa> --> BACK END
* | | ^
* | +----------------+
* +-----------------------------------------------+
*
*
* <aa>\@!<bb> BRANCH NOMATCH <aa> --> END <bb> --> END
* | | ^ ^
* | +----------------+ |
* +--------------------------------+
*
* +---------+
* | V
* \z[abc] BRANCH BRANCH a BRANCH b BRANCH c BRANCH NOTHING --> END
* | | | | ^ ^
* | | | +-----+ |
* | | +----------------+ |
* | +---------------------------+ |
* +------------------------------------------------------+
*
* They all start with a BRANCH for "\|" alternatives, even when there is only
* one alternative.
*/
/*
* The opcodes are:
*/
/* definition number opnd? meaning */
#define END 0 /* End of program or NOMATCH operand. */
#define BOL 1 /* Match "" at beginning of line. */
#define EOL 2 /* Match "" at end of line. */
#define BRANCH 3 /* node Match this alternative, or the
* next... */
#define BACK 4 /* Match "", "next" ptr points backward. */
#define EXACTLY 5 /* str Match this string. */
#define NOTHING 6 /* Match empty string. */
#define STAR 7 /* node Match this (simple) thing 0 or more
* times. */
#define PLUS 8 /* node Match this (simple) thing 1 or more
* times. */
#define MATCH 9 /* node match the operand zero-width */
#define NOMATCH 10 /* node check for no match with operand */
#define BEHIND 11 /* node look behind for a match with operand */
#define NOBEHIND 12 /* node look behind for no match with operand */
#define SUBPAT 13 /* node match the operand here */
#define BRACE_SIMPLE 14 /* node Match this (simple) thing between m and
* n times (\{m,n\}). */
#define BOW 15 /* Match "" after [^a-zA-Z0-9_] */
#define EOW 16 /* Match "" at [^a-zA-Z0-9_] */
#define BRACE_LIMITS 17 /* nr nr define the min & max for BRACE_SIMPLE
* and BRACE_COMPLEX. */
#define NEWL 18 /* Match line-break */
#define BHPOS 19 /* End position for BEHIND or NOBEHIND */
/* character classes: 20-48 normal, 50-78 include a line-break */
#define ADD_NL 30
#define FIRST_NL ANY + ADD_NL
#define ANY 20 /* Match any one character. */
#define ANYOF 21 /* str Match any character in this string. */
#define ANYBUT 22 /* str Match any character not in this
* string. */
#define IDENT 23 /* Match identifier char */
#define SIDENT 24 /* Match identifier char but no digit */
#define KWORD 25 /* Match keyword char */
#define SKWORD 26 /* Match word char but no digit */
#define FNAME 27 /* Match file name char */
#define SFNAME 28 /* Match file name char but no digit */
#define PRINT 29 /* Match printable char */
#define SPRINT 30 /* Match printable char but no digit */
#define WHITE 31 /* Match whitespace char */
#define NWHITE 32 /* Match non-whitespace char */
#define DIGIT 33 /* Match digit char */
#define NDIGIT 34 /* Match non-digit char */
#define HEX 35 /* Match hex char */
#define NHEX 36 /* Match non-hex char */
#define OCTAL 37 /* Match octal char */
#define NOCTAL 38 /* Match non-octal char */
#define WORD 39 /* Match word char */
#define NWORD 40 /* Match non-word char */
#define HEAD 41 /* Match head char */
#define NHEAD 42 /* Match non-head char */
#define ALPHA 43 /* Match alpha char */
#define NALPHA 44 /* Match non-alpha char */
#define LOWER 45 /* Match lowercase char */
#define NLOWER 46 /* Match non-lowercase char */
#define UPPER 47 /* Match uppercase char */
#define NUPPER 48 /* Match non-uppercase char */
#define LAST_NL NUPPER + ADD_NL
#define WITH_NL(op) ((op) >= FIRST_NL && (op) <= LAST_NL)
#define MOPEN 80 /* -89 Mark this point in input as start of
* \( subexpr. MOPEN + 0 marks start of
* match. */
#define MCLOSE 90 /* -99 Analogous to MOPEN. MCLOSE + 0 marks
* end of match. */
#define BACKREF 100 /* -109 node Match same string again \1-\9 */
#ifdef FEAT_SYN_HL
# define ZOPEN 110 /* -119 Mark this point in input as start of
* \z( subexpr. */
# define ZCLOSE 120 /* -129 Analogous to ZOPEN. */
# define ZREF 130 /* -139 node Match external submatch \z1-\z9 */
#endif
#define BRACE_COMPLEX 140 /* -149 node Match nodes between m & n times */
#define NOPEN 150 /* Mark this point in input as start of
\%( subexpr. */
#define NCLOSE 151 /* Analogous to NOPEN. */
#define MULTIBYTECODE 200 /* mbc Match one multi-byte character */
#define RE_BOF 201 /* Match "" at beginning of file. */
#define RE_EOF 202 /* Match "" at end of file. */
#define CURSOR 203 /* Match location of cursor. */
#define RE_LNUM 204 /* nr cmp Match line number */
#define RE_COL 205 /* nr cmp Match column number */
#define RE_VCOL 206 /* nr cmp Match virtual column number */
#define RE_MARK 207 /* mark cmp Match mark position */
#define RE_VISUAL 208 /* Match Visual area */
/*
* Magic characters have a special meaning, they don't match literally.
* Magic characters are negative. This separates them from literal characters
* (possibly multi-byte). Only ASCII characters can be Magic.
*/
#define Magic(x) ((int)(x) - 256)
#define un_Magic(x) ((x) + 256)
#define is_Magic(x) ((x) < 0)
static int no_Magic __ARGS((int x));
static int toggle_Magic __ARGS((int x));
static int
no_Magic(x)
int x;
{
if (is_Magic(x))
return un_Magic(x);
return x;
}
static int
toggle_Magic(x)
int x;
{
if (is_Magic(x))
return un_Magic(x);
return Magic(x);
}
/*
* The first byte of the regexp internal "program" is actually this magic
* number; the start node begins in the second byte. It's used to catch the
* most severe mutilation of the program by the caller.
*/
#define REGMAGIC 0234
/*
* Opcode notes:
*
* BRANCH The set of branches constituting a single choice are hooked
* together with their "next" pointers, since precedence prevents
* anything being concatenated to any individual branch. The
* "next" pointer of the last BRANCH in a choice points to the
* thing following the whole choice. This is also where the
* final "next" pointer of each individual branch points; each
* branch starts with the operand node of a BRANCH node.
*
* BACK Normal "next" pointers all implicitly point forward; BACK
* exists to make loop structures possible.
*
* STAR,PLUS '=', and complex '*' and '+', are implemented as circular
* BRANCH structures using BACK. Simple cases (one character
* per match) are implemented with STAR and PLUS for speed
* and to minimize recursive plunges.
*
* BRACE_LIMITS This is always followed by a BRACE_SIMPLE or BRACE_COMPLEX
* node, and defines the min and max limits to be used for that
* node.
*
* MOPEN,MCLOSE ...are numbered at compile time.
* ZOPEN,ZCLOSE ...ditto
*/
/*
* A node is one char of opcode followed by two chars of "next" pointer.
* "Next" pointers are stored as two 8-bit bytes, high order first. The
* value is a positive offset from the opcode of the node containing it.
* An operand, if any, simply follows the node. (Note that much of the
* code generation knows about this implicit relationship.)
*
* Using two bytes for the "next" pointer is vast overkill for most things,
* but allows patterns to get big without disasters.
*/
#define OP(p) ((int)*(p))
#define NEXT(p) (((*((p) + 1) & 0377) << 8) + (*((p) + 2) & 0377))
#define OPERAND(p) ((p) + 3)
/* Obtain an operand that was stored as four bytes, MSB first. */
#define OPERAND_MIN(p) (((long)(p)[3] << 24) + ((long)(p)[4] << 16) \
+ ((long)(p)[5] << 8) + (long)(p)[6])
/* Obtain a second operand stored as four bytes. */
#define OPERAND_MAX(p) OPERAND_MIN((p) + 4)
/* Obtain a second single-byte operand stored after a four bytes operand. */
#define OPERAND_CMP(p) (p)[7]
/*
* Utility definitions.
*/
#define UCHARAT(p) ((int)*(char_u *)(p))
/* Used for an error (down from) vim_regcomp(): give the error message, set
* rc_did_emsg and return NULL */
#define EMSG_RET_NULL(m) return (EMSG(m), rc_did_emsg = TRUE, (void *)NULL)
#define EMSG_RET_FAIL(m) return (EMSG(m), rc_did_emsg = TRUE, FAIL)
#define EMSG2_RET_NULL(m, c) return (EMSG2((m), (c) ? "" : "\\"), rc_did_emsg = TRUE, (void *)NULL)
#define EMSG2_RET_FAIL(m, c) return (EMSG2((m), (c) ? "" : "\\"), rc_did_emsg = TRUE, FAIL)
#define EMSG_ONE_RET_NULL EMSG2_RET_NULL(_("E369: invalid item in %s%%[]"), reg_magic == MAGIC_ALL)
#define MAX_LIMIT (32767L << 16L)
static int re_multi_type __ARGS((int));
static int cstrncmp __ARGS((char_u *s1, char_u *s2, int *n));
static char_u *cstrchr __ARGS((char_u *, int));
#ifdef BT_REGEXP_DUMP
static void regdump __ARGS((char_u *, bt_regprog_T *));
#endif
#ifdef DEBUG
static char_u *regprop __ARGS((char_u *));
#endif
static char_u e_missingbracket[] = N_("E769: Missing ] after %s[");
static char_u e_unmatchedpp[] = N_("E53: Unmatched %s%%(");
static char_u e_unmatchedp[] = N_("E54: Unmatched %s(");
static char_u e_unmatchedpar[] = N_("E55: Unmatched %s)");
#define NOT_MULTI 0
#define MULTI_ONE 1
#define MULTI_MULT 2
/*
* Return NOT_MULTI if c is not a "multi" operator.
* Return MULTI_ONE if c is a single "multi" operator.
* Return MULTI_MULT if c is a multi "multi" operator.
*/
static int
re_multi_type(c)
int c;
{
if (c == Magic('@') || c == Magic('=') || c == Magic('?'))
return MULTI_ONE;
if (c == Magic('*') || c == Magic('+') || c == Magic('{'))
return MULTI_MULT;
return NOT_MULTI;
}
/*
* Flags to be passed up and down.
*/
#define HASWIDTH 0x1 /* Known never to match null string. */
#define SIMPLE 0x2 /* Simple enough to be STAR/PLUS operand. */
#define SPSTART 0x4 /* Starts with * or +. */
#define HASNL 0x8 /* Contains some \n. */
#define HASLOOKBH 0x10 /* Contains "\@<=" or "\@<!". */
#define WORST 0 /* Worst case. */
/*
* When regcode is set to this value, code is not emitted and size is computed
* instead.
*/
#define JUST_CALC_SIZE ((char_u *) -1)
static char_u *reg_prev_sub = NULL;
/*
* REGEXP_INRANGE contains all characters which are always special in a []
* range after '\'.
* REGEXP_ABBR contains all characters which act as abbreviations after '\'.
* These are:
* \n - New line (NL).
* \r - Carriage Return (CR).
* \t - Tab (TAB).
* \e - Escape (ESC).
* \b - Backspace (Ctrl_H).
* \d - Character code in decimal, eg \d123
* \o - Character code in octal, eg \o80
* \x - Character code in hex, eg \x4a
* \u - Multibyte character code, eg \u20ac
* \U - Long multibyte character code, eg \U12345678
*/
static char_u REGEXP_INRANGE[] = "]^-n\\";
static char_u REGEXP_ABBR[] = "nrtebdoxuU";
static int backslash_trans __ARGS((int c));
static int get_char_class __ARGS((char_u **pp));
static int get_equi_class __ARGS((char_u **pp));
static void reg_equi_class __ARGS((int c));
static int get_coll_element __ARGS((char_u **pp));
static char_u *skip_anyof __ARGS((char_u *p));
static void init_class_tab __ARGS((void));
/*
* Translate '\x' to its control character, except "\n", which is Magic.
*/
static int
backslash_trans(c)
int c;
{
switch (c)
{
case 'r': return CAR;
case 't': return TAB;
case 'e': return ESC;
case 'b': return BS;
}
return c;
}
/*
* Check for a character class name "[:name:]". "pp" points to the '['.
* Returns one of the CLASS_ items. CLASS_NONE means that no item was
* recognized. Otherwise "pp" is advanced to after the item.
*/
static int
get_char_class(pp)
char_u **pp;
{
static const char *(class_names[]) =
{
"alnum:]",
#define CLASS_ALNUM 0
"alpha:]",
#define CLASS_ALPHA 1
"blank:]",
#define CLASS_BLANK 2
"cntrl:]",
#define CLASS_CNTRL 3
"digit:]",
#define CLASS_DIGIT 4
"graph:]",
#define CLASS_GRAPH 5
"lower:]",
#define CLASS_LOWER 6
"print:]",
#define CLASS_PRINT 7
"punct:]",
#define CLASS_PUNCT 8
"space:]",
#define CLASS_SPACE 9
"upper:]",
#define CLASS_UPPER 10
"xdigit:]",
#define CLASS_XDIGIT 11
"tab:]",
#define CLASS_TAB 12
"return:]",
#define CLASS_RETURN 13
"backspace:]",
#define CLASS_BACKSPACE 14
"escape:]",
#define CLASS_ESCAPE 15
};
#define CLASS_NONE 99
int i;
if ((*pp)[1] == ':')
{
for (i = 0; i < (int)(sizeof(class_names) / sizeof(*class_names)); ++i)
if (STRNCMP(*pp + 2, class_names[i], STRLEN(class_names[i])) == 0)
{
*pp += STRLEN(class_names[i]) + 2;
return i;
}
}
return CLASS_NONE;
}
/*
* Specific version of character class functions.
* Using a table to keep this fast.
*/
static short class_tab[256];
#define RI_DIGIT 0x01
#define RI_HEX 0x02
#define RI_OCTAL 0x04
#define RI_WORD 0x08
#define RI_HEAD 0x10
#define RI_ALPHA 0x20
#define RI_LOWER 0x40
#define RI_UPPER 0x80
#define RI_WHITE 0x100
static void
init_class_tab()
{
int i;
static int done = FALSE;
if (done)
return;
for (i = 0; i < 256; ++i)
{
if (i >= '0' && i <= '7')
class_tab[i] = RI_DIGIT + RI_HEX + RI_OCTAL + RI_WORD;
else if (i >= '8' && i <= '9')
class_tab[i] = RI_DIGIT + RI_HEX + RI_WORD;
else if (i >= 'a' && i <= 'f')
class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER;
#ifdef EBCDIC
else if ((i >= 'g' && i <= 'i') || (i >= 'j' && i <= 'r')
|| (i >= 's' && i <= 'z'))
#else
else if (i >= 'g' && i <= 'z')
#endif
class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER;
else if (i >= 'A' && i <= 'F')
class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER;
#ifdef EBCDIC
else if ((i >= 'G' && i <= 'I') || ( i >= 'J' && i <= 'R')
|| (i >= 'S' && i <= 'Z'))
#else
else if (i >= 'G' && i <= 'Z')
#endif
class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER;
else if (i == '_')
class_tab[i] = RI_WORD + RI_HEAD;
else
class_tab[i] = 0;
}
class_tab[' '] |= RI_WHITE;
class_tab['\t'] |= RI_WHITE;
done = TRUE;
}
#ifdef FEAT_MBYTE
# define ri_digit(c) (c < 0x100 && (class_tab[c] & RI_DIGIT))
# define ri_hex(c) (c < 0x100 && (class_tab[c] & RI_HEX))
# define ri_octal(c) (c < 0x100 && (class_tab[c] & RI_OCTAL))
# define ri_word(c) (c < 0x100 && (class_tab[c] & RI_WORD))
# define ri_head(c) (c < 0x100 && (class_tab[c] & RI_HEAD))
# define ri_alpha(c) (c < 0x100 && (class_tab[c] & RI_ALPHA))
# define ri_lower(c) (c < 0x100 && (class_tab[c] & RI_LOWER))
# define ri_upper(c) (c < 0x100 && (class_tab[c] & RI_UPPER))
# define ri_white(c) (c < 0x100 && (class_tab[c] & RI_WHITE))
#else
# define ri_digit(c) (class_tab[c] & RI_DIGIT)
# define ri_hex(c) (class_tab[c] & RI_HEX)
# define ri_octal(c) (class_tab[c] & RI_OCTAL)
# define ri_word(c) (class_tab[c] & RI_WORD)
# define ri_head(c) (class_tab[c] & RI_HEAD)
# define ri_alpha(c) (class_tab[c] & RI_ALPHA)
# define ri_lower(c) (class_tab[c] & RI_LOWER)
# define ri_upper(c) (class_tab[c] & RI_UPPER)
# define ri_white(c) (class_tab[c] & RI_WHITE)
#endif
/* flags for regflags */
#define RF_ICASE 1 /* ignore case */
#define RF_NOICASE 2 /* don't ignore case */
#define RF_HASNL 4 /* can match a NL */
#define RF_ICOMBINE 8 /* ignore combining characters */
#define RF_LOOKBH 16 /* uses "\@<=" or "\@<!" */
/*
* Global work variables for vim_regcomp().
*/
static char_u *regparse; /* Input-scan pointer. */
static int prevchr_len; /* byte length of previous char */
static int num_complex_braces; /* Complex \{...} count */
static int regnpar; /* () count. */
#ifdef FEAT_SYN_HL
static int regnzpar; /* \z() count. */
static int re_has_z; /* \z item detected */
#endif
static char_u *regcode; /* Code-emit pointer, or JUST_CALC_SIZE */
static long regsize; /* Code size. */
static int reg_toolong; /* TRUE when offset out of range */
static char_u had_endbrace[NSUBEXP]; /* flags, TRUE if end of () found */
static unsigned regflags; /* RF_ flags for prog */
static long brace_min[10]; /* Minimums for complex brace repeats */
static long brace_max[10]; /* Maximums for complex brace repeats */
static int brace_count[10]; /* Current counts for complex brace repeats */
#if defined(FEAT_SYN_HL) || defined(PROTO)
static int had_eol; /* TRUE when EOL found by vim_regcomp() */
#endif
static int one_exactly = FALSE; /* only do one char for EXACTLY */
static int reg_magic; /* magicness of the pattern: */
#define MAGIC_NONE 1 /* "\V" very unmagic */
#define MAGIC_OFF 2 /* "\M" or 'magic' off */
#define MAGIC_ON 3 /* "\m" or 'magic' */
#define MAGIC_ALL 4 /* "\v" very magic */
static int reg_string; /* matching with a string instead of a buffer
line */
static int reg_strict; /* "[abc" is illegal */
/*
* META contains all characters that may be magic, except '^' and '$'.
*/
#ifdef EBCDIC
static char_u META[] = "%&()*+.123456789<=>?@ACDFHIKLMOPSUVWX[_acdfhiklmnopsuvwxz{|~";
#else
/* META[] is used often enough to justify turning it into a table. */
static char_u META_flags[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* % & ( ) * + . */
0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0,
/* 1 2 3 4 5 6 7 8 9 < = > ? */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
/* @ A C D F H I K L M O */
1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1,
/* P S U V W X Z [ _ */
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1,
/* a c d f h i k l m n o */
0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
/* p s u v w x z { | ~ */
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1
};
#endif
static int curchr; /* currently parsed character */
/* Previous character. Note: prevchr is sometimes -1 when we are not at the
* start, eg in /[ ^I]^ the pattern was never found even if it existed,
* because ^ was taken to be magic -- webb */
static int prevchr;
static int prevprevchr; /* previous-previous character */
static int nextchr; /* used for ungetchr() */
/* arguments for reg() */
#define REG_NOPAREN 0 /* toplevel reg() */
#define REG_PAREN 1 /* \(\) */
#define REG_ZPAREN 2 /* \z(\) */
#define REG_NPAREN 3 /* \%(\) */
typedef struct
{
char_u *regparse;
int prevchr_len;
int curchr;
int prevchr;
int prevprevchr;
int nextchr;
int at_start;
int prev_at_start;
int regnpar;
} parse_state_T;
/*
* Forward declarations for vim_regcomp()'s friends.
*/
static void initchr __ARGS((char_u *));
static void save_parse_state __ARGS((parse_state_T *ps));
static void restore_parse_state __ARGS((parse_state_T *ps));
static int getchr __ARGS((void));
static void skipchr_keepstart __ARGS((void));
static int peekchr __ARGS((void));
static void skipchr __ARGS((void));
static void ungetchr __ARGS((void));
static int gethexchrs __ARGS((int maxinputlen));
static int getoctchrs __ARGS((void));
static int getdecchrs __ARGS((void));
static int coll_get_char __ARGS((void));
static void regcomp_start __ARGS((char_u *expr, int flags));
static char_u *reg __ARGS((int, int *));
static char_u *regbranch __ARGS((int *flagp));
static char_u *regconcat __ARGS((int *flagp));
static char_u *regpiece __ARGS((int *));
static char_u *regatom __ARGS((int *));
static char_u *regnode __ARGS((int));
#ifdef FEAT_MBYTE
static int use_multibytecode __ARGS((int c));
#endif
static int prog_magic_wrong __ARGS((void));
static char_u *regnext __ARGS((char_u *));
static void regc __ARGS((int b));
#ifdef FEAT_MBYTE
static void regmbc __ARGS((int c));
# define REGMBC(x) regmbc(x);
# define CASEMBC(x) case x:
#else
# define regmbc(c) regc(c)
# define REGMBC(x)
# define CASEMBC(x)
#endif
static void reginsert __ARGS((int, char_u *));
static void reginsert_nr __ARGS((int op, long val, char_u *opnd));
static void reginsert_limits __ARGS((int, long, long, char_u *));
static char_u *re_put_long __ARGS((char_u *pr, long_u val));
static int read_limits __ARGS((long *, long *));
static void regtail __ARGS((char_u *, char_u *));
static void regoptail __ARGS((char_u *, char_u *));
static regengine_T bt_regengine;
static regengine_T nfa_regengine;
/*
* Return TRUE if compiled regular expression "prog" can match a line break.
*/
int
re_multiline(prog)
regprog_T *prog;
{
return (prog->regflags & RF_HASNL);
}
/*
* Return TRUE if compiled regular expression "prog" looks before the start
* position (pattern contains "\@<=" or "\@<!").
*/
int
re_lookbehind(prog)
regprog_T *prog;
{
return (prog->regflags & RF_LOOKBH);
}
/*
* Check for an equivalence class name "[=a=]". "pp" points to the '['.
* Returns a character representing the class. Zero means that no item was
* recognized. Otherwise "pp" is advanced to after the item.
*/
static int
get_equi_class(pp)
char_u **pp;
{
int c;
int l = 1;
char_u *p = *pp;
if (p[1] == '=')
{
#ifdef FEAT_MBYTE
if (has_mbyte)
l = (*mb_ptr2len)(p + 2);
#endif
if (p[l + 2] == '=' && p[l + 3] == ']')
{
#ifdef FEAT_MBYTE
if (has_mbyte)
c = mb_ptr2char(p + 2);
else
#endif
c = p[2];
*pp += l + 4;
return c;
}
}
return 0;
}
#ifdef EBCDIC
/*
* Table for equivalence class "c". (IBM-1047)
*/
char *EQUIVAL_CLASS_C[16] = {
"A\x62\x63\x64\x65\x66\x67",
"C\x68",
"E\x71\x72\x73\x74",
"I\x75\x76\x77\x78",
"N\x69",
"O\xEB\xEC\xED\xEE\xEF",
"U\xFB\xFC\xFD\xFE",
"Y\xBA",
"a\x42\x43\x44\x45\x46\x47",
"c\x48",
"e\x51\x52\x53\x54",
"i\x55\x56\x57\x58",
"n\x49",
"o\xCB\xCC\xCD\xCE\xCF",
"u\xDB\xDC\xDD\xDE",
"y\x8D\xDF",
};
#endif
/*
* Produce the bytes for equivalence class "c".
* Currently only handles latin1, latin9 and utf-8.
* NOTE: When changing this function, also change nfa_emit_equi_class()
*/
static void
reg_equi_class(c)
int c;
{
#ifdef FEAT_MBYTE
if (enc_utf8 || STRCMP(p_enc, "latin1") == 0
|| STRCMP(p_enc, "iso-8859-15") == 0)
#endif
{
#ifdef EBCDIC
int i;
/* This might be slower than switch/case below. */
for (i = 0; i < 16; i++)
{
if (vim_strchr(EQUIVAL_CLASS_C[i], c) != NULL)
{
char *p = EQUIVAL_CLASS_C[i];
while (*p != 0)
regmbc(*p++);
return;
}
}
#else
switch (c)
{
case 'A': case '\300': case '\301': case '\302':
CASEMBC(0x100) CASEMBC(0x102) CASEMBC(0x104) CASEMBC(0x1cd)
CASEMBC(0x1de) CASEMBC(0x1e0) CASEMBC(0x1ea2)
case '\303': case '\304': case '\305':
regmbc('A'); regmbc('\300'); regmbc('\301');
regmbc('\302'); regmbc('\303'); regmbc('\304');
regmbc('\305');
REGMBC(0x100) REGMBC(0x102) REGMBC(0x104)
REGMBC(0x1cd) REGMBC(0x1de) REGMBC(0x1e0)
REGMBC(0x1ea2)
return;
case 'B': CASEMBC(0x1e02) CASEMBC(0x1e06)
regmbc('B'); REGMBC(0x1e02) REGMBC(0x1e06)
return;
case 'C': case '\307':
CASEMBC(0x106) CASEMBC(0x108) CASEMBC(0x10a) CASEMBC(0x10c)
regmbc('C'); regmbc('\307');
REGMBC(0x106) REGMBC(0x108) REGMBC(0x10a)
REGMBC(0x10c)
return;
case 'D': CASEMBC(0x10e) CASEMBC(0x110) CASEMBC(0x1e0a)
CASEMBC(0x1e0e) CASEMBC(0x1e10)
regmbc('D'); REGMBC(0x10e) REGMBC(0x110)
REGMBC(0x1e0a) REGMBC(0x1e0e) REGMBC(0x1e10)
return;
case 'E': case '\310': case '\311': case '\312': case '\313':
CASEMBC(0x112) CASEMBC(0x114) CASEMBC(0x116) CASEMBC(0x118)
CASEMBC(0x11a) CASEMBC(0x1eba) CASEMBC(0x1ebc)
regmbc('E'); regmbc('\310'); regmbc('\311');
regmbc('\312'); regmbc('\313');
REGMBC(0x112) REGMBC(0x114) REGMBC(0x116)
REGMBC(0x118) REGMBC(0x11a) REGMBC(0x1eba)
REGMBC(0x1ebc)
return;
case 'F': CASEMBC(0x1e1e)
regmbc('F'); REGMBC(0x1e1e)
return;
case 'G': CASEMBC(0x11c) CASEMBC(0x11e) CASEMBC(0x120)
CASEMBC(0x122) CASEMBC(0x1e4) CASEMBC(0x1e6) CASEMBC(0x1f4)
CASEMBC(0x1e20)
regmbc('G'); REGMBC(0x11c) REGMBC(0x11e)
REGMBC(0x120) REGMBC(0x122) REGMBC(0x1e4)
REGMBC(0x1e6) REGMBC(0x1f4) REGMBC(0x1e20)
return;
case 'H': CASEMBC(0x124) CASEMBC(0x126) CASEMBC(0x1e22)
CASEMBC(0x1e26) CASEMBC(0x1e28)
regmbc('H'); REGMBC(0x124) REGMBC(0x126)
REGMBC(0x1e22) REGMBC(0x1e26) REGMBC(0x1e28)
return;
case 'I': case '\314': case '\315': case '\316': case '\317':
CASEMBC(0x128) CASEMBC(0x12a) CASEMBC(0x12c) CASEMBC(0x12e)
CASEMBC(0x130) CASEMBC(0x1cf) CASEMBC(0x1ec8)
regmbc('I'); regmbc('\314'); regmbc('\315');
regmbc('\316'); regmbc('\317');
REGMBC(0x128) REGMBC(0x12a) REGMBC(0x12c)
REGMBC(0x12e) REGMBC(0x130) REGMBC(0x1cf)
REGMBC(0x1ec8)
return;
case 'J': CASEMBC(0x134)
regmbc('J'); REGMBC(0x134)
return;
case 'K': CASEMBC(0x136) CASEMBC(0x1e8) CASEMBC(0x1e30)
CASEMBC(0x1e34)
regmbc('K'); REGMBC(0x136) REGMBC(0x1e8)
REGMBC(0x1e30) REGMBC(0x1e34)
return;
case 'L': CASEMBC(0x139) CASEMBC(0x13b) CASEMBC(0x13d)
CASEMBC(0x13f) CASEMBC(0x141) CASEMBC(0x1e3a)
regmbc('L'); REGMBC(0x139) REGMBC(0x13b)
REGMBC(0x13d) REGMBC(0x13f) REGMBC(0x141)
REGMBC(0x1e3a)
return;
case 'M': CASEMBC(0x1e3e) CASEMBC(0x1e40)
regmbc('M'); REGMBC(0x1e3e) REGMBC(0x1e40)
return;
case 'N': case '\321':
CASEMBC(0x143) CASEMBC(0x145) CASEMBC(0x147) CASEMBC(0x1e44)
CASEMBC(0x1e48)
regmbc('N'); regmbc('\321');
REGMBC(0x143) REGMBC(0x145) REGMBC(0x147)
REGMBC(0x1e44) REGMBC(0x1e48)
return;
case 'O': case '\322': case '\323': case '\324': case '\325':
case '\326': case '\330':
CASEMBC(0x14c) CASEMBC(0x14e) CASEMBC(0x150) CASEMBC(0x1a0)
CASEMBC(0x1d1) CASEMBC(0x1ea) CASEMBC(0x1ec) CASEMBC(0x1ece)
regmbc('O'); regmbc('\322'); regmbc('\323');
regmbc('\324'); regmbc('\325'); regmbc('\326');
regmbc('\330');
REGMBC(0x14c) REGMBC(0x14e) REGMBC(0x150)
REGMBC(0x1a0) REGMBC(0x1d1) REGMBC(0x1ea)
REGMBC(0x1ec) REGMBC(0x1ece)
return;
case 'P': case 0x1e54: case 0x1e56:
regmbc('P'); REGMBC(0x1e54) REGMBC(0x1e56)
return;
case 'R': CASEMBC(0x154) CASEMBC(0x156) CASEMBC(0x158)
CASEMBC(0x1e58) CASEMBC(0x1e5e)
regmbc('R'); REGMBC(0x154) REGMBC(0x156) REGMBC(0x158)
REGMBC(0x1e58) REGMBC(0x1e5e)
return;
case 'S': CASEMBC(0x15a) CASEMBC(0x15c) CASEMBC(0x15e)
CASEMBC(0x160) CASEMBC(0x1e60)
regmbc('S'); REGMBC(0x15a) REGMBC(0x15c)
REGMBC(0x15e) REGMBC(0x160) REGMBC(0x1e60)
return;
case 'T': CASEMBC(0x162) CASEMBC(0x164) CASEMBC(0x166)
CASEMBC(0x1e6a) CASEMBC(0x1e6e)
regmbc('T'); REGMBC(0x162) REGMBC(0x164)
REGMBC(0x166) REGMBC(0x1e6a) REGMBC(0x1e6e)
return;
case 'U': case '\331': case '\332': case '\333': case '\334':
CASEMBC(0x168) CASEMBC(0x16a) CASEMBC(0x16c) CASEMBC(0x16e)
CASEMBC(0x170) CASEMBC(0x172) CASEMBC(0x1af) CASEMBC(0x1d3)
CASEMBC(0x1ee6)
regmbc('U'); regmbc('\331'); regmbc('\332');
regmbc('\333'); regmbc('\334');
REGMBC(0x168) REGMBC(0x16a) REGMBC(0x16c)
REGMBC(0x16e) REGMBC(0x170) REGMBC(0x172)
REGMBC(0x1af) REGMBC(0x1d3) REGMBC(0x1ee6)
return;
case 'V': CASEMBC(0x1e7c)
regmbc('V'); REGMBC(0x1e7c)
return;
case 'W': CASEMBC(0x174) CASEMBC(0x1e80) CASEMBC(0x1e82)
CASEMBC(0x1e84) CASEMBC(0x1e86)
regmbc('W'); REGMBC(0x174) REGMBC(0x1e80)
REGMBC(0x1e82) REGMBC(0x1e84) REGMBC(0x1e86)
return;
case 'X': CASEMBC(0x1e8a) CASEMBC(0x1e8c)
regmbc('X'); REGMBC(0x1e8a) REGMBC(0x1e8c)
return;
case 'Y': case '\335':
CASEMBC(0x176) CASEMBC(0x178) CASEMBC(0x1e8e) CASEMBC(0x1ef2)
CASEMBC(0x1ef6) CASEMBC(0x1ef8)
regmbc('Y'); regmbc('\335');
REGMBC(0x176) REGMBC(0x178) REGMBC(0x1e8e)
REGMBC(0x1ef2) REGMBC(0x1ef6) REGMBC(0x1ef8)
return;
case 'Z': CASEMBC(0x179) CASEMBC(0x17b) CASEMBC(0x17d)
CASEMBC(0x1b5) CASEMBC(0x1e90) CASEMBC(0x1e94)
regmbc('Z'); REGMBC(0x179) REGMBC(0x17b)
REGMBC(0x17d) REGMBC(0x1b5) REGMBC(0x1e90)
REGMBC(0x1e94)
return;
case 'a': case '\340': case '\341': case '\342':
case '\343': case '\344': case '\345':
CASEMBC(0x101) CASEMBC(0x103) CASEMBC(0x105) CASEMBC(0x1ce)
CASEMBC(0x1df) CASEMBC(0x1e1) CASEMBC(0x1ea3)
regmbc('a'); regmbc('\340'); regmbc('\341');
regmbc('\342'); regmbc('\343'); regmbc('\344');
regmbc('\345');
REGMBC(0x101) REGMBC(0x103) REGMBC(0x105)
REGMBC(0x1ce) REGMBC(0x1df) REGMBC(0x1e1)
REGMBC(0x1ea3)
return;
case 'b': CASEMBC(0x1e03) CASEMBC(0x1e07)
regmbc('b'); REGMBC(0x1e03) REGMBC(0x1e07)
return;
case 'c': case '\347':
CASEMBC(0x107) CASEMBC(0x109) CASEMBC(0x10b) CASEMBC(0x10d)
regmbc('c'); regmbc('\347');
REGMBC(0x107) REGMBC(0x109) REGMBC(0x10b)
REGMBC(0x10d)
return;
case 'd': CASEMBC(0x10f) CASEMBC(0x111) CASEMBC(0x1d0b)
CASEMBC(0x1e11)
regmbc('d'); REGMBC(0x10f) REGMBC(0x111)
REGMBC(0x1e0b) REGMBC(0x01e0f) REGMBC(0x1e11)
return;
case 'e': case '\350': case '\351': case '\352': case '\353':
CASEMBC(0x113) CASEMBC(0x115) CASEMBC(0x117) CASEMBC(0x119)
CASEMBC(0x11b) CASEMBC(0x1ebb) CASEMBC(0x1ebd)
regmbc('e'); regmbc('\350'); regmbc('\351');
regmbc('\352'); regmbc('\353');
REGMBC(0x113) REGMBC(0x115) REGMBC(0x117)
REGMBC(0x119) REGMBC(0x11b) REGMBC(0x1ebb)
REGMBC(0x1ebd)
return;
case 'f': CASEMBC(0x1e1f)
regmbc('f'); REGMBC(0x1e1f)
return;
case 'g': CASEMBC(0x11d) CASEMBC(0x11f) CASEMBC(0x121)
CASEMBC(0x123) CASEMBC(0x1e5) CASEMBC(0x1e7) CASEMBC(0x1f5)
CASEMBC(0x1e21)
regmbc('g'); REGMBC(0x11d) REGMBC(0x11f)
REGMBC(0x121) REGMBC(0x123) REGMBC(0x1e5)
REGMBC(0x1e7) REGMBC(0x1f5) REGMBC(0x1e21)
return;
case 'h': CASEMBC(0x125) CASEMBC(0x127) CASEMBC(0x1e23)
CASEMBC(0x1e27) CASEMBC(0x1e29) CASEMBC(0x1e96)
regmbc('h'); REGMBC(0x125) REGMBC(0x127)
REGMBC(0x1e23) REGMBC(0x1e27) REGMBC(0x1e29)
REGMBC(0x1e96)
return;
case 'i': case '\354': case '\355': case '\356': case '\357':
CASEMBC(0x129) CASEMBC(0x12b) CASEMBC(0x12d) CASEMBC(0x12f)
CASEMBC(0x1d0) CASEMBC(0x1ec9)
regmbc('i'); regmbc('\354'); regmbc('\355');
regmbc('\356'); regmbc('\357');
REGMBC(0x129) REGMBC(0x12b) REGMBC(0x12d)
REGMBC(0x12f) REGMBC(0x1d0) REGMBC(0x1ec9)
return;
case 'j': CASEMBC(0x135) CASEMBC(0x1f0)
regmbc('j'); REGMBC(0x135) REGMBC(0x1f0)
return;
case 'k': CASEMBC(0x137) CASEMBC(0x1e9) CASEMBC(0x1e31)
CASEMBC(0x1e35)
regmbc('k'); REGMBC(0x137) REGMBC(0x1e9)
REGMBC(0x1e31) REGMBC(0x1e35)
return;
case 'l': CASEMBC(0x13a) CASEMBC(0x13c) CASEMBC(0x13e)
CASEMBC(0x140) CASEMBC(0x142) CASEMBC(0x1e3b)
regmbc('l'); REGMBC(0x13a) REGMBC(0x13c)
REGMBC(0x13e) REGMBC(0x140) REGMBC(0x142)
REGMBC(0x1e3b)
return;
case 'm': CASEMBC(0x1e3f) CASEMBC(0x1e41)
regmbc('m'); REGMBC(0x1e3f) REGMBC(0x1e41)
return;
case 'n': case '\361':
CASEMBC(0x144) CASEMBC(0x146) CASEMBC(0x148) CASEMBC(0x149)
CASEMBC(0x1e45) CASEMBC(0x1e49)
regmbc('n'); regmbc('\361');
REGMBC(0x144) REGMBC(0x146) REGMBC(0x148)
REGMBC(0x149) REGMBC(0x1e45) REGMBC(0x1e49)
return;
case 'o': case '\362': case '\363': case '\364': case '\365':
case '\366': case '\370':
CASEMBC(0x14d) CASEMBC(0x14f) CASEMBC(0x151) CASEMBC(0x1a1)
CASEMBC(0x1d2) CASEMBC(0x1eb) CASEMBC(0x1ed) CASEMBC(0x1ecf)
regmbc('o'); regmbc('\362'); regmbc('\363');
regmbc('\364'); regmbc('\365'); regmbc('\366');
regmbc('\370');
REGMBC(0x14d) REGMBC(0x14f) REGMBC(0x151)
REGMBC(0x1a1) REGMBC(0x1d2) REGMBC(0x1eb)
REGMBC(0x1ed) REGMBC(0x1ecf)
return;
case 'p': CASEMBC(0x1e55) CASEMBC(0x1e57)
regmbc('p'); REGMBC(0x1e55) REGMBC(0x1e57)
return;
case 'r': CASEMBC(0x155) CASEMBC(0x157) CASEMBC(0x159)
CASEMBC(0x1e59) CASEMBC(0x1e5f)
regmbc('r'); REGMBC(0x155) REGMBC(0x157) REGMBC(0x159)
REGMBC(0x1e59) REGMBC(0x1e5f)
return;
case 's': CASEMBC(0x15b) CASEMBC(0x15d) CASEMBC(0x15f)
CASEMBC(0x161) CASEMBC(0x1e61)
regmbc('s'); REGMBC(0x15b) REGMBC(0x15d)
REGMBC(0x15f) REGMBC(0x161) REGMBC(0x1e61)
return;
case 't': CASEMBC(0x163) CASEMBC(0x165) CASEMBC(0x167)
CASEMBC(0x1e6b) CASEMBC(0x1e6f) CASEMBC(0x1e97)
regmbc('t'); REGMBC(0x163) REGMBC(0x165) REGMBC(0x167)
REGMBC(0x1e6b) REGMBC(0x1e6f) REGMBC(0x1e97)
return;
case 'u': case '\371': case '\372': case '\373': case '\374':
CASEMBC(0x169) CASEMBC(0x16b) CASEMBC(0x16d) CASEMBC(0x16f)
CASEMBC(0x171) CASEMBC(0x173) CASEMBC(0x1b0) CASEMBC(0x1d4)
CASEMBC(0x1ee7)
regmbc('u'); regmbc('\371'); regmbc('\372');
regmbc('\373'); regmbc('\374');
REGMBC(0x169) REGMBC(0x16b) REGMBC(0x16d)
REGMBC(0x16f) REGMBC(0x171) REGMBC(0x173)
REGMBC(0x1b0) REGMBC(0x1d4) REGMBC(0x1ee7)
return;
case 'v': CASEMBC(0x1e7d)
regmbc('v'); REGMBC(0x1e7d)
return;
case 'w': CASEMBC(0x175) CASEMBC(0x1e81) CASEMBC(0x1e83)
CASEMBC(0x1e85) CASEMBC(0x1e87) CASEMBC(0x1e98)
regmbc('w'); REGMBC(0x175) REGMBC(0x1e81)
REGMBC(0x1e83) REGMBC(0x1e85) REGMBC(0x1e87)
REGMBC(0x1e98)
return;
case 'x': CASEMBC(0x1e8b) CASEMBC(0x1e8d)
regmbc('x'); REGMBC(0x1e8b) REGMBC(0x1e8d)
return;
case 'y': case '\375': case '\377':
CASEMBC(0x177) CASEMBC(0x1e8f) CASEMBC(0x1e99)
CASEMBC(0x1ef3) CASEMBC(0x1ef7) CASEMBC(0x1ef9)
regmbc('y'); regmbc('\375'); regmbc('\377');
REGMBC(0x177) REGMBC(0x1e8f) REGMBC(0x1e99)
REGMBC(0x1ef3) REGMBC(0x1ef7) REGMBC(0x1ef9)
return;
case 'z': CASEMBC(0x17a) CASEMBC(0x17c) CASEMBC(0x17e)
CASEMBC(0x1b6) CASEMBC(0x1e91) CASEMBC(0x1e95)
regmbc('z'); REGMBC(0x17a) REGMBC(0x17c)
REGMBC(0x17e) REGMBC(0x1b6) REGMBC(0x1e91)
REGMBC(0x1e95)
return;
}
#endif
}
regmbc(c);
}
/*
* Check for a collating element "[.a.]". "pp" points to the '['.
* Returns a character. Zero means that no item was recognized. Otherwise
* "pp" is advanced to after the item.
* Currently only single characters are recognized!
*/
static int
get_coll_element(pp)
char_u **pp;
{
int c;
int l = 1;
char_u *p = *pp;
if (p[1] == '.')
{
#ifdef FEAT_MBYTE
if (has_mbyte)
l = (*mb_ptr2len)(p + 2);
#endif
if (p[l + 2] == '.' && p[l + 3] == ']')
{
#ifdef FEAT_MBYTE
if (has_mbyte)
c = mb_ptr2char(p + 2);
else
#endif
c = p[2];
*pp += l + 4;
return c;
}
}
return 0;
}
/*
* Skip over a "[]" range.
* "p" must point to the character after the '['.
* The returned pointer is on the matching ']', or the terminating NUL.
*/
static char_u *
skip_anyof(p)
char_u *p;
{
int cpo_lit; /* 'cpoptions' contains 'l' flag */
int cpo_bsl; /* 'cpoptions' contains '\' flag */
#ifdef FEAT_MBYTE
int l;
#endif
cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL;
cpo_bsl = vim_strchr(p_cpo, CPO_BACKSL) != NULL;
if (*p == '^') /* Complement of range. */
++p;
if (*p == ']' || *p == '-')
++p;
while (*p != NUL && *p != ']')
{
#ifdef FEAT_MBYTE
if (has_mbyte && (l = (*mb_ptr2len)(p)) > 1)
p += l;
else
#endif
if (*p == '-')
{
++p;
if (*p != ']' && *p != NUL)
mb_ptr_adv(p);
}
else if (*p == '\\'
&& !cpo_bsl
&& (vim_strchr(REGEXP_INRANGE, p[1]) != NULL
|| (!cpo_lit && vim_strchr(REGEXP_ABBR, p[1]) != NULL)))
p += 2;
else if (*p == '[')
{
if (get_char_class(&p) == CLASS_NONE
&& get_equi_class(&p) == 0
&& get_coll_element(&p) == 0)
++p; /* It was not a class name */
}
else
++p;
}
return p;
}
/*
* Skip past regular expression.
* Stop at end of "startp" or where "dirc" is found ('/', '?', etc).
* Take care of characters with a backslash in front of it.
* Skip strings inside [ and ].
* When "newp" is not NULL and "dirc" is '?', make an allocated copy of the
* expression and change "\?" to "?". If "*newp" is not NULL the expression
* is changed in-place.
*/
char_u *
skip_regexp(startp, dirc, magic, newp)
char_u *startp;
int dirc;
int magic;
char_u **newp;
{
int mymagic;
char_u *p = startp;
if (magic)
mymagic = MAGIC_ON;
else
mymagic = MAGIC_OFF;
for (; p[0] != NUL; mb_ptr_adv(p))
{
if (p[0] == dirc) /* found end of regexp */
break;
if ((p[0] == '[' && mymagic >= MAGIC_ON)
|| (p[0] == '\\' && p[1] == '[' && mymagic <= MAGIC_OFF))
{
p = skip_anyof(p + 1);
if (p[0] == NUL)
break;
}
else if (p[0] == '\\' && p[1] != NUL)
{
if (dirc == '?' && newp != NULL && p[1] == '?')
{
/* change "\?" to "?", make a copy first. */
if (*newp == NULL)
{
*newp = vim_strsave(startp);
if (*newp != NULL)
p = *newp + (p - startp);
}
if (*newp != NULL)
STRMOVE(p, p + 1);
else
++p;
}
else
++p; /* skip next character */
if (*p == 'v')
mymagic = MAGIC_ALL;
else if (*p == 'V')
mymagic = MAGIC_NONE;
}
}
return p;
}
static regprog_T *bt_regcomp __ARGS((char_u *expr, int re_flags));
/*
* bt_regcomp() - compile a regular expression into internal code for the
* traditional back track matcher.
* Returns the program in allocated space. Returns NULL for an error.
*
* We can't allocate space until we know how big the compiled form will be,
* but we can't compile it (and thus know how big it is) until we've got a
* place to put the code. So we cheat: we compile it twice, once with code
* generation turned off and size counting turned on, and once "for real".
* This also means that we don't allocate space until we are sure that the
* thing really will compile successfully, and we never have to move the
* code and thus invalidate pointers into it. (Note that it has to be in
* one piece because vim_free() must be able to free it all.)
*
* Whether upper/lower case is to be ignored is decided when executing the
* program, it does not matter here.
*
* Beware that the optimization-preparation code in here knows about some
* of the structure of the compiled regexp.
* "re_flags": RE_MAGIC and/or RE_STRING.
*/
static regprog_T *
bt_regcomp(expr, re_flags)
char_u *expr;
int re_flags;
{
bt_regprog_T *r;
char_u *scan;
char_u *longest;
int len;
int flags;
if (expr == NULL)
EMSG_RET_NULL(_(e_null));
init_class_tab();
/*
* First pass: determine size, legality.
*/
regcomp_start(expr, re_flags);
regcode = JUST_CALC_SIZE;
regc(REGMAGIC);
if (reg(REG_NOPAREN, &flags) == NULL)
return NULL;
/* Small enough for pointer-storage convention? */
#ifdef SMALL_MALLOC /* 16 bit storage allocation */
if (regsize >= 65536L - 256L)
EMSG_RET_NULL(_("E339: Pattern too long"));
#endif
/* Allocate space. */
r = (bt_regprog_T *)lalloc(sizeof(bt_regprog_T) + regsize, TRUE);
if (r == NULL)
return NULL;
/*
* Second pass: emit code.
*/
regcomp_start(expr, re_flags);
regcode = r->program;
regc(REGMAGIC);
if (reg(REG_NOPAREN, &flags) == NULL || reg_toolong)
{
vim_free(r);
if (reg_toolong)
EMSG_RET_NULL(_("E339: Pattern too long"));
return NULL;
}
/* Dig out information for optimizations. */
r->regstart = NUL; /* Worst-case defaults. */
r->reganch = 0;
r->regmust = NULL;
r->regmlen = 0;
r->regflags = regflags;
if (flags & HASNL)
r->regflags |= RF_HASNL;
if (flags & HASLOOKBH)
r->regflags |= RF_LOOKBH;
#ifdef FEAT_SYN_HL
/* Remember whether this pattern has any \z specials in it. */
r->reghasz = re_has_z;
#endif
scan = r->program + 1; /* First BRANCH. */
if (OP(regnext(scan)) == END) /* Only one top-level choice. */
{
scan = OPERAND(scan);
/* Starting-point info. */
if (OP(scan) == BOL || OP(scan) == RE_BOF)
{
r->reganch++;
scan = regnext(scan);
}
if (OP(scan) == EXACTLY)
{
#ifdef FEAT_MBYTE
if (has_mbyte)
r->regstart = (*mb_ptr2char)(OPERAND(scan));
else
#endif
r->regstart = *OPERAND(scan);
}
else if ((OP(scan) == BOW
|| OP(scan) == EOW
|| OP(scan) == NOTHING
|| OP(scan) == MOPEN + 0 || OP(scan) == NOPEN
|| OP(scan) == MCLOSE + 0 || OP(scan) == NCLOSE)
&& OP(regnext(scan)) == EXACTLY)
{
#ifdef FEAT_MBYTE
if (has_mbyte)
r->regstart = (*mb_ptr2char)(OPERAND(regnext(scan)));
else
#endif
r->regstart = *OPERAND(regnext(scan));
}
/*
* If there's something expensive in the r.e., find the longest
* literal string that must appear and make it the regmust. Resolve
* ties in favor of later strings, since the regstart check works
* with the beginning of the r.e. and avoiding duplication
* strengthens checking. Not a strong reason, but sufficient in the
* absence of others.
*/
/*
* When the r.e. starts with BOW, it is faster to look for a regmust
* first. Used a lot for "#" and "*" commands. (Added by mool).
*/
if ((flags & SPSTART || OP(scan) == BOW || OP(scan) == EOW)
&& !(flags & HASNL))
{
longest = NULL;
len = 0;
for (; scan != NULL; scan = regnext(scan))
if (OP(scan) == EXACTLY && STRLEN(OPERAND(scan)) >= (size_t)len)
{
longest = OPERAND(scan);
len = (int)STRLEN(OPERAND(scan));
}
r->regmust = longest;
r->regmlen = len;
}
}
#ifdef BT_REGEXP_DUMP
regdump(expr, r);
#endif
r->engine = &bt_regengine;
return (regprog_T *)r;
}
/*
* Setup to parse the regexp. Used once to get the length and once to do it.
*/
static void
regcomp_start(expr, re_flags)
char_u *expr;
int re_flags; /* see vim_regcomp() */
{
initchr(expr);
if (re_flags & RE_MAGIC)
reg_magic = MAGIC_ON;
else
reg_magic = MAGIC_OFF;
reg_string = (re_flags & RE_STRING);
reg_strict = (re_flags & RE_STRICT);
num_complex_braces = 0;
regnpar = 1;
vim_memset(had_endbrace, 0, sizeof(had_endbrace));
#ifdef FEAT_SYN_HL
regnzpar = 1;
re_has_z = 0;
#endif
regsize = 0L;
reg_toolong = FALSE;
regflags = 0;
#if defined(FEAT_SYN_HL) || defined(PROTO)
had_eol = FALSE;
#endif
}
#if defined(FEAT_SYN_HL) || defined(PROTO)
/*
* Check if during the previous call to vim_regcomp the EOL item "$" has been
* found. This is messy, but it works fine.
*/
int
vim_regcomp_had_eol()
{
return had_eol;
}
#endif
/*
* Parse regular expression, i.e. main body or parenthesized thing.
*
* Caller must absorb opening parenthesis.
*
* Combining parenthesis handling with the base level of regular expression
* is a trifle forced, but the need to tie the tails of the branches to what
* follows makes it hard to avoid.
*/
static char_u *
reg(paren, flagp)
int paren; /* REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN */
int *flagp;
{
char_u *ret;
char_u *br;
char_u *ender;
int parno = 0;
int flags;
*flagp = HASWIDTH; /* Tentatively. */
#ifdef FEAT_SYN_HL
if (paren == REG_ZPAREN)
{
/* Make a ZOPEN node. */
if (regnzpar >= NSUBEXP)
EMSG_RET_NULL(_("E50: Too many \\z("));
parno = regnzpar;
regnzpar++;
ret = regnode(ZOPEN + parno);
}
else
#endif
if (paren == REG_PAREN)
{
/* Make a MOPEN node. */
if (regnpar >= NSUBEXP)
EMSG2_RET_NULL(_("E51: Too many %s("), reg_magic == MAGIC_ALL);
parno = regnpar;
++regnpar;
ret = regnode(MOPEN + parno);
}
else if (paren == REG_NPAREN)
{
/* Make a NOPEN node. */
ret = regnode(NOPEN);
}
else
ret = NULL;
/* Pick up the branches, linking them together. */
br = regbranch(&flags);
if (br == NULL)
return NULL;
if (ret != NULL)
regtail(ret, br); /* [MZ]OPEN -> first. */
else
ret = br;
/* If one of the branches can be zero-width, the whole thing can.
* If one of the branches has * at start or matches a line-break, the
* whole thing can. */
if (!(flags & HASWIDTH))
*flagp &= ~HASWIDTH;
*flagp |= flags & (SPSTART | HASNL | HASLOOKBH);
while (peekchr() == Magic('|'))
{
skipchr();
br = regbranch(&flags);
if (br == NULL || reg_toolong)
return NULL;
regtail(ret, br); /* BRANCH -> BRANCH. */
if (!(flags & HASWIDTH))
*flagp &= ~HASWIDTH;
*flagp |= flags & (SPSTART | HASNL | HASLOOKBH);
}
/* Make a closing node, and hook it on the end. */
ender = regnode(
#ifdef FEAT_SYN_HL
paren == REG_ZPAREN ? ZCLOSE + parno :
#endif
paren == REG_PAREN ? MCLOSE + parno :
paren == REG_NPAREN ? NCLOSE : END);
regtail(ret, ender);
/* Hook the tails of the branches to the closing node. */
for (br = ret; br != NULL; br = regnext(br))
regoptail(br, ender);
/* Check for proper termination. */
if (paren != REG_NOPAREN && getchr() != Magic(')'))
{
#ifdef FEAT_SYN_HL
if (paren == REG_ZPAREN)
EMSG_RET_NULL(_("E52: Unmatched \\z("));
else
#endif
if (paren == REG_NPAREN)
EMSG2_RET_NULL(_(e_unmatchedpp), reg_magic == MAGIC_ALL);
else
EMSG2_RET_NULL(_(e_unmatchedp), reg_magic == MAGIC_ALL);
}
else if (paren == REG_NOPAREN && peekchr() != NUL)
{
if (curchr == Magic(')'))
EMSG2_RET_NULL(_(e_unmatchedpar), reg_magic == MAGIC_ALL);
else
EMSG_RET_NULL(_(e_trailing)); /* "Can't happen". */
/* NOTREACHED */
}
/*
* Here we set the flag allowing back references to this set of
* parentheses.
*/
if (paren == REG_PAREN)
had_endbrace[parno] = TRUE; /* have seen the close paren */
return ret;
}
/*
* Parse one alternative of an | operator.
* Implements the & operator.
*/
static char_u *
regbranch(flagp)
int *flagp;
{
char_u *ret;
char_u *chain = NULL;
char_u *latest;
int flags;
*flagp = WORST | HASNL; /* Tentatively. */
ret = regnode(BRANCH);
for (;;)
{
latest = regconcat(&flags);
if (latest == NULL)
return NULL;
/* If one of the branches has width, the whole thing has. If one of
* the branches anchors at start-of-line, the whole thing does.
* If one of the branches uses look-behind, the whole thing does. */
*flagp |= flags & (HASWIDTH | SPSTART | HASLOOKBH);
/* If one of the branches doesn't match a line-break, the whole thing
* doesn't. */
*flagp &= ~HASNL | (flags & HASNL);
if (chain != NULL)
regtail(chain, latest);
if (peekchr() != Magic('&'))
break;
skipchr();
regtail(latest, regnode(END)); /* operand ends */
if (reg_toolong)
break;
reginsert(MATCH, latest);
chain = latest;
}
return ret;
}
/*
* Parse one alternative of an | or & operator.
* Implements the concatenation operator.
*/
static char_u *
regconcat(flagp)
int *flagp;
{
char_u *first = NULL;
char_u *chain = NULL;
char_u *latest;
int flags;
int cont = TRUE;
*flagp = WORST; /* Tentatively. */
while (cont)
{
switch (peekchr())
{
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
cont = FALSE;
break;
case Magic('Z'):
#ifdef FEAT_MBYTE
regflags |= RF_ICOMBINE;
#endif
skipchr_keepstart();
break;
case Magic('c'):
regflags |= RF_ICASE;
skipchr_keepstart();
break;
case Magic('C'):
regflags |= RF_NOICASE;
skipchr_keepstart();
break;
case Magic('v'):
reg_magic = MAGIC_ALL;
skipchr_keepstart();
curchr = -1;
break;
case Magic('m'):
reg_magic = MAGIC_ON;
skipchr_keepstart();
curchr = -1;
break;
case Magic('M'):
reg_magic = MAGIC_OFF;
skipchr_keepstart();
curchr = -1;
break;
case Magic('V'):
reg_magic = MAGIC_NONE;
skipchr_keepstart();
curchr = -1;
break;
default:
latest = regpiece(&flags);
if (latest == NULL || reg_toolong)
return NULL;
*flagp |= flags & (HASWIDTH | HASNL | HASLOOKBH);
if (chain == NULL) /* First piece. */
*flagp |= flags & SPSTART;
else
regtail(chain, latest);
chain = latest;
if (first == NULL)
first = latest;
break;
}
}
if (first == NULL) /* Loop ran zero times. */
first = regnode(NOTHING);
return first;
}
/*
* Parse something followed by possible [*+=].
*
* Note that the branching code sequences used for = and the general cases
* of * and + are somewhat optimized: they use the same NOTHING node as
* both the endmarker for their branch list and the body of the last branch.
* It might seem that this node could be dispensed with entirely, but the
* endmarker role is not redundant.
*/
static char_u *
regpiece(flagp)
int *flagp;
{
char_u *ret;
int op;
char_u *next;
int flags;
long minval;
long maxval;
ret = regatom(&flags);
if (ret == NULL)
return NULL;
op = peekchr();
if (re_multi_type(op) == NOT_MULTI)
{
*flagp = flags;
return ret;
}
/* default flags */
*flagp = (WORST | SPSTART | (flags & (HASNL | HASLOOKBH)));
skipchr();
switch (op)
{
case Magic('*'):
if (flags & SIMPLE)
reginsert(STAR, ret);
else
{
/* Emit x* as (x&|), where & means "self". */
reginsert(BRANCH, ret); /* Either x */
regoptail(ret, regnode(BACK)); /* and loop */
regoptail(ret, ret); /* back */
regtail(ret, regnode(BRANCH)); /* or */
regtail(ret, regnode(NOTHING)); /* null. */
}
break;
case Magic('+'):
if (flags & SIMPLE)
reginsert(PLUS, ret);
else
{
/* Emit x+ as x(&|), where & means "self". */
next = regnode(BRANCH); /* Either */
regtail(ret, next);
regtail(regnode(BACK), ret); /* loop back */
regtail(next, regnode(BRANCH)); /* or */
regtail(ret, regnode(NOTHING)); /* null. */
}
*flagp = (WORST | HASWIDTH | (flags & (HASNL | HASLOOKBH)));
break;
case Magic('@'):
{
int lop = END;
int nr;
nr = getdecchrs();
switch (no_Magic(getchr()))
{
case '=': lop = MATCH; break; /* \@= */
case '!': lop = NOMATCH; break; /* \@! */
case '>': lop = SUBPAT; break; /* \@> */
case '<': switch (no_Magic(getchr()))
{
case '=': lop = BEHIND; break; /* \@<= */
case '!': lop = NOBEHIND; break; /* \@<! */
}
}
if (lop == END)
EMSG2_RET_NULL(_("E59: invalid character after %s@"),
reg_magic == MAGIC_ALL);
/* Look behind must match with behind_pos. */
if (lop == BEHIND || lop == NOBEHIND)
{
regtail(ret, regnode(BHPOS));
*flagp |= HASLOOKBH;
}
regtail(ret, regnode(END)); /* operand ends */
if (lop == BEHIND || lop == NOBEHIND)
{
if (nr < 0)
nr = 0; /* no limit is same as zero limit */
reginsert_nr(lop, nr, ret);
}
else
reginsert(lop, ret);
break;
}
case Magic('?'):
case Magic('='):
/* Emit x= as (x|) */
reginsert(BRANCH, ret); /* Either x */
regtail(ret, regnode(BRANCH)); /* or */
next = regnode(NOTHING); /* null. */
regtail(ret, next);
regoptail(ret, next);
break;
case Magic('{'):
if (!read_limits(&minval, &maxval))
return NULL;
if (flags & SIMPLE)
{
reginsert(BRACE_SIMPLE, ret);
reginsert_limits(BRACE_LIMITS, minval, maxval, ret);
}
else
{
if (num_complex_braces >= 10)
EMSG2_RET_NULL(_("E60: Too many complex %s{...}s"),
reg_magic == MAGIC_ALL);
reginsert(BRACE_COMPLEX + num_complex_braces, ret);
regoptail(ret, regnode(BACK));
regoptail(ret, ret);
reginsert_limits(BRACE_LIMITS, minval, maxval, ret);
++num_complex_braces;
}
if (minval > 0 && maxval > 0)
*flagp = (HASWIDTH | (flags & (HASNL | HASLOOKBH)));
break;
}
if (re_multi_type(peekchr()) != NOT_MULTI)
{
/* Can't have a multi follow a multi. */
if (peekchr() == Magic('*'))
sprintf((char *)IObuff, _("E61: Nested %s*"),
reg_magic >= MAGIC_ON ? "" : "\\");
else
sprintf((char *)IObuff, _("E62: Nested %s%c"),
reg_magic == MAGIC_ALL ? "" : "\\", no_Magic(peekchr()));
EMSG_RET_NULL(IObuff);
}
return ret;
}
/* When making changes to classchars also change nfa_classcodes. */
static char_u *classchars = (char_u *)".iIkKfFpPsSdDxXoOwWhHaAlLuU";
static int classcodes[] = {
ANY, IDENT, SIDENT, KWORD, SKWORD,
FNAME, SFNAME, PRINT, SPRINT,
WHITE, NWHITE, DIGIT, NDIGIT,
HEX, NHEX, OCTAL, NOCTAL,
WORD, NWORD, HEAD, NHEAD,
ALPHA, NALPHA, LOWER, NLOWER,
UPPER, NUPPER
};
/*
* Parse the lowest level.
*
* Optimization: gobbles an entire sequence of ordinary characters so that
* it can turn them into a single node, which is smaller to store and
* faster to run. Don't do this when one_exactly is set.
*/
static char_u *
regatom(flagp)
int *flagp;
{
char_u *ret;
int flags;
int cpo_lit; /* 'cpoptions' contains 'l' flag */
int cpo_bsl; /* 'cpoptions' contains '\' flag */
int c;
char_u *p;
int extra = 0;
*flagp = WORST; /* Tentatively. */
cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL;
cpo_bsl = vim_strchr(p_cpo, CPO_BACKSL) != NULL;
c = getchr();
switch (c)
{
case Magic('^'):
ret = regnode(BOL);
break;
case Magic('$'):
ret = regnode(EOL);
#if defined(FEAT_SYN_HL) || defined(PROTO)
had_eol = TRUE;
#endif
break;
case Magic('<'):
ret = regnode(BOW);
break;
case Magic('>'):
ret = regnode(EOW);
break;
case Magic('_'):
c = no_Magic(getchr());
if (c == '^') /* "\_^" is start-of-line */
{
ret = regnode(BOL);
break;
}
if (c == '$') /* "\_$" is end-of-line */
{
ret = regnode(EOL);
#if defined(FEAT_SYN_HL) || defined(PROTO)
had_eol = TRUE;
#endif
break;
}
extra = ADD_NL;
*flagp |= HASNL;
/* "\_[" is character range plus newline */
if (c == '[')
goto collection;
/* "\_x" is character class plus newline */
/*FALLTHROUGH*/
/*
* Character classes.
*/
case Magic('.'):
case Magic('i'):
case Magic('I'):
case Magic('k'):
case Magic('K'):
case Magic('f'):
case Magic('F'):
case Magic('p'):
case Magic('P'):
case Magic('s'):
case Magic('S'):
case Magic('d'):
case Magic('D'):
case Magic('x'):
case Magic('X'):
case Magic('o'):
case Magic('O'):
case Magic('w'):
case Magic('W'):
case Magic('h'):
case Magic('H'):
case Magic('a'):
case Magic('A'):
case Magic('l'):
case Magic('L'):
case Magic('u'):
case Magic('U'):
p = vim_strchr(classchars, no_Magic(c));
if (p == NULL)
EMSG_RET_NULL(_("E63: invalid use of \\_"));
#ifdef FEAT_MBYTE
/* When '.' is followed by a composing char ignore the dot, so that
* the composing char is matched here. */
if (enc_utf8 && c == Magic('.') && utf_iscomposing(peekchr()))
{
c = getchr();
goto do_multibyte;
}
#endif
ret = regnode(classcodes[p - classchars] + extra);
*flagp |= HASWIDTH | SIMPLE;
break;
case Magic('n'):
if (reg_string)
{
/* In a string "\n" matches a newline character. */
ret = regnode(EXACTLY);
regc(NL);
regc(NUL);
*flagp |= HASWIDTH | SIMPLE;
}
else
{
/* In buffer text "\n" matches the end of a line. */
ret = regnode(NEWL);
*flagp |= HASWIDTH | HASNL;
}
break;
case Magic('('):
if (one_exactly)
EMSG_ONE_RET_NULL;
ret = reg(REG_PAREN, &flags);
if (ret == NULL)
return NULL;
*flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH);
break;
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
if (one_exactly)
EMSG_ONE_RET_NULL;
EMSG_RET_NULL(_(e_internal)); /* Supposed to be caught earlier. */
/* NOTREACHED */
case Magic('='):
case Magic('?'):
case Magic('+'):
case Magic('@'):
case Magic('{'):
case Magic('*'):
c = no_Magic(c);
sprintf((char *)IObuff, _("E64: %s%c follows nothing"),
(c == '*' ? reg_magic >= MAGIC_ON : reg_magic == MAGIC_ALL)
? "" : "\\", c);
EMSG_RET_NULL(IObuff);
/* NOTREACHED */
case Magic('~'): /* previous substitute pattern */
if (reg_prev_sub != NULL)
{
char_u *lp;
ret = regnode(EXACTLY);
lp = reg_prev_sub;
while (*lp != NUL)
regc(*lp++);
regc(NUL);
if (*reg_prev_sub != NUL)
{
*flagp |= HASWIDTH;
if ((lp - reg_prev_sub) == 1)
*flagp |= SIMPLE;
}
}
else
EMSG_RET_NULL(_(e_nopresub));
break;
case Magic('1'):
case Magic('2'):
case Magic('3'):
case Magic('4'):
case Magic('5'):
case Magic('6'):
case Magic('7'):
case Magic('8'):
case Magic('9'):
{
int refnum;
refnum = c - Magic('0');
/*
* Check if the back reference is legal. We must have seen the
* close brace.
* TODO: Should also check that we don't refer to something
* that is repeated (+*=): what instance of the repetition
* should we match?
*/
if (!had_endbrace[refnum])
{
/* Trick: check if "@<=" or "@<!" follows, in which case
* the \1 can appear before the referenced match. */
for (p = regparse; *p != NUL; ++p)
if (p[0] == '@' && p[1] == '<'
&& (p[2] == '!' || p[2] == '='))
break;
if (*p == NUL)
EMSG_RET_NULL(_("E65: Illegal back reference"));
}
ret = regnode(BACKREF + refnum);
}
break;
case Magic('z'):
{
c = no_Magic(getchr());
switch (c)
{
#ifdef FEAT_SYN_HL
case '(': if (reg_do_extmatch != REX_SET)
EMSG_RET_NULL(_("E66: \\z( not allowed here"));
if (one_exactly)
EMSG_ONE_RET_NULL;
ret = reg(REG_ZPAREN, &flags);
if (ret == NULL)
return NULL;
*flagp |= flags & (HASWIDTH|SPSTART|HASNL|HASLOOKBH);
re_has_z = REX_SET;
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': if (reg_do_extmatch != REX_USE)
EMSG_RET_NULL(_("E67: \\z1 et al. not allowed here"));
ret = regnode(ZREF + c - '0');
re_has_z = REX_USE;
break;
#endif
case 's': ret = regnode(MOPEN + 0);
break;
case 'e': ret = regnode(MCLOSE + 0);
break;
default: EMSG_RET_NULL(_("E68: Invalid character after \\z"));
}
}
break;
case Magic('%'):
{
c = no_Magic(getchr());
switch (c)
{
/* () without a back reference */
case '(':
if (one_exactly)
EMSG_ONE_RET_NULL;
ret = reg(REG_NPAREN, &flags);
if (ret == NULL)
return NULL;
*flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH);
break;
/* Catch \%^ and \%$ regardless of where they appear in the
* pattern -- regardless of whether or not it makes sense. */
case '^':
ret = regnode(RE_BOF);
break;
case '$':
ret = regnode(RE_EOF);
break;
case '#':
ret = regnode(CURSOR);
break;
case 'V':
ret = regnode(RE_VISUAL);
break;
/* \%[abc]: Emit as a list of branches, all ending at the last
* branch which matches nothing. */
case '[':
if (one_exactly) /* doesn't nest */
EMSG_ONE_RET_NULL;
{
char_u *lastbranch;
char_u *lastnode = NULL;
char_u *br;
ret = NULL;
while ((c = getchr()) != ']')
{
if (c == NUL)
EMSG2_RET_NULL(_("E69: Missing ] after %s%%["),
reg_magic == MAGIC_ALL);
br = regnode(BRANCH);
if (ret == NULL)
ret = br;
else
regtail(lastnode, br);
ungetchr();
one_exactly = TRUE;
lastnode = regatom(flagp);
one_exactly = FALSE;
if (lastnode == NULL)
return NULL;
}
if (ret == NULL)
EMSG2_RET_NULL(_("E70: Empty %s%%[]"),
reg_magic == MAGIC_ALL);
lastbranch = regnode(BRANCH);
br = regnode(NOTHING);
if (ret != JUST_CALC_SIZE)
{
regtail(lastnode, br);
regtail(lastbranch, br);
/* connect all branches to the NOTHING
* branch at the end */
for (br = ret; br != lastnode; )
{
if (OP(br) == BRANCH)
{
regtail(br, lastbranch);
br = OPERAND(br);
}
else
br = regnext(br);
}
}
*flagp &= ~(HASWIDTH | SIMPLE);
break;
}
case 'd': /* %d123 decimal */
case 'o': /* %o123 octal */
case 'x': /* %xab hex 2 */
case 'u': /* %uabcd hex 4 */
case 'U': /* %U1234abcd hex 8 */
{
int i;
switch (c)
{
case 'd': i = getdecchrs(); break;
case 'o': i = getoctchrs(); break;
case 'x': i = gethexchrs(2); break;
case 'u': i = gethexchrs(4); break;
case 'U': i = gethexchrs(8); break;
default: i = -1; break;
}
if (i < 0)
EMSG2_RET_NULL(
_("E678: Invalid character after %s%%[dxouU]"),
reg_magic == MAGIC_ALL);
#ifdef FEAT_MBYTE
if (use_multibytecode(i))
ret = regnode(MULTIBYTECODE);
else
#endif
ret = regnode(EXACTLY);
if (i == 0)
regc(0x0a);
else
#ifdef FEAT_MBYTE
regmbc(i);
#else
regc(i);
#endif
regc(NUL);
*flagp |= HASWIDTH;
break;
}
default:
if (VIM_ISDIGIT(c) || c == '<' || c == '>'
|| c == '\'')
{
long_u n = 0;
int cmp;
cmp = c;
if (cmp == '<' || cmp == '>')
c = getchr();
while (VIM_ISDIGIT(c))
{
n = n * 10 + (c - '0');
c = getchr();
}
if (c == '\'' && n == 0)
{
/* "\%'m", "\%<'m" and "\%>'m": Mark */
c = getchr();
ret = regnode(RE_MARK);
if (ret == JUST_CALC_SIZE)
regsize += 2;
else
{
*regcode++ = c;
*regcode++ = cmp;
}
break;
}
else if (c == 'l' || c == 'c' || c == 'v')
{
if (c == 'l')
ret = regnode(RE_LNUM);
else if (c == 'c')
ret = regnode(RE_COL);
else
ret = regnode(RE_VCOL);
if (ret == JUST_CALC_SIZE)
regsize += 5;
else
{
/* put the number and the optional
* comparator after the opcode */
regcode = re_put_long(regcode, n);
*regcode++ = cmp;
}
break;
}
}
EMSG2_RET_NULL(_("E71: Invalid character after %s%%"),
reg_magic == MAGIC_ALL);
}
}
break;
case Magic('['):
collection:
{
char_u *lp;
/*
* If there is no matching ']', we assume the '[' is a normal
* character. This makes 'incsearch' and ":help [" work.
*/
lp = skip_anyof(regparse);
if (*lp == ']') /* there is a matching ']' */
{
int startc = -1; /* > 0 when next '-' is a range */
int endc;
/*
* In a character class, different parsing rules apply.
* Not even \ is special anymore, nothing is.
*/
if (*regparse == '^') /* Complement of range. */
{
ret = regnode(ANYBUT + extra);
regparse++;
}
else
ret = regnode(ANYOF + extra);
/* At the start ']' and '-' mean the literal character. */
if (*regparse == ']' || *regparse == '-')
{
startc = *regparse;
regc(*regparse++);
}
while (*regparse != NUL && *regparse != ']')
{
if (*regparse == '-')
{
++regparse;
/* The '-' is not used for a range at the end and
* after or before a '\n'. */
if (*regparse == ']' || *regparse == NUL
|| startc == -1
|| (regparse[0] == '\\' && regparse[1] == 'n'))
{
regc('-');
startc = '-'; /* [--x] is a range */
}
else
{
/* Also accept "a-[.z.]" */
endc = 0;
if (*regparse == '[')
endc = get_coll_element(&regparse);
if (endc == 0)
{
#ifdef FEAT_MBYTE
if (has_mbyte)
endc = mb_ptr2char_adv(&regparse);
else
#endif
endc = *regparse++;
}
/* Handle \o40, \x20 and \u20AC style sequences */
if (endc == '\\' && !cpo_lit && !cpo_bsl)
endc = coll_get_char();
if (startc > endc)
EMSG_RET_NULL(_(e_invrange));
#ifdef FEAT_MBYTE
if (has_mbyte && ((*mb_char2len)(startc) > 1
|| (*mb_char2len)(endc) > 1))
{
/* Limit to a range of 256 chars */
if (endc > startc + 256)
EMSG_RET_NULL(_(e_invrange));
while (++startc <= endc)
regmbc(startc);
}
else
#endif
{
#ifdef EBCDIC
int alpha_only = FALSE;
/* for alphabetical range skip the gaps
* 'i'-'j', 'r'-'s', 'I'-'J' and 'R'-'S'. */
if (isalpha(startc) && isalpha(endc))
alpha_only = TRUE;
#endif
while (++startc <= endc)
#ifdef EBCDIC
if (!alpha_only || isalpha(startc))
#endif
regc(startc);
}
startc = -1;
}
}
/*
* Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
* accepts "\t", "\e", etc., but only when the 'l' flag in
* 'cpoptions' is not included.
* Posix doesn't recognize backslash at all.
*/
else if (*regparse == '\\'
&& !cpo_bsl
&& (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL
|| (!cpo_lit
&& vim_strchr(REGEXP_ABBR,
regparse[1]) != NULL)))
{
regparse++;
if (*regparse == 'n')
{
/* '\n' in range: also match NL */
if (ret != JUST_CALC_SIZE)
{
/* Using \n inside [^] does not change what
* matches. "[^\n]" is the same as ".". */
if (*ret == ANYOF)
{
*ret = ANYOF + ADD_NL;
*flagp |= HASNL;
}
/* else: must have had a \n already */
}
regparse++;
startc = -1;
}
else if (*regparse == 'd'
|| *regparse == 'o'
|| *regparse == 'x'
|| *regparse == 'u'
|| *regparse == 'U')
{
startc = coll_get_char();
if (startc == 0)
regc(0x0a);
else
#ifdef FEAT_MBYTE
regmbc(startc);
#else
regc(startc);
#endif
}
else
{
startc = backslash_trans(*regparse++);
regc(startc);
}
}
else if (*regparse == '[')
{
int c_class;
int cu;
c_class = get_char_class(&regparse);
startc = -1;
/* Characters assumed to be 8 bits! */
switch (c_class)
{
case CLASS_NONE:
c_class = get_equi_class(&regparse);
if (c_class != 0)
{
/* produce equivalence class */
reg_equi_class(c_class);
}
else if ((c_class =
get_coll_element(&regparse)) != 0)
{
/* produce a collating element */
regmbc(c_class);
}
else
{
/* literal '[', allow [[-x] as a range */
startc = *regparse++;
regc(startc);
}
break;
case CLASS_ALNUM:
for (cu = 1; cu <= 255; cu++)
if (isalnum(cu))
regc(cu);
break;
case CLASS_ALPHA:
for (cu = 1; cu <= 255; cu++)
if (isalpha(cu))
regc(cu);
break;
case CLASS_BLANK:
regc(' ');
regc('\t');
break;
case CLASS_CNTRL:
for (cu = 1; cu <= 255; cu++)
if (iscntrl(cu))
regc(cu);
break;
case CLASS_DIGIT:
for (cu = 1; cu <= 255; cu++)
if (VIM_ISDIGIT(cu))
regc(cu);
break;
case CLASS_GRAPH:
for (cu = 1; cu <= 255; cu++)
if (isgraph(cu))
regc(cu);
break;
case CLASS_LOWER:
for (cu = 1; cu <= 255; cu++)
if (MB_ISLOWER(cu))
regc(cu);
break;
case CLASS_PRINT:
for (cu = 1; cu <= 255; cu++)
if (vim_isprintc(cu))
regc(cu);
break;
case CLASS_PUNCT:
for (cu = 1; cu <= 255; cu++)
if (ispunct(cu))
regc(cu);
break;
case CLASS_SPACE:
for (cu = 9; cu <= 13; cu++)
regc(cu);
regc(' ');
break;
case CLASS_UPPER:
for (cu = 1; cu <= 255; cu++)
if (MB_ISUPPER(cu))
regc(cu);
break;
case CLASS_XDIGIT:
for (cu = 1; cu <= 255; cu++)
if (vim_isxdigit(cu))
regc(cu);
break;
case CLASS_TAB:
regc('\t');
break;
case CLASS_RETURN:
regc('\r');
break;
case CLASS_BACKSPACE:
regc('\b');
break;
case CLASS_ESCAPE:
regc('\033');
break;
}
}
else
{
#ifdef FEAT_MBYTE
if (has_mbyte)
{
int len;
/* produce a multibyte character, including any
* following composing characters */
startc = mb_ptr2char(regparse);
len = (*mb_ptr2len)(regparse);
if (enc_utf8 && utf_char2len(startc) != len)
startc = -1; /* composing chars */
while (--len >= 0)
regc(*regparse++);
}
else
#endif
{
startc = *regparse++;
regc(startc);
}
}
}
regc(NUL);
prevchr_len = 1; /* last char was the ']' */
if (*regparse != ']')
EMSG_RET_NULL(_(e_toomsbra)); /* Cannot happen? */
skipchr(); /* let's be friends with the lexer again */
*flagp |= HASWIDTH | SIMPLE;
break;
}
else if (reg_strict)
EMSG2_RET_NULL(_(e_missingbracket), reg_magic > MAGIC_OFF);
}
/* FALLTHROUGH */
default:
{
int len;
#ifdef FEAT_MBYTE
/* A multi-byte character is handled as a separate atom if it's
* before a multi and when it's a composing char. */
if (use_multibytecode(c))
{
do_multibyte:
ret = regnode(MULTIBYTECODE);
regmbc(c);
*flagp |= HASWIDTH | SIMPLE;
break;
}
#endif
ret = regnode(EXACTLY);
/*
* Append characters as long as:
* - there is no following multi, we then need the character in
* front of it as a single character operand
* - not running into a Magic character
* - "one_exactly" is not set
* But always emit at least one character. Might be a Multi,
* e.g., a "[" without matching "]".
*/
for (len = 0; c != NUL && (len == 0
|| (re_multi_type(peekchr()) == NOT_MULTI
&& !one_exactly
&& !is_Magic(c))); ++len)
{
c = no_Magic(c);
#ifdef FEAT_MBYTE
if (has_mbyte)
{
regmbc(c);
if (enc_utf8)
{
int l;
/* Need to get composing character too. */
for (;;)
{
l = utf_ptr2len(regparse);
if (!UTF_COMPOSINGLIKE(regparse, regparse + l))
break;
regmbc(utf_ptr2char(regparse));
skipchr();
}
}
}
else
#endif
regc(c);
c = getchr();
}
ungetchr();
regc(NUL);
*flagp |= HASWIDTH;
if (len == 1)
*flagp |= SIMPLE;
}
break;
}
return ret;
}
#ifdef FEAT_MBYTE
/*
* Return TRUE if MULTIBYTECODE should be used instead of EXACTLY for
* character "c".
*/
static int
use_multibytecode(c)
int c;
{
return has_mbyte && (*mb_char2len)(c) > 1
&& (re_multi_type(peekchr()) != NOT_MULTI
|| (enc_utf8 && utf_iscomposing(c)));
}
#endif
/*
* Emit a node.
* Return pointer to generated code.
*/
static char_u *
regnode(op)
int op;
{
char_u *ret;
ret = regcode;
if (ret == JUST_CALC_SIZE)
regsize += 3;
else
{
*regcode++ = op;
*regcode++ = NUL; /* Null "next" pointer. */
*regcode++ = NUL;
}
return ret;
}
/*
* Emit (if appropriate) a byte of code
*/
static void
regc(b)
int b;
{
if (regcode == JUST_CALC_SIZE)
regsize++;
else
*regcode++ = b;
}
#ifdef FEAT_MBYTE
/*
* Emit (if appropriate) a multi-byte character of code
*/
static void
regmbc(c)
int c;
{
if (!has_mbyte && c > 0xff)
return;
if (regcode == JUST_CALC_SIZE)
regsize += (*mb_char2len)(c);
else
regcode += (*mb_char2bytes)(c, regcode);
}
#endif
/*
* Insert an operator in front of already-emitted operand
*
* Means relocating the operand.
*/
static void
reginsert(op, opnd)
int op;
char_u *opnd;
{
char_u *src;
char_u *dst;
char_u *place;
if (regcode == JUST_CALC_SIZE)
{
regsize += 3;
return;
}
src = regcode;
regcode += 3;
dst = regcode;
while (src > opnd)
*--dst = *--src;
place = opnd; /* Op node, where operand used to be. */
*place++ = op;
*place++ = NUL;
*place = NUL;
}
/*
* Insert an operator in front of already-emitted operand.
* Add a number to the operator.
*/
static void
reginsert_nr(op, val, opnd)
int op;
long val;
char_u *opnd;
{
char_u *src;
char_u *dst;
char_u *place;
if (regcode == JUST_CALC_SIZE)
{
regsize += 7;
return;
}
src = regcode;
regcode += 7;
dst = regcode;
while (src > opnd)
*--dst = *--src;
place = opnd; /* Op node, where operand used to be. */
*place++ = op;
*place++ = NUL;
*place++ = NUL;
place = re_put_long(place, (long_u)val);
}
/*
* Insert an operator in front of already-emitted operand.
* The operator has the given limit values as operands. Also set next pointer.
*
* Means relocating the operand.
*/
static void
reginsert_limits(op, minval, maxval, opnd)
int op;
long minval;
long maxval;
char_u *opnd;
{
char_u *src;
char_u *dst;
char_u *place;
if (regcode == JUST_CALC_SIZE)
{
regsize += 11;
return;
}
src = regcode;
regcode += 11;
dst = regcode;
while (src > opnd)
*--dst = *--src;
place = opnd; /* Op node, where operand used to be. */
*place++ = op;
*place++ = NUL;
*place++ = NUL;
place = re_put_long(place, (long_u)minval);
place = re_put_long(place, (long_u)maxval);
regtail(opnd, place);
}
/*
* Write a long as four bytes at "p" and return pointer to the next char.
*/
static char_u *
re_put_long(p, val)
char_u *p;
long_u val;
{
*p++ = (char_u) ((val >> 24) & 0377);
*p++ = (char_u) ((val >> 16) & 0377);
*p++ = (char_u) ((val >> 8) & 0377);
*p++ = (char_u) (val & 0377);
return p;
}
/*
* Set the next-pointer at the end of a node chain.
*/
static void
regtail(p, val)
char_u *p;
char_u *val;
{
char_u *scan;
char_u *temp;
int offset;
if (p == JUST_CALC_SIZE)
return;
/* Find last node. */
scan = p;
for (;;)
{
temp = regnext(scan);
if (temp == NULL)
break;
scan = temp;
}
if (OP(scan) == BACK)
offset = (int)(scan - val);
else
offset = (int)(val - scan);
/* When the offset uses more than 16 bits it can no longer fit in the two
* bytes available. Use a global flag to avoid having to check return
* values in too many places. */
if (offset > 0xffff)
reg_toolong = TRUE;
else
{
*(scan + 1) = (char_u) (((unsigned)offset >> 8) & 0377);
*(scan + 2) = (char_u) (offset & 0377);
}
}
/*
* Like regtail, on item after a BRANCH; nop if none.
*/
static void
regoptail(p, val)
char_u *p;
char_u *val;
{
/* When op is neither BRANCH nor BRACE_COMPLEX0-9, it is "operandless" */
if (p == NULL || p == JUST_CALC_SIZE
|| (OP(p) != BRANCH
&& (OP(p) < BRACE_COMPLEX || OP(p) > BRACE_COMPLEX + 9)))
return;
regtail(OPERAND(p), val);
}
/*
* Functions for getting characters from the regexp input.
*/
static int at_start; /* True when on the first character */
static int prev_at_start; /* True when on the second character */
/*
* Start parsing at "str".
*/
static void
initchr(str)
char_u *str;
{
regparse = str;
prevchr_len = 0;
curchr = prevprevchr = prevchr = nextchr = -1;
at_start = TRUE;
prev_at_start = FALSE;
}
/*
* Save the current parse state, so that it can be restored and parsing
* starts in the same state again.
*/
static void
save_parse_state(ps)
parse_state_T *ps;
{
ps->regparse = regparse;
ps->prevchr_len = prevchr_len;
ps->curchr = curchr;
ps->prevchr = prevchr;
ps->prevprevchr = prevprevchr;
ps->nextchr = nextchr;
ps->at_start = at_start;
ps->prev_at_start = prev_at_start;
ps->regnpar = regnpar;
}
/*
* Restore a previously saved parse state.
*/
static void
restore_parse_state(ps)
parse_state_T *ps;
{
regparse = ps->regparse;
prevchr_len = ps->prevchr_len;
curchr = ps->curchr;
prevchr = ps->prevchr;
prevprevchr = ps->prevprevchr;
nextchr = ps->nextchr;
at_start = ps->at_start;
prev_at_start = ps->prev_at_start;
regnpar = ps->regnpar;
}
/*
* Get the next character without advancing.
*/
static int
peekchr()
{
static int after_slash = FALSE;
if (curchr == -1)
{
switch (curchr = regparse[0])
{
case '.':
case '[':
case '~':
/* magic when 'magic' is on */
if (reg_magic >= MAGIC_ON)
curchr = Magic(curchr);
break;
case '(':
case ')':
case '{':
case '%':
case '+':
case '=':
case '?':
case '@':
case '!':
case '&':
case '|':
case '<':
case '>':
case '#': /* future ext. */
case '"': /* future ext. */
case '\'': /* future ext. */
case ',': /* future ext. */
case '-': /* future ext. */
case ':': /* future ext. */
case ';': /* future ext. */
case '`': /* future ext. */
case '/': /* Can't be used in / command */
/* magic only after "\v" */
if (reg_magic == MAGIC_ALL)
curchr = Magic(curchr);
break;
case '*':
/* * is not magic as the very first character, eg "?*ptr", when
* after '^', eg "/^*ptr" and when after "\(", "\|", "\&". But
* "\(\*" is not magic, thus must be magic if "after_slash" */
if (reg_magic >= MAGIC_ON
&& !at_start
&& !(prev_at_start && prevchr == Magic('^'))
&& (after_slash
|| (prevchr != Magic('(')
&& prevchr != Magic('&')
&& prevchr != Magic('|'))))
curchr = Magic('*');
break;
case '^':
/* '^' is only magic as the very first character and if it's after
* "\(", "\|", "\&' or "\n" */
if (reg_magic >= MAGIC_OFF
&& (at_start
|| reg_magic == MAGIC_ALL
|| prevchr == Magic('(')
|| prevchr == Magic('|')
|| prevchr == Magic('&')
|| prevchr == Magic('n')
|| (no_Magic(prevchr) == '('
&& prevprevchr == Magic('%'))))
{
curchr = Magic('^');
at_start = TRUE;
prev_at_start = FALSE;
}
break;
case '$':
/* '$' is only magic as the very last char and if it's in front of
* either "\|", "\)", "\&", or "\n" */
if (reg_magic >= MAGIC_OFF)
{
char_u *p = regparse + 1;
/* ignore \c \C \m and \M after '$' */
while (p[0] == '\\' && (p[1] == 'c' || p[1] == 'C'
|| p[1] == 'm' || p[1] == 'M' || p[1] == 'Z'))
p += 2;
if (p[0] == NUL
|| (p[0] == '\\'
&& (p[1] == '|' || p[1] == '&' || p[1] == ')'
|| p[1] == 'n'))
|| reg_magic == MAGIC_ALL)
curchr = Magic('$');
}
break;
case '\\':
{
int c = regparse[1];
if (c == NUL)
curchr = '\\'; /* trailing '\' */
else if (
#ifdef EBCDIC
vim_strchr(META, c)
#else
c <= '~' && META_flags[c]
#endif
)
{
/*
* META contains everything that may be magic sometimes,
* except ^ and $ ("\^" and "\$" are only magic after
* "\v"). We now fetch the next character and toggle its
* magicness. Therefore, \ is so meta-magic that it is
* not in META.
*/
curchr = -1;
prev_at_start = at_start;
at_start = FALSE; /* be able to say "/\*ptr" */
++regparse;
++after_slash;
peekchr();
--regparse;
--after_slash;
curchr = toggle_Magic(curchr);
}
else if (vim_strchr(REGEXP_ABBR, c))
{
/*
* Handle abbreviations, like "\t" for TAB -- webb
*/
curchr = backslash_trans(c);
}
else if (reg_magic == MAGIC_NONE && (c == '$' || c == '^'))
curchr = toggle_Magic(c);
else
{
/*
* Next character can never be (made) magic?
* Then backslashing it won't do anything.
*/
#ifdef FEAT_MBYTE
if (has_mbyte)
curchr = (*mb_ptr2char)(regparse + 1);
else
#endif
curchr = c;
}
break;
}
#ifdef FEAT_MBYTE
default:
if (has_mbyte)
curchr = (*mb_ptr2char)(regparse);
#endif
}
}
return curchr;
}
/*
* Eat one lexed character. Do this in a way that we can undo it.
*/
static void
skipchr()
{
/* peekchr() eats a backslash, do the same here */
if (*regparse == '\\')
prevchr_len = 1;
else
prevchr_len = 0;
if (regparse[prevchr_len] != NUL)
{
#ifdef FEAT_MBYTE
if (enc_utf8)
/* exclude composing chars that mb_ptr2len does include */
prevchr_len += utf_ptr2len(regparse + prevchr_len);
else if (has_mbyte)
prevchr_len += (*mb_ptr2len)(regparse + prevchr_len);
else
#endif
++prevchr_len;
}
regparse += prevchr_len;
prev_at_start = at_start;
at_start = FALSE;
prevprevchr = prevchr;
prevchr = curchr;
curchr = nextchr; /* use previously unget char, or -1 */
nextchr = -1;
}
/*
* Skip a character while keeping the value of prev_at_start for at_start.
* prevchr and prevprevchr are also kept.
*/
static void
skipchr_keepstart()
{
int as = prev_at_start;
int pr = prevchr;
int prpr = prevprevchr;
skipchr();
at_start = as;
prevchr = pr;
prevprevchr = prpr;
}
/*
* Get the next character from the pattern. We know about magic and such, so
* therefore we need a lexical analyzer.
*/
static int
getchr()
{
int chr = peekchr();
skipchr();
return chr;
}
/*
* put character back. Works only once!
*/
static void
ungetchr()
{
nextchr = curchr;
curchr = prevchr;
prevchr = prevprevchr;
at_start = prev_at_start;
prev_at_start = FALSE;
/* Backup regparse, so that it's at the same position as before the
* getchr(). */
regparse -= prevchr_len;
}
/*
* Get and return the value of the hex string at the current position.
* Return -1 if there is no valid hex number.
* The position is updated:
* blahblah\%x20asdf
* before-^ ^-after
* The parameter controls the maximum number of input characters. This will be
* 2 when reading a \%x20 sequence and 4 when reading a \%u20AC sequence.
*/
static int
gethexchrs(maxinputlen)
int maxinputlen;
{
int nr = 0;
int c;
int i;
for (i = 0; i < maxinputlen; ++i)
{
c = regparse[0];
if (!vim_isxdigit(c))
break;
nr <<= 4;
nr |= hex2nr(c);
++regparse;
}
if (i == 0)
return -1;
return nr;
}
/*
* Get and return the value of the decimal string immediately after the
* current position. Return -1 for invalid. Consumes all digits.
*/
static int
getdecchrs()
{
int nr = 0;
int c;
int i;
for (i = 0; ; ++i)
{
c = regparse[0];
if (c < '0' || c > '9')
break;
nr *= 10;
nr += c - '0';
++regparse;
curchr = -1; /* no longer valid */
}
if (i == 0)
return -1;
return nr;
}
/*
* get and return the value of the octal string immediately after the current
* position. Return -1 for invalid, or 0-255 for valid. Smart enough to handle
* numbers > 377 correctly (for example, 400 is treated as 40) and doesn't
* treat 8 or 9 as recognised characters. Position is updated:
* blahblah\%o210asdf
* before-^ ^-after
*/
static int
getoctchrs()
{
int nr = 0;
int c;
int i;
for (i = 0; i < 3 && nr < 040; ++i)
{
c = regparse[0];
if (c < '0' || c > '7')
break;
nr <<= 3;
nr |= hex2nr(c);
++regparse;
}
if (i == 0)
return -1;
return nr;
}
/*
* Get a number after a backslash that is inside [].
* When nothing is recognized return a backslash.
*/
static int
coll_get_char()
{
int nr = -1;
switch (*regparse++)
{
case 'd': nr = getdecchrs(); break;
case 'o': nr = getoctchrs(); break;
case 'x': nr = gethexchrs(2); break;
case 'u': nr = gethexchrs(4); break;
case 'U': nr = gethexchrs(8); break;
}
if (nr < 0)
{
/* If getting the number fails be backwards compatible: the character
* is a backslash. */
--regparse;
nr = '\\';
}
return nr;
}
/*
* read_limits - Read two integers to be taken as a minimum and maximum.
* If the first character is '-', then the range is reversed.
* Should end with 'end'. If minval is missing, zero is default, if maxval is
* missing, a very big number is the default.
*/
static int
read_limits(minval, maxval)
long *minval;
long *maxval;
{
int reverse = FALSE;
char_u *first_char;
long tmp;
if (*regparse == '-')
{
/* Starts with '-', so reverse the range later */
regparse++;
reverse = TRUE;
}
first_char = regparse;
*minval = getdigits(&regparse);
if (*regparse == ',') /* There is a comma */
{
if (vim_isdigit(*++regparse))
*maxval = getdigits(&regparse);
else
*maxval = MAX_LIMIT;
}
else if (VIM_ISDIGIT(*first_char))
*maxval = *minval; /* It was \{n} or \{-n} */
else
*maxval = MAX_LIMIT; /* It was \{} or \{-} */
if (*regparse == '\\')
regparse++; /* Allow either \{...} or \{...\} */
if (*regparse != '}')
{
sprintf((char *)IObuff, _("E554: Syntax error in %s{...}"),
reg_magic == MAGIC_ALL ? "" : "\\");
EMSG_RET_FAIL(IObuff);
}
/*
* Reverse the range if there was a '-', or make sure it is in the right
* order otherwise.
*/
if ((!reverse && *minval > *maxval) || (reverse && *minval < *maxval))
{
tmp = *minval;
*minval = *maxval;
*maxval = tmp;
}
skipchr(); /* let's be friends with the lexer again */
return OK;
}
/*
* vim_regexec and friends
*/
/*
* Global work variables for vim_regexec().
*/
/* The current match-position is remembered with these variables: */
static linenr_T reglnum; /* line number, relative to first line */
static char_u *regline; /* start of current line */
static char_u *reginput; /* current input, points into "regline" */
static int need_clear_subexpr; /* subexpressions still need to be
* cleared */
#ifdef FEAT_SYN_HL
static int need_clear_zsubexpr = FALSE; /* extmatch subexpressions
* still need to be cleared */
#endif
/*
* Structure used to save the current input state, when it needs to be
* restored after trying a match. Used by reg_save() and reg_restore().
* Also stores the length of "backpos".
*/
typedef struct
{
union
{
char_u *ptr; /* reginput pointer, for single-line regexp */
lpos_T pos; /* reginput pos, for multi-line regexp */
} rs_u;
int rs_len;
} regsave_T;
/* struct to save start/end pointer/position in for \(\) */
typedef struct
{
union
{
char_u *ptr;
lpos_T pos;
} se_u;
} save_se_T;
/* used for BEHIND and NOBEHIND matching */
typedef struct regbehind_S
{
regsave_T save_after;
regsave_T save_behind;
int save_need_clear_subexpr;
save_se_T save_start[NSUBEXP];
save_se_T save_end[NSUBEXP];
} regbehind_T;
static char_u *reg_getline __ARGS((linenr_T lnum));
static long bt_regexec_both __ARGS((char_u *line, colnr_T col, proftime_T *tm));
static long regtry __ARGS((bt_regprog_T *prog, colnr_T col));
static void cleanup_subexpr __ARGS((void));
#ifdef FEAT_SYN_HL
static void cleanup_zsubexpr __ARGS((void));
#endif
static void save_subexpr __ARGS((regbehind_T *bp));
static void restore_subexpr __ARGS((regbehind_T *bp));
static void reg_nextline __ARGS((void));
static void reg_save __ARGS((regsave_T *save, garray_T *gap));
static void reg_restore __ARGS((regsave_T *save, garray_T *gap));
static int reg_save_equal __ARGS((regsave_T *save));
static void save_se_multi __ARGS((save_se_T *savep, lpos_T *posp));
static void save_se_one __ARGS((save_se_T *savep, char_u **pp));
/* Save the sub-expressions before attempting a match. */
#define save_se(savep, posp, pp) \
REG_MULTI ? save_se_multi((savep), (posp)) : save_se_one((savep), (pp))
/* After a failed match restore the sub-expressions. */
#define restore_se(savep, posp, pp) { \
if (REG_MULTI) \
*(posp) = (savep)->se_u.pos; \
else \
*(pp) = (savep)->se_u.ptr; }
static int re_num_cmp __ARGS((long_u val, char_u *scan));
static int regmatch __ARGS((char_u *prog));
static int regrepeat __ARGS((char_u *p, long maxcount));
#ifdef DEBUG
int regnarrate = 0;
#endif
/*
* Internal copy of 'ignorecase'. It is set at each call to vim_regexec().
* Normally it gets the value of "rm_ic" or "rmm_ic", but when the pattern
* contains '\c' or '\C' the value is overruled.
*/
static int ireg_ic;
#ifdef FEAT_MBYTE
/*
* Similar to ireg_ic, but only for 'combining' characters. Set with \Z flag
* in the regexp. Defaults to false, always.
*/
static int ireg_icombine;
#endif
/*
* Copy of "rmm_maxcol": maximum column to search for a match. Zero when
* there is no maximum.
*/
static colnr_T ireg_maxcol;
/*
* Sometimes need to save a copy of a line. Since alloc()/free() is very
* slow, we keep one allocated piece of memory and only re-allocate it when
* it's too small. It's freed in bt_regexec_both() when finished.
*/
static char_u *reg_tofree = NULL;
static unsigned reg_tofreelen;
/*
* These variables are set when executing a regexp to speed up the execution.
* Which ones are set depends on whether a single-line or multi-line match is
* done:
* single-line multi-line
* reg_match &regmatch_T NULL
* reg_mmatch NULL &regmmatch_T
* reg_startp reg_match->startp <invalid>
* reg_endp reg_match->endp <invalid>
* reg_startpos <invalid> reg_mmatch->startpos
* reg_endpos <invalid> reg_mmatch->endpos
* reg_win NULL window in which to search
* reg_buf curbuf buffer in which to search
* reg_firstlnum <invalid> first line in which to search
* reg_maxline 0 last line nr
* reg_line_lbr FALSE or TRUE FALSE
*/
static regmatch_T *reg_match;
static regmmatch_T *reg_mmatch;
static char_u **reg_startp = NULL;
static char_u **reg_endp = NULL;
static lpos_T *reg_startpos = NULL;
static lpos_T *reg_endpos = NULL;
static win_T *reg_win;
static buf_T *reg_buf;
static linenr_T reg_firstlnum;
static linenr_T reg_maxline;
static int reg_line_lbr; /* "\n" in string is line break */
/* Values for rs_state in regitem_T. */
typedef enum regstate_E
{
RS_NOPEN = 0 /* NOPEN and NCLOSE */
, RS_MOPEN /* MOPEN + [0-9] */
, RS_MCLOSE /* MCLOSE + [0-9] */
#ifdef FEAT_SYN_HL
, RS_ZOPEN /* ZOPEN + [0-9] */
, RS_ZCLOSE /* ZCLOSE + [0-9] */
#endif
, RS_BRANCH /* BRANCH */
, RS_BRCPLX_MORE /* BRACE_COMPLEX and trying one more match */
, RS_BRCPLX_LONG /* BRACE_COMPLEX and trying longest match */
, RS_BRCPLX_SHORT /* BRACE_COMPLEX and trying shortest match */
, RS_NOMATCH /* NOMATCH */
, RS_BEHIND1 /* BEHIND / NOBEHIND matching rest */
, RS_BEHIND2 /* BEHIND / NOBEHIND matching behind part */
, RS_STAR_LONG /* STAR/PLUS/BRACE_SIMPLE longest match */
, RS_STAR_SHORT /* STAR/PLUS/BRACE_SIMPLE shortest match */
} regstate_T;
/*
* When there are alternatives a regstate_T is put on the regstack to remember
* what we are doing.
* Before it may be another type of item, depending on rs_state, to remember
* more things.
*/
typedef struct regitem_S
{
regstate_T rs_state; /* what we are doing, one of RS_ above */
char_u *rs_scan; /* current node in program */
union
{
save_se_T sesave;
regsave_T regsave;
} rs_un; /* room for saving reginput */
short rs_no; /* submatch nr or BEHIND/NOBEHIND */
} regitem_T;
static regitem_T *regstack_push __ARGS((regstate_T state, char_u *scan));
static void regstack_pop __ARGS((char_u **scan));
/* used for STAR, PLUS and BRACE_SIMPLE matching */
typedef struct regstar_S
{
int nextb; /* next byte */
int nextb_ic; /* next byte reverse case */
long count;
long minval;
long maxval;
} regstar_T;
/* used to store input position when a BACK was encountered, so that we now if
* we made any progress since the last time. */
typedef struct backpos_S
{
char_u *bp_scan; /* "scan" where BACK was encountered */
regsave_T bp_pos; /* last input position */
} backpos_T;
/*
* "regstack" and "backpos" are used by regmatch(). They are kept over calls
* to avoid invoking malloc() and free() often.
* "regstack" is a stack with regitem_T items, sometimes preceded by regstar_T
* or regbehind_T.
* "backpos_T" is a table with backpos_T for BACK
*/
static garray_T regstack = {0, 0, 0, 0, NULL};
static garray_T backpos = {0, 0, 0, 0, NULL};
/*
* Both for regstack and backpos tables we use the following strategy of
* allocation (to reduce malloc/free calls):
* - Initial size is fairly small.
* - When needed, the tables are grown bigger (8 times at first, double after
* that).
* - After executing the match we free the memory only if the array has grown.
* Thus the memory is kept allocated when it's at the initial size.
* This makes it fast while not keeping a lot of memory allocated.
* A three times speed increase was observed when using many simple patterns.
*/
#define REGSTACK_INITIAL 2048
#define BACKPOS_INITIAL 64
#if defined(EXITFREE) || defined(PROTO)
void
free_regexp_stuff()
{
ga_clear(&regstack);
ga_clear(&backpos);
vim_free(reg_tofree);
vim_free(reg_prev_sub);
}
#endif
/*
* Get pointer to the line "lnum", which is relative to "reg_firstlnum".
*/
static char_u *
reg_getline(lnum)
linenr_T lnum;
{
/* when looking behind for a match/no-match lnum is negative. But we
* can't go before line 1 */
if (reg_firstlnum + lnum < 1)
return NULL;
if (lnum > reg_maxline)
/* Must have matched the "\n" in the last line. */
return (char_u *)"";
return ml_get_buf(reg_buf, reg_firstlnum + lnum, FALSE);
}
static regsave_T behind_pos;
#ifdef FEAT_SYN_HL
static char_u *reg_startzp[NSUBEXP]; /* Workspace to mark beginning */
static char_u *reg_endzp[NSUBEXP]; /* and end of \z(...\) matches */
static lpos_T reg_startzpos[NSUBEXP]; /* idem, beginning pos */
static lpos_T reg_endzpos[NSUBEXP]; /* idem, end pos */
#endif
/* TRUE if using multi-line regexp. */
#define REG_MULTI (reg_match == NULL)
static int bt_regexec __ARGS((regmatch_T *rmp, char_u *line, colnr_T col));
/*
* Match a regexp against a string.
* "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
* Uses curbuf for line count and 'iskeyword'.
*
* Return TRUE if there is a match, FALSE if not.
*/
static int
bt_regexec(rmp, line, col)
regmatch_T *rmp;
char_u *line; /* string to match against */
colnr_T col; /* column to start looking for match */
{
reg_match = rmp;
reg_mmatch = NULL;
reg_maxline = 0;
reg_line_lbr = FALSE;
reg_buf = curbuf;
reg_win = NULL;
ireg_ic = rmp->rm_ic;
#ifdef FEAT_MBYTE
ireg_icombine = FALSE;
#endif
ireg_maxcol = 0;
return (bt_regexec_both(line, col, NULL) != 0);
}
#if defined(FEAT_MODIFY_FNAME) || defined(FEAT_EVAL) \
|| defined(FIND_REPLACE_DIALOG) || defined(PROTO)
static int bt_regexec_nl __ARGS((regmatch_T *rmp, char_u *line, colnr_T col));
/*
* Like vim_regexec(), but consider a "\n" in "line" to be a line break.
*/
static int
bt_regexec_nl(rmp, line, col)
regmatch_T *rmp;
char_u *line; /* string to match against */
colnr_T col; /* column to start looking for match */
{
reg_match = rmp;
reg_mmatch = NULL;
reg_maxline = 0;
reg_line_lbr = TRUE;
reg_buf = curbuf;
reg_win = NULL;
ireg_ic = rmp->rm_ic;
#ifdef FEAT_MBYTE
ireg_icombine = FALSE;
#endif
ireg_maxcol = 0;
return (bt_regexec_both(line, col, NULL) != 0);
}
#endif
static long bt_regexec_multi __ARGS((regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col, proftime_T *tm));
/*
* Match a regexp against multiple lines.
* "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
* Uses curbuf for line count and 'iskeyword'.
*
* Return zero if there is no match. Return number of lines contained in the
* match otherwise.
*/
static long
bt_regexec_multi(rmp, win, buf, lnum, col, tm)
regmmatch_T *rmp;
win_T *win; /* window in which to search or NULL */
buf_T *buf; /* buffer in which to search */
linenr_T lnum; /* nr of line to start looking for match */
colnr_T col; /* column to start looking for match */
proftime_T *tm; /* timeout limit or NULL */
{
long r;
reg_match = NULL;
reg_mmatch = rmp;
reg_buf = buf;
reg_win = win;
reg_firstlnum = lnum;
reg_maxline = reg_buf->b_ml.ml_line_count - lnum;
reg_line_lbr = FALSE;
ireg_ic = rmp->rmm_ic;
#ifdef FEAT_MBYTE
ireg_icombine = FALSE;
#endif
ireg_maxcol = rmp->rmm_maxcol;
r = bt_regexec_both(NULL, col, tm);
return r;
}
/*
* Match a regexp against a string ("line" points to the string) or multiple
* lines ("line" is NULL, use reg_getline()).
*/
static long
bt_regexec_both(line, col, tm)
char_u *line;
colnr_T col; /* column to start looking for match */
proftime_T *tm UNUSED; /* timeout limit or NULL */
{
bt_regprog_T *prog;
char_u *s;
long retval = 0L;
/* Create "regstack" and "backpos" if they are not allocated yet.
* We allocate *_INITIAL amount of bytes first and then set the grow size
* to much bigger value to avoid many malloc calls in case of deep regular
* expressions. */
if (regstack.ga_data == NULL)
{
/* Use an item size of 1 byte, since we push different things
* onto the regstack. */
ga_init2(&regstack, 1, REGSTACK_INITIAL);
ga_grow(&regstack, REGSTACK_INITIAL);
regstack.ga_growsize = REGSTACK_INITIAL * 8;
}
if (backpos.ga_data == NULL)
{
ga_init2(&backpos, sizeof(backpos_T), BACKPOS_INITIAL);
ga_grow(&backpos, BACKPOS_INITIAL);
backpos.ga_growsize = BACKPOS_INITIAL * 8;
}
if (REG_MULTI)
{
prog = (bt_regprog_T *)reg_mmatch->regprog;
line = reg_getline((linenr_T)0);
reg_startpos = reg_mmatch->startpos;
reg_endpos = reg_mmatch->endpos;
}
else
{
prog = (bt_regprog_T *)reg_match->regprog;
reg_startp = reg_match->startp;
reg_endp = reg_match->endp;
}
/* Be paranoid... */
if (prog == NULL || line == NULL)
{
EMSG(_(e_null));
goto theend;
}
/* Check validity of program. */
if (prog_magic_wrong())
goto theend;
/* If the start column is past the maximum column: no need to try. */
if (ireg_maxcol > 0 && col >= ireg_maxcol)
goto theend;
/* If pattern contains "\c" or "\C": overrule value of ireg_ic */
if (prog->regflags & RF_ICASE)
ireg_ic = TRUE;
else if (prog->regflags & RF_NOICASE)
ireg_ic = FALSE;
#ifdef FEAT_MBYTE
/* If pattern contains "\Z" overrule value of ireg_icombine */
if (prog->regflags & RF_ICOMBINE)
ireg_icombine = TRUE;
#endif
/* If there is a "must appear" string, look for it. */
if (prog->regmust != NULL)
{
int c;
#ifdef FEAT_MBYTE
if (has_mbyte)
c = (*mb_ptr2char)(prog->regmust);
else
#endif
c = *prog->regmust;
s = line + col;
/*
* This is used very often, esp. for ":global". Use three versions of
* the loop to avoid overhead of conditions.
*/
if (!ireg_ic
#ifdef FEAT_MBYTE
&& !has_mbyte
#endif
)
while ((s = vim_strbyte(s, c)) != NULL)
{
if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0)
break; /* Found it. */
++s;
}
#ifdef FEAT_MBYTE
else if (!ireg_ic || (!enc_utf8 && mb_char2len(c) > 1))
while ((s = vim_strchr(s, c)) != NULL)
{
if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0)
break; /* Found it. */
mb_ptr_adv(s);
}
#endif
else
while ((s = cstrchr(s, c)) != NULL)
{
if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0)
break; /* Found it. */
mb_ptr_adv(s);
}
if (s == NULL) /* Not present. */
goto theend;
}
regline = line;
reglnum = 0;
reg_toolong = FALSE;
/* Simplest case: Anchored match need be tried only once. */
if (prog->reganch)
{
int c;
#ifdef FEAT_MBYTE
if (has_mbyte)
c = (*mb_ptr2char)(regline + col);
else
#endif
c = regline[col];
if (prog->regstart == NUL
|| prog->regstart == c
|| (ireg_ic && ((
#ifdef FEAT_MBYTE
(enc_utf8 && utf_fold(prog->regstart) == utf_fold(c)))
|| (c < 255 && prog->regstart < 255 &&
#endif
MB_TOLOWER(prog->regstart) == MB_TOLOWER(c)))))
retval = regtry(prog, col);
else
retval = 0;
}
else
{
#ifdef FEAT_RELTIME
int tm_count = 0;
#endif
/* Messy cases: unanchored match. */
while (!got_int)
{
if (prog->regstart != NUL)
{
/* Skip until the char we know it must start with.
* Used often, do some work to avoid call overhead. */
if (!ireg_ic
#ifdef FEAT_MBYTE
&& !has_mbyte
#endif
)
s = vim_strbyte(regline + col, prog->regstart);
else
s = cstrchr(regline + col, prog->regstart);
if (s == NULL)
{
retval = 0;
break;
}
col = (int)(s - regline);
}
/* Check for maximum column to try. */
if (ireg_maxcol > 0 && col >= ireg_maxcol)
{
retval = 0;
break;
}
retval = regtry(prog, col);
if (retval > 0)
break;
/* if not currently on the first line, get it again */
if (reglnum != 0)
{
reglnum = 0;
regline = reg_getline((linenr_T)0);
}
if (regline[col] == NUL)
break;
#ifdef FEAT_MBYTE
if (has_mbyte)
col += (*mb_ptr2len)(regline + col);
else
#endif
++col;
#ifdef FEAT_RELTIME
/* Check for timeout once in a twenty times to avoid overhead. */
if (tm != NULL && ++tm_count == 20)
{
tm_count = 0;
if (profile_passed_limit(tm))
break;
}
#endif
}
}
theend:
/* Free "reg_tofree" when it's a bit big.
* Free regstack and backpos if they are bigger than their initial size. */
if (reg_tofreelen > 400)
{
vim_free(reg_tofree);
reg_tofree = NULL;
}
if (regstack.ga_maxlen > REGSTACK_INITIAL)
ga_clear(&regstack);
if (backpos.ga_maxlen > BACKPOS_INITIAL)
ga_clear(&backpos);
return retval;
}
#ifdef FEAT_SYN_HL
static reg_extmatch_T *make_extmatch __ARGS((void));
/*
* Create a new extmatch and mark it as referenced once.
*/
static reg_extmatch_T *
make_extmatch()
{
reg_extmatch_T *em;
em = (reg_extmatch_T *)alloc_clear((unsigned)sizeof(reg_extmatch_T));
if (em != NULL)
em->refcnt = 1;
return em;
}
/*
* Add a reference to an extmatch.
*/
reg_extmatch_T *
ref_extmatch(em)
reg_extmatch_T *em;
{
if (em != NULL)
em->refcnt++;
return em;
}
/*
* Remove a reference to an extmatch. If there are no references left, free
* the info.
*/
void
unref_extmatch(em)
reg_extmatch_T *em;
{
int i;
if (em != NULL && --em->refcnt <= 0)
{
for (i = 0; i < NSUBEXP; ++i)
vim_free(em->matches[i]);
vim_free(em);
}
}
#endif
/*
* regtry - try match of "prog" with at regline["col"].
* Returns 0 for failure, number of lines contained in the match otherwise.
*/
static long
regtry(prog, col)
bt_regprog_T *prog;
colnr_T col;
{
reginput = regline + col;
need_clear_subexpr = TRUE;
#ifdef FEAT_SYN_HL
/* Clear the external match subpointers if necessary. */
if (prog->reghasz == REX_SET)
need_clear_zsubexpr = TRUE;
#endif
if (regmatch(prog->program + 1) == 0)
return 0;
cleanup_subexpr();
if (REG_MULTI)
{
if (reg_startpos[0].lnum < 0)
{
reg_startpos[0].lnum = 0;
reg_startpos[0].col = col;
}
if (reg_endpos[0].lnum < 0)
{
reg_endpos[0].lnum = reglnum;
reg_endpos[0].col = (int)(reginput - regline);
}
else
/* Use line number of "\ze". */
reglnum = reg_endpos[0].lnum;
}
else
{
if (reg_startp[0] == NULL)
reg_startp[0] = regline + col;
if (reg_endp[0] == NULL)
reg_endp[0] = reginput;
}
#ifdef FEAT_SYN_HL
/* Package any found \z(...\) matches for export. Default is none. */
unref_extmatch(re_extmatch_out);
re_extmatch_out = NULL;
if (prog->reghasz == REX_SET)
{
int i;
cleanup_zsubexpr();
re_extmatch_out = make_extmatch();
for (i = 0; i < NSUBEXP; i++)
{
if (REG_MULTI)
{
/* Only accept single line matches. */
if (reg_startzpos[i].lnum >= 0
&& reg_endzpos[i].lnum == reg_startzpos[i].lnum)
re_extmatch_out->matches[i] =
vim_strnsave(reg_getline(reg_startzpos[i].lnum)
+ reg_startzpos[i].col,
reg_endzpos[i].col - reg_startzpos[i].col);
}
else
{
if (reg_startzp[i] != NULL && reg_endzp[i] != NULL)
re_extmatch_out->matches[i] =
vim_strnsave(reg_startzp[i],
(int)(reg_endzp[i] - reg_startzp[i]));
}
}
}
#endif
return 1 + reglnum;
}
#ifdef FEAT_MBYTE
static int reg_prev_class __ARGS((void));
/*
* Get class of previous character.
*/
static int
reg_prev_class()
{
if (reginput > regline)
return mb_get_class_buf(reginput - 1
- (*mb_head_off)(regline, reginput - 1), reg_buf);
return -1;
}
#endif
#define ADVANCE_REGINPUT() mb_ptr_adv(reginput)
/*
* The arguments from BRACE_LIMITS are stored here. They are actually local
* to regmatch(), but they are here to reduce the amount of stack space used
* (it can be called recursively many times).
*/
static long bl_minval;
static long bl_maxval;
/*
* regmatch - main matching routine
*
* Conceptually the strategy is simple: Check to see whether the current node
* matches, push an item onto the regstack and loop to see whether the rest
* matches, and then act accordingly. In practice we make some effort to
* avoid using the regstack, in particular by going through "ordinary" nodes
* (that don't need to know whether the rest of the match failed) by a nested
* loop.
*
* Returns TRUE when there is a match. Leaves reginput and reglnum just after
* the last matched character.
* Returns FALSE when there is no match. Leaves reginput and reglnum in an
* undefined state!
*/
static int
regmatch(scan)
char_u *scan; /* Current node. */
{
char_u *next; /* Next node. */
int op;
int c;
regitem_T *rp;
int no;
int status; /* one of the RA_ values: */
#define RA_FAIL 1 /* something failed, abort */
#define RA_CONT 2 /* continue in inner loop */
#define RA_BREAK 3 /* break inner loop */
#define RA_MATCH 4 /* successful match */
#define RA_NOMATCH 5 /* didn't match */
/* Make "regstack" and "backpos" empty. They are allocated and freed in
* bt_regexec_both() to reduce malloc()/free() calls. */
regstack.ga_len = 0;
backpos.ga_len = 0;
/*
* Repeat until "regstack" is empty.
*/
for (;;)
{
/* Some patterns may cause a long time to match, even though they are not
* illegal. E.g., "\([a-z]\+\)\+Q". Allow breaking them with CTRL-C. */
fast_breakcheck();
#ifdef DEBUG
if (scan != NULL && regnarrate)
{
mch_errmsg((char *)regprop(scan));
mch_errmsg("(\n");
}
#endif
/*
* Repeat for items that can be matched sequentially, without using the
* regstack.
*/
for (;;)
{
if (got_int || scan == NULL)
{
status = RA_FAIL;
break;
}
status = RA_CONT;
#ifdef DEBUG
if (regnarrate)
{
mch_errmsg((char *)regprop(scan));
mch_errmsg("...\n");
# ifdef FEAT_SYN_HL
if (re_extmatch_in != NULL)
{
int i;
mch_errmsg(_("External submatches:\n"));
for (i = 0; i < NSUBEXP; i++)
{
mch_errmsg(" \"");
if (re_extmatch_in->matches[i] != NULL)
mch_errmsg((char *)re_extmatch_in->matches[i]);
mch_errmsg("\"\n");
}
}
# endif
}
#endif
next = regnext(scan);
op = OP(scan);
/* Check for character class with NL added. */
if (!reg_line_lbr && WITH_NL(op) && REG_MULTI
&& *reginput == NUL && reglnum <= reg_maxline)
{
reg_nextline();
}
else if (reg_line_lbr && WITH_NL(op) && *reginput == '\n')
{
ADVANCE_REGINPUT();
}
else
{
if (WITH_NL(op))
op -= ADD_NL;
#ifdef FEAT_MBYTE
if (has_mbyte)
c = (*mb_ptr2char)(reginput);
else
#endif
c = *reginput;
switch (op)
{
case BOL:
if (reginput != regline)
status = RA_NOMATCH;
break;
case EOL:
if (c != NUL)
status = RA_NOMATCH;
break;
case RE_BOF:
/* We're not at the beginning of the file when below the first
* line where we started, not at the start of the line or we
* didn't start at the first line of the buffer. */
if (reglnum != 0 || reginput != regline
|| (REG_MULTI && reg_firstlnum > 1))
status = RA_NOMATCH;
break;
case RE_EOF:
if (reglnum != reg_maxline || c != NUL)
status = RA_NOMATCH;
break;
case CURSOR:
/* Check if the buffer is in a window and compare the
* reg_win->w_cursor position to the match position. */
if (reg_win == NULL
|| (reglnum + reg_firstlnum != reg_win->w_cursor.lnum)
|| ((colnr_T)(reginput - regline) != reg_win->w_cursor.col))
status = RA_NOMATCH;
break;
case RE_MARK:
/* Compare the mark position to the match position. NOTE: Always
* uses the current buffer. */
{
int mark = OPERAND(scan)[0];
int cmp = OPERAND(scan)[1];
pos_T *pos;
pos = getmark_buf(reg_buf, mark, FALSE);
if (pos == NULL /* mark doesn't exist */
|| pos->lnum <= 0 /* mark isn't set (in curbuf) */
|| (pos->lnum == reglnum + reg_firstlnum
? (pos->col == (colnr_T)(reginput - regline)
? (cmp == '<' || cmp == '>')
: (pos->col < (colnr_T)(reginput - regline)
? cmp != '>'
: cmp != '<'))
: (pos->lnum < reglnum + reg_firstlnum
? cmp != '>'
: cmp != '<')))
status = RA_NOMATCH;
}
break;
case RE_VISUAL:
#ifdef FEAT_VISUAL
/* Check if the buffer is the current buffer. and whether the
* position is inside the Visual area. */
if (reg_buf != curbuf || VIsual.lnum == 0)
status = RA_NOMATCH;
else
{
pos_T top, bot;
linenr_T lnum;
colnr_T col;
win_T *wp = reg_win == NULL ? curwin : reg_win;
int mode;
if (VIsual_active)
{
if (lt(VIsual, wp->w_cursor))
{
top = VIsual;
bot = wp->w_cursor;
}
else
{
top = wp->w_cursor;
bot = VIsual;
}
mode = VIsual_mode;
}
else
{
if (lt(curbuf->b_visual.vi_start, curbuf->b_visual.vi_end))
{
top = curbuf->b_visual.vi_start;
bot = curbuf->b_visual.vi_end;
}
else
{
top = curbuf->b_visual.vi_end;
bot = curbuf->b_visual.vi_start;
}
mode = curbuf->b_visual.vi_mode;
}
lnum = reglnum + reg_firstlnum;
col = (colnr_T)(reginput - regline);
if (lnum < top.lnum || lnum > bot.lnum)
status = RA_NOMATCH;
else if (mode == 'v')
{
if ((lnum == top.lnum && col < top.col)
|| (lnum == bot.lnum
&& col >= bot.col + (*p_sel != 'e')))
status = RA_NOMATCH;
}
else if (mode == Ctrl_V)
{
colnr_T start, end;
colnr_T start2, end2;
colnr_T cols;
getvvcol(wp, &top, &start, NULL, &end);
getvvcol(wp, &bot, &start2, NULL, &end2);
if (start2 < start)
start = start2;
if (end2 > end)
end = end2;
if (top.col == MAXCOL || bot.col == MAXCOL)
end = MAXCOL;
cols = win_linetabsize(wp,
regline, (colnr_T)(reginput - regline));
if (cols < start || cols > end - (*p_sel == 'e'))
status = RA_NOMATCH;
}
}
#else
status = RA_NOMATCH;
#endif
break;
case RE_LNUM:
if (!REG_MULTI || !re_num_cmp((long_u)(reglnum + reg_firstlnum),
scan))
status = RA_NOMATCH;
break;
case RE_COL:
if (!re_num_cmp((long_u)(reginput - regline) + 1, scan))
status = RA_NOMATCH;
break;
case RE_VCOL:
if (!re_num_cmp((long_u)win_linetabsize(
reg_win == NULL ? curwin : reg_win,
regline, (colnr_T)(reginput - regline)) + 1, scan))
status = RA_NOMATCH;
break;
case BOW: /* \<word; reginput points to w */
if (c == NUL) /* Can't match at end of line */
status = RA_NOMATCH;
#ifdef FEAT_MBYTE
else if (has_mbyte)
{
int this_class;
/* Get class of current and previous char (if it exists). */
this_class = mb_get_class_buf(reginput, reg_buf);
if (this_class <= 1)
status = RA_NOMATCH; /* not on a word at all */
else if (reg_prev_class() == this_class)
status = RA_NOMATCH; /* previous char is in same word */
}
#endif
else
{
if (!vim_iswordc_buf(c, reg_buf) || (reginput > regline
&& vim_iswordc_buf(reginput[-1], reg_buf)))
status = RA_NOMATCH;
}
break;
case EOW: /* word\>; reginput points after d */
if (reginput == regline) /* Can't match at start of line */
status = RA_NOMATCH;
#ifdef FEAT_MBYTE
else if (has_mbyte)
{
int this_class, prev_class;
/* Get class of current and previous char (if it exists). */
this_class = mb_get_class_buf(reginput, reg_buf);
prev_class = reg_prev_class();
if (this_class == prev_class
|| prev_class == 0 || prev_class == 1)
status = RA_NOMATCH;
}
#endif
else
{
if (!vim_iswordc_buf(reginput[-1], reg_buf)
|| (reginput[0] != NUL && vim_iswordc_buf(c, reg_buf)))
status = RA_NOMATCH;
}
break; /* Matched with EOW */
case ANY:
/* ANY does not match new lines. */
if (c == NUL)
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case IDENT:
if (!vim_isIDc(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case SIDENT:
if (VIM_ISDIGIT(*reginput) || !vim_isIDc(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case KWORD:
if (!vim_iswordp_buf(reginput, reg_buf))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case SKWORD:
if (VIM_ISDIGIT(*reginput) || !vim_iswordp_buf(reginput, reg_buf))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case FNAME:
if (!vim_isfilec(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case SFNAME:
if (VIM_ISDIGIT(*reginput) || !vim_isfilec(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case PRINT:
if (ptr2cells(reginput) != 1)
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case SPRINT:
if (VIM_ISDIGIT(*reginput) || ptr2cells(reginput) != 1)
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case WHITE:
if (!vim_iswhite(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NWHITE:
if (c == NUL || vim_iswhite(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case DIGIT:
if (!ri_digit(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NDIGIT:
if (c == NUL || ri_digit(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case HEX:
if (!ri_hex(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NHEX:
if (c == NUL || ri_hex(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case OCTAL:
if (!ri_octal(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NOCTAL:
if (c == NUL || ri_octal(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case WORD:
if (!ri_word(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NWORD:
if (c == NUL || ri_word(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case HEAD:
if (!ri_head(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NHEAD:
if (c == NUL || ri_head(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case ALPHA:
if (!ri_alpha(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NALPHA:
if (c == NUL || ri_alpha(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case LOWER:
if (!ri_lower(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NLOWER:
if (c == NUL || ri_lower(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case UPPER:
if (!ri_upper(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NUPPER:
if (c == NUL || ri_upper(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case EXACTLY:
{
int len;
char_u *opnd;
opnd = OPERAND(scan);
/* Inline the first byte, for speed. */
if (*opnd != *reginput
&& (!ireg_ic || (
#ifdef FEAT_MBYTE
!enc_utf8 &&
#endif
MB_TOLOWER(*opnd) != MB_TOLOWER(*reginput))))
status = RA_NOMATCH;
else if (*opnd == NUL)
{
/* match empty string always works; happens when "~" is
* empty. */
}
else if (opnd[1] == NUL
#ifdef FEAT_MBYTE
&& !(enc_utf8 && ireg_ic)
#endif
)
++reginput; /* matched a single char */
else
{
len = (int)STRLEN(opnd);
/* Need to match first byte again for multi-byte. */
if (cstrncmp(opnd, reginput, &len) != 0)
status = RA_NOMATCH;
#ifdef FEAT_MBYTE
/* Check for following composing character. */
else if (enc_utf8
&& UTF_COMPOSINGLIKE(reginput, reginput + len))
{
/* raaron: This code makes a composing character get
* ignored, which is the correct behavior (sometimes)
* for voweled Hebrew texts. */
if (!ireg_icombine)
status = RA_NOMATCH;
}
#endif
else
reginput += len;
}
}
break;
case ANYOF:
case ANYBUT:
if (c == NUL)
status = RA_NOMATCH;
else if ((cstrchr(OPERAND(scan), c) == NULL) == (op == ANYOF))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
#ifdef FEAT_MBYTE
case MULTIBYTECODE:
if (has_mbyte)
{
int i, len;
char_u *opnd;
int opndc = 0, inpc;
opnd = OPERAND(scan);
/* Safety check (just in case 'encoding' was changed since
* compiling the program). */
if ((len = (*mb_ptr2len)(opnd)) < 2)
{
status = RA_NOMATCH;
break;
}
if (enc_utf8)
opndc = mb_ptr2char(opnd);
if (enc_utf8 && utf_iscomposing(opndc))
{
/* When only a composing char is given match at any
* position where that composing char appears. */
status = RA_NOMATCH;
for (i = 0; reginput[i] != NUL; i += utf_char2len(inpc))
{
inpc = mb_ptr2char(reginput + i);
if (!utf_iscomposing(inpc))
{
if (i > 0)
break;
}
else if (opndc == inpc)
{
/* Include all following composing chars. */
len = i + mb_ptr2len(reginput + i);
status = RA_MATCH;
break;
}
}
}
else
for (i = 0; i < len; ++i)
if (opnd[i] != reginput[i])
{
status = RA_NOMATCH;
break;
}
reginput += len;
}
else
status = RA_NOMATCH;
break;
#endif
case NOTHING:
break;
case BACK:
{
int i;
backpos_T *bp;
/*
* When we run into BACK we need to check if we don't keep
* looping without matching any input. The second and later
* times a BACK is encountered it fails if the input is still
* at the same position as the previous time.
* The positions are stored in "backpos" and found by the
* current value of "scan", the position in the RE program.
*/
bp = (backpos_T *)backpos.ga_data;
for (i = 0; i < backpos.ga_len; ++i)
if (bp[i].bp_scan == scan)
break;
if (i == backpos.ga_len)
{
/* First time at this BACK, make room to store the pos. */
if (ga_grow(&backpos, 1) == FAIL)
status = RA_FAIL;
else
{
/* get "ga_data" again, it may have changed */
bp = (backpos_T *)backpos.ga_data;
bp[i].bp_scan = scan;
++backpos.ga_len;
}
}
else if (reg_save_equal(&bp[i].bp_pos))
/* Still at same position as last time, fail. */
status = RA_NOMATCH;
if (status != RA_FAIL && status != RA_NOMATCH)
reg_save(&bp[i].bp_pos, &backpos);
}
break;
case MOPEN + 0: /* Match start: \zs */
case MOPEN + 1: /* \( */
case MOPEN + 2:
case MOPEN + 3:
case MOPEN + 4:
case MOPEN + 5:
case MOPEN + 6:
case MOPEN + 7:
case MOPEN + 8:
case MOPEN + 9:
{
no = op - MOPEN;
cleanup_subexpr();
rp = regstack_push(RS_MOPEN, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &reg_startpos[no],
&reg_startp[no]);
/* We simply continue and handle the result when done. */
}
}
break;
case NOPEN: /* \%( */
case NCLOSE: /* \) after \%( */
if (regstack_push(RS_NOPEN, scan) == NULL)
status = RA_FAIL;
/* We simply continue and handle the result when done. */
break;
#ifdef FEAT_SYN_HL
case ZOPEN + 1:
case ZOPEN + 2:
case ZOPEN + 3:
case ZOPEN + 4:
case ZOPEN + 5:
case ZOPEN + 6:
case ZOPEN + 7:
case ZOPEN + 8:
case ZOPEN + 9:
{
no = op - ZOPEN;
cleanup_zsubexpr();
rp = regstack_push(RS_ZOPEN, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &reg_startzpos[no],
&reg_startzp[no]);
/* We simply continue and handle the result when done. */
}
}
break;
#endif
case MCLOSE + 0: /* Match end: \ze */
case MCLOSE + 1: /* \) */
case MCLOSE + 2:
case MCLOSE + 3:
case MCLOSE + 4:
case MCLOSE + 5:
case MCLOSE + 6:
case MCLOSE + 7:
case MCLOSE + 8:
case MCLOSE + 9:
{
no = op - MCLOSE;
cleanup_subexpr();
rp = regstack_push(RS_MCLOSE, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &reg_endpos[no], &reg_endp[no]);
/* We simply continue and handle the result when done. */
}
}
break;
#ifdef FEAT_SYN_HL
case ZCLOSE + 1: /* \) after \z( */
case ZCLOSE + 2:
case ZCLOSE + 3:
case ZCLOSE + 4:
case ZCLOSE + 5:
case ZCLOSE + 6:
case ZCLOSE + 7:
case ZCLOSE + 8:
case ZCLOSE + 9:
{
no = op - ZCLOSE;
cleanup_zsubexpr();
rp = regstack_push(RS_ZCLOSE, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &reg_endzpos[no],
&reg_endzp[no]);
/* We simply continue and handle the result when done. */
}
}
break;
#endif
case BACKREF + 1:
case BACKREF + 2:
case BACKREF + 3:
case BACKREF + 4:
case BACKREF + 5:
case BACKREF + 6:
case BACKREF + 7:
case BACKREF + 8:
case BACKREF + 9:
{
int len;
linenr_T clnum;
colnr_T ccol;
char_u *p;
no = op - BACKREF;
cleanup_subexpr();
if (!REG_MULTI) /* Single-line regexp */
{
if (reg_startp[no] == NULL || reg_endp[no] == NULL)
{
/* Backref was not set: Match an empty string. */
len = 0;
}
else
{
/* Compare current input with back-ref in the same
* line. */
len = (int)(reg_endp[no] - reg_startp[no]);
if (cstrncmp(reg_startp[no], reginput, &len) != 0)
status = RA_NOMATCH;
}
}
else /* Multi-line regexp */
{
if (reg_startpos[no].lnum < 0 || reg_endpos[no].lnum < 0)
{
/* Backref was not set: Match an empty string. */
len = 0;
}
else
{
if (reg_startpos[no].lnum == reglnum
&& reg_endpos[no].lnum == reglnum)
{
/* Compare back-ref within the current line. */
len = reg_endpos[no].col - reg_startpos[no].col;
if (cstrncmp(regline + reg_startpos[no].col,
reginput, &len) != 0)
status = RA_NOMATCH;
}
else
{
/* Messy situation: Need to compare between two
* lines. */
ccol = reg_startpos[no].col;
clnum = reg_startpos[no].lnum;
for (;;)
{
/* Since getting one line may invalidate
* the other, need to make copy. Slow! */
if (regline != reg_tofree)
{
len = (int)STRLEN(regline);
if (reg_tofree == NULL
|| len >= (int)reg_tofreelen)
{
len += 50; /* get some extra */
vim_free(reg_tofree);
reg_tofree = alloc(len);
if (reg_tofree == NULL)
{
status = RA_FAIL; /* outof memory!*/
break;
}
reg_tofreelen = len;
}
STRCPY(reg_tofree, regline);
reginput = reg_tofree
+ (reginput - regline);
regline = reg_tofree;
}
/* Get the line to compare with. */
p = reg_getline(clnum);
if (clnum == reg_endpos[no].lnum)
len = reg_endpos[no].col - ccol;
else
len = (int)STRLEN(p + ccol);
if (cstrncmp(p + ccol, reginput, &len) != 0)
{
status = RA_NOMATCH; /* doesn't match */
break;
}
if (clnum == reg_endpos[no].lnum)
break; /* match and at end! */
if (reglnum >= reg_maxline)
{
status = RA_NOMATCH; /* text too short */
break;
}
/* Advance to next line. */
reg_nextline();
++clnum;
ccol = 0;
if (got_int)
{
status = RA_FAIL;
break;
}
}
/* found a match! Note that regline may now point
* to a copy of the line, that should not matter. */
}
}
}
/* Matched the backref, skip over it. */
reginput += len;
}
break;
#ifdef FEAT_SYN_HL
case ZREF + 1:
case ZREF + 2:
case ZREF + 3:
case ZREF + 4:
case ZREF + 5:
case ZREF + 6:
case ZREF + 7:
case ZREF + 8:
case ZREF + 9:
{
int len;
cleanup_zsubexpr();
no = op - ZREF;
if (re_extmatch_in != NULL
&& re_extmatch_in->matches[no] != NULL)
{
len = (int)STRLEN(re_extmatch_in->matches[no]);
if (cstrncmp(re_extmatch_in->matches[no],
reginput, &len) != 0)
status = RA_NOMATCH;
else
reginput += len;
}
else
{
/* Backref was not set: Match an empty string. */
}
}
break;
#endif
case BRANCH:
{
if (OP(next) != BRANCH) /* No choice. */
next = OPERAND(scan); /* Avoid recursion. */
else
{
rp = regstack_push(RS_BRANCH, scan);
if (rp == NULL)
status = RA_FAIL;
else
status = RA_BREAK; /* rest is below */
}
}
break;
case BRACE_LIMITS:
{
if (OP(next) == BRACE_SIMPLE)
{
bl_minval = OPERAND_MIN(scan);
bl_maxval = OPERAND_MAX(scan);
}
else if (OP(next) >= BRACE_COMPLEX
&& OP(next) < BRACE_COMPLEX + 10)
{
no = OP(next) - BRACE_COMPLEX;
brace_min[no] = OPERAND_MIN(scan);
brace_max[no] = OPERAND_MAX(scan);
brace_count[no] = 0;
}
else
{
EMSG(_(e_internal)); /* Shouldn't happen */
status = RA_FAIL;
}
}
break;
case BRACE_COMPLEX + 0:
case BRACE_COMPLEX + 1:
case BRACE_COMPLEX + 2:
case BRACE_COMPLEX + 3:
case BRACE_COMPLEX + 4:
case BRACE_COMPLEX + 5:
case BRACE_COMPLEX + 6:
case BRACE_COMPLEX + 7:
case BRACE_COMPLEX + 8:
case BRACE_COMPLEX + 9:
{
no = op - BRACE_COMPLEX;
++brace_count[no];
/* If not matched enough times yet, try one more */
if (brace_count[no] <= (brace_min[no] <= brace_max[no]
? brace_min[no] : brace_max[no]))
{
rp = regstack_push(RS_BRCPLX_MORE, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
/* We continue and handle the result when done. */
}
break;
}
/* If matched enough times, may try matching some more */
if (brace_min[no] <= brace_max[no])
{
/* Range is the normal way around, use longest match */
if (brace_count[no] <= brace_max[no])
{
rp = regstack_push(RS_BRCPLX_LONG, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = no;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
/* We continue and handle the result when done. */
}
}
}
else
{
/* Range is backwards, use shortest match first */
if (brace_count[no] <= brace_min[no])
{
rp = regstack_push(RS_BRCPLX_SHORT, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
reg_save(&rp->rs_un.regsave, &backpos);
/* We continue and handle the result when done. */
}
}
}
}
break;
case BRACE_SIMPLE:
case STAR:
case PLUS:
{
regstar_T rst;
/*
* Lookahead to avoid useless match attempts when we know
* what character comes next.
*/
if (OP(next) == EXACTLY)
{
rst.nextb = *OPERAND(next);
if (ireg_ic)
{
if (MB_ISUPPER(rst.nextb))
rst.nextb_ic = MB_TOLOWER(rst.nextb);
else
rst.nextb_ic = MB_TOUPPER(rst.nextb);
}
else
rst.nextb_ic = rst.nextb;
}
else
{
rst.nextb = NUL;
rst.nextb_ic = NUL;
}
if (op != BRACE_SIMPLE)
{
rst.minval = (op == STAR) ? 0 : 1;
rst.maxval = MAX_LIMIT;
}
else
{
rst.minval = bl_minval;
rst.maxval = bl_maxval;
}
/*
* When maxval > minval, try matching as much as possible, up
* to maxval. When maxval < minval, try matching at least the
* minimal number (since the range is backwards, that's also
* maxval!).
*/
rst.count = regrepeat(OPERAND(scan), rst.maxval);
if (got_int)
{
status = RA_FAIL;
break;
}
if (rst.minval <= rst.maxval
? rst.count >= rst.minval : rst.count >= rst.maxval)
{
/* It could match. Prepare for trying to match what
* follows. The code is below. Parameters are stored in
* a regstar_T on the regstack. */
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp)
{
EMSG(_(e_maxmempat));
status = RA_FAIL;
}
else if (ga_grow(&regstack, sizeof(regstar_T)) == FAIL)
status = RA_FAIL;
else
{
regstack.ga_len += sizeof(regstar_T);
rp = regstack_push(rst.minval <= rst.maxval
? RS_STAR_LONG : RS_STAR_SHORT, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
*(((regstar_T *)rp) - 1) = rst;
status = RA_BREAK; /* skip the restore bits */
}
}
}
else
status = RA_NOMATCH;
}
break;
case NOMATCH:
case MATCH:
case SUBPAT:
rp = regstack_push(RS_NOMATCH, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
rp->rs_no = op;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
/* We continue and handle the result when done. */
}
break;
case BEHIND:
case NOBEHIND:
/* Need a bit of room to store extra positions. */
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp)
{
EMSG(_(e_maxmempat));
status = RA_FAIL;
}
else if (ga_grow(&regstack, sizeof(regbehind_T)) == FAIL)
status = RA_FAIL;
else
{
regstack.ga_len += sizeof(regbehind_T);
rp = regstack_push(RS_BEHIND1, scan);
if (rp == NULL)
status = RA_FAIL;
else
{
/* Need to save the subexpr to be able to restore them
* when there is a match but we don't use it. */
save_subexpr(((regbehind_T *)rp) - 1);
rp->rs_no = op;
reg_save(&rp->rs_un.regsave, &backpos);
/* First try if what follows matches. If it does then we
* check the behind match by looping. */
}
}
break;
case BHPOS:
if (REG_MULTI)
{
if (behind_pos.rs_u.pos.col != (colnr_T)(reginput - regline)
|| behind_pos.rs_u.pos.lnum != reglnum)
status = RA_NOMATCH;
}
else if (behind_pos.rs_u.ptr != reginput)
status = RA_NOMATCH;
break;
case NEWL:
if ((c != NUL || !REG_MULTI || reglnum > reg_maxline
|| reg_line_lbr) && (c != '\n' || !reg_line_lbr))
status = RA_NOMATCH;
else if (reg_line_lbr)
ADVANCE_REGINPUT();
else
reg_nextline();
break;
case END:
status = RA_MATCH; /* Success! */
break;
default:
EMSG(_(e_re_corr));
#ifdef DEBUG
printf("Illegal op code %d\n", op);
#endif
status = RA_FAIL;
break;
}
}
/* If we can't continue sequentially, break the inner loop. */
if (status != RA_CONT)
break;
/* Continue in inner loop, advance to next item. */
scan = next;
} /* end of inner loop */
/*
* If there is something on the regstack execute the code for the state.
* If the state is popped then loop and use the older state.
*/
while (regstack.ga_len > 0 && status != RA_FAIL)
{
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1;
switch (rp->rs_state)
{
case RS_NOPEN:
/* Result is passed on as-is, simply pop the state. */
regstack_pop(&scan);
break;
case RS_MOPEN:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH)
restore_se(&rp->rs_un.sesave, &reg_startpos[rp->rs_no],
&reg_startp[rp->rs_no]);
regstack_pop(&scan);
break;
#ifdef FEAT_SYN_HL
case RS_ZOPEN:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH)
restore_se(&rp->rs_un.sesave, &reg_startzpos[rp->rs_no],
&reg_startzp[rp->rs_no]);
regstack_pop(&scan);
break;
#endif
case RS_MCLOSE:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH)
restore_se(&rp->rs_un.sesave, &reg_endpos[rp->rs_no],
&reg_endp[rp->rs_no]);
regstack_pop(&scan);
break;
#ifdef FEAT_SYN_HL
case RS_ZCLOSE:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH)
restore_se(&rp->rs_un.sesave, &reg_endzpos[rp->rs_no],
&reg_endzp[rp->rs_no]);
regstack_pop(&scan);
break;
#endif
case RS_BRANCH:
if (status == RA_MATCH)
/* this branch matched, use it */
regstack_pop(&scan);
else
{
if (status != RA_BREAK)
{
/* After a non-matching branch: try next one. */
reg_restore(&rp->rs_un.regsave, &backpos);
scan = rp->rs_scan;
}
if (scan == NULL || OP(scan) != BRANCH)
{
/* no more branches, didn't find a match */
status = RA_NOMATCH;
regstack_pop(&scan);
}
else
{
/* Prepare to try a branch. */
rp->rs_scan = regnext(scan);
reg_save(&rp->rs_un.regsave, &backpos);
scan = OPERAND(scan);
}
}
break;
case RS_BRCPLX_MORE:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH)
{
reg_restore(&rp->rs_un.regsave, &backpos);
--brace_count[rp->rs_no]; /* decrement match count */
}
regstack_pop(&scan);
break;
case RS_BRCPLX_LONG:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH)
{
/* There was no match, but we did find enough matches. */
reg_restore(&rp->rs_un.regsave, &backpos);
--brace_count[rp->rs_no];
/* continue with the items after "\{}" */
status = RA_CONT;
}
regstack_pop(&scan);
if (status == RA_CONT)
scan = regnext(scan);
break;
case RS_BRCPLX_SHORT:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH)
/* There was no match, try to match one more item. */
reg_restore(&rp->rs_un.regsave, &backpos);
regstack_pop(&scan);
if (status == RA_NOMATCH)
{
scan = OPERAND(scan);
status = RA_CONT;
}
break;
case RS_NOMATCH:
/* Pop the state. If the operand matches for NOMATCH or
* doesn't match for MATCH/SUBPAT, we fail. Otherwise backup,
* except for SUBPAT, and continue with the next item. */
if (status == (rp->rs_no == NOMATCH ? RA_MATCH : RA_NOMATCH))
status = RA_NOMATCH;
else
{
status = RA_CONT;
if (rp->rs_no != SUBPAT) /* zero-width */
reg_restore(&rp->rs_un.regsave, &backpos);
}
regstack_pop(&scan);
if (status == RA_CONT)
scan = regnext(scan);
break;
case RS_BEHIND1:
if (status == RA_NOMATCH)
{
regstack_pop(&scan);
regstack.ga_len -= sizeof(regbehind_T);
}
else
{
/* The stuff after BEHIND/NOBEHIND matches. Now try if
* the behind part does (not) match before the current
* position in the input. This must be done at every
* position in the input and checking if the match ends at
* the current position. */
/* save the position after the found match for next */
reg_save(&(((regbehind_T *)rp) - 1)->save_after, &backpos);
/* Start looking for a match with operand at the current
* position. Go back one character until we find the
* result, hitting the start of the line or the previous
* line (for multi-line matching).
* Set behind_pos to where the match should end, BHPOS
* will match it. Save the current value. */
(((regbehind_T *)rp) - 1)->save_behind = behind_pos;
behind_pos = rp->rs_un.regsave;
rp->rs_state = RS_BEHIND2;
reg_restore(&rp->rs_un.regsave, &backpos);
scan = OPERAND(rp->rs_scan) + 4;
}
break;
case RS_BEHIND2:
/*
* Looping for BEHIND / NOBEHIND match.
*/
if (status == RA_MATCH && reg_save_equal(&behind_pos))
{
/* found a match that ends where "next" started */
behind_pos = (((regbehind_T *)rp) - 1)->save_behind;
if (rp->rs_no == BEHIND)
reg_restore(&(((regbehind_T *)rp) - 1)->save_after,
&backpos);
else
{
/* But we didn't want a match. Need to restore the
* subexpr, because what follows matched, so they have
* been set. */
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
regstack_pop(&scan);
regstack.ga_len -= sizeof(regbehind_T);
}
else
{
long limit;
/* No match or a match that doesn't end where we want it: Go
* back one character. May go to previous line once. */
no = OK;
limit = OPERAND_MIN(rp->rs_scan);
if (REG_MULTI)
{
if (limit > 0
&& ((rp->rs_un.regsave.rs_u.pos.lnum
< behind_pos.rs_u.pos.lnum
? (colnr_T)STRLEN(regline)
: behind_pos.rs_u.pos.col)
- rp->rs_un.regsave.rs_u.pos.col >= limit))
no = FAIL;
else if (rp->rs_un.regsave.rs_u.pos.col == 0)
{
if (rp->rs_un.regsave.rs_u.pos.lnum
< behind_pos.rs_u.pos.lnum
|| reg_getline(
--rp->rs_un.regsave.rs_u.pos.lnum)
== NULL)
no = FAIL;
else
{
reg_restore(&rp->rs_un.regsave, &backpos);
rp->rs_un.regsave.rs_u.pos.col =
(colnr_T)STRLEN(regline);
}
}
else
{
#ifdef FEAT_MBYTE
if (has_mbyte)
rp->rs_un.regsave.rs_u.pos.col -=
(*mb_head_off)(regline, regline
+ rp->rs_un.regsave.rs_u.pos.col - 1) + 1;
else
#endif
--rp->rs_un.regsave.rs_u.pos.col;
}
}
else
{
if (rp->rs_un.regsave.rs_u.ptr == regline)
no = FAIL;
else
{
mb_ptr_back(regline, rp->rs_un.regsave.rs_u.ptr);
if (limit > 0 && (long)(behind_pos.rs_u.ptr
- rp->rs_un.regsave.rs_u.ptr) > limit)
no = FAIL;
}
}
if (no == OK)
{
/* Advanced, prepare for finding match again. */
reg_restore(&rp->rs_un.regsave, &backpos);
scan = OPERAND(rp->rs_scan) + 4;
if (status == RA_MATCH)
{
/* We did match, so subexpr may have been changed,
* need to restore them for the next try. */
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
}
else
{
/* Can't advance. For NOBEHIND that's a match. */
behind_pos = (((regbehind_T *)rp) - 1)->save_behind;
if (rp->rs_no == NOBEHIND)
{
reg_restore(&(((regbehind_T *)rp) - 1)->save_after,
&backpos);
status = RA_MATCH;
}
else
{
/* We do want a proper match. Need to restore the
* subexpr if we had a match, because they may have
* been set. */
if (status == RA_MATCH)
{
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
}
regstack_pop(&scan);
regstack.ga_len -= sizeof(regbehind_T);
}
}
break;
case RS_STAR_LONG:
case RS_STAR_SHORT:
{
regstar_T *rst = ((regstar_T *)rp) - 1;
if (status == RA_MATCH)
{
regstack_pop(&scan);
regstack.ga_len -= sizeof(regstar_T);
break;
}
/* Tried once already, restore input pointers. */
if (status != RA_BREAK)
reg_restore(&rp->rs_un.regsave, &backpos);
/* Repeat until we found a position where it could match. */
for (;;)
{
if (status != RA_BREAK)
{
/* Tried first position already, advance. */
if (rp->rs_state == RS_STAR_LONG)
{
/* Trying for longest match, but couldn't or
* didn't match -- back up one char. */
if (--rst->count < rst->minval)
break;
if (reginput == regline)
{
/* backup to last char of previous line */
--reglnum;
regline = reg_getline(reglnum);
/* Just in case regrepeat() didn't count
* right. */
if (regline == NULL)
break;
reginput = regline + STRLEN(regline);
fast_breakcheck();
}
else
mb_ptr_back(regline, reginput);
}
else
{
/* Range is backwards, use shortest match first.
* Careful: maxval and minval are exchanged!
* Couldn't or didn't match: try advancing one
* char. */
if (rst->count == rst->minval
|| regrepeat(OPERAND(rp->rs_scan), 1L) == 0)
break;
++rst->count;
}
if (got_int)
break;
}
else
status = RA_NOMATCH;
/* If it could match, try it. */
if (rst->nextb == NUL || *reginput == rst->nextb
|| *reginput == rst->nextb_ic)
{
reg_save(&rp->rs_un.regsave, &backpos);
scan = regnext(rp->rs_scan);
status = RA_CONT;
break;
}
}
if (status != RA_CONT)
{
/* Failed. */
regstack_pop(&scan);
regstack.ga_len -= sizeof(regstar_T);
status = RA_NOMATCH;
}
}
break;
}
/* If we want to continue the inner loop or didn't pop a state
* continue matching loop */
if (status == RA_CONT || rp == (regitem_T *)
((char *)regstack.ga_data + regstack.ga_len) - 1)
break;
}
/* May need to continue with the inner loop, starting at "scan". */
if (status == RA_CONT)
continue;
/*
* If the regstack is empty or something failed we are done.
*/
if (regstack.ga_len == 0 || status == RA_FAIL)
{
if (scan == NULL)
{
/*
* We get here only if there's trouble -- normally "case END" is
* the terminating point.
*/
EMSG(_(e_re_corr));
#ifdef DEBUG
printf("Premature EOL\n");
#endif
}
if (status == RA_FAIL)
got_int = TRUE;
return (status == RA_MATCH);
}
} /* End of loop until the regstack is empty. */
/* NOTREACHED */
}
/*
* Push an item onto the regstack.
* Returns pointer to new item. Returns NULL when out of memory.
*/
static regitem_T *
regstack_push(state, scan)
regstate_T state;
char_u *scan;
{
regitem_T *rp;
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp)
{
EMSG(_(e_maxmempat));
return NULL;
}
if (ga_grow(&regstack, sizeof(regitem_T)) == FAIL)
return NULL;
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len);
rp->rs_state = state;
rp->rs_scan = scan;
regstack.ga_len += sizeof(regitem_T);
return rp;
}
/*
* Pop an item from the regstack.
*/
static void
regstack_pop(scan)
char_u **scan;
{
regitem_T *rp;
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1;
*scan = rp->rs_scan;
regstack.ga_len -= sizeof(regitem_T);
}
/*
* regrepeat - repeatedly match something simple, return how many.
* Advances reginput (and reglnum) to just after the matched chars.
*/
static int
regrepeat(p, maxcount)
char_u *p;
long maxcount; /* maximum number of matches allowed */
{
long count = 0;
char_u *scan;
char_u *opnd;
int mask;
int testval = 0;
scan = reginput; /* Make local copy of reginput for speed. */
opnd = OPERAND(p);
switch (OP(p))
{
case ANY:
case ANY + ADD_NL:
while (count < maxcount)
{
/* Matching anything means we continue until end-of-line (or
* end-of-file for ANY + ADD_NL), only limited by maxcount. */
while (*scan != NUL && count < maxcount)
{
++count;
mb_ptr_adv(scan);
}
if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline
|| reg_line_lbr || count == maxcount)
break;
++count; /* count the line-break */
reg_nextline();
scan = reginput;
if (got_int)
break;
}
break;
case IDENT:
case IDENT + ADD_NL:
testval = TRUE;
/*FALLTHROUGH*/
case SIDENT:
case SIDENT + ADD_NL:
while (count < maxcount)
{
if (vim_isIDc(PTR2CHAR(scan)) && (testval || !VIM_ISDIGIT(*scan)))
{
mb_ptr_adv(scan);
}
else if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline
|| reg_line_lbr)
break;
reg_nextline();
scan = reginput;
if (got_int)
break;
}
else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else
break;
++count;
}
break;
case KWORD:
case KWORD + ADD_NL:
testval = TRUE;
/*FALLTHROUGH*/
case SKWORD:
case SKWORD + ADD_NL:
while (count < maxcount)
{
if (vim_iswordp_buf(scan, reg_buf)
&& (testval || !VIM_ISDIGIT(*scan)))
{
mb_ptr_adv(scan);
}
else if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline
|| reg_line_lbr)
break;
reg_nextline();
scan = reginput;
if (got_int)
break;
}
else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else
break;
++count;
}
break;
case FNAME:
case FNAME + ADD_NL:
testval = TRUE;
/*FALLTHROUGH*/
case SFNAME:
case SFNAME + ADD_NL:
while (count < maxcount)
{
if (vim_isfilec(PTR2CHAR(scan)) && (testval || !VIM_ISDIGIT(*scan)))
{
mb_ptr_adv(scan);
}
else if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline
|| reg_line_lbr)
break;
reg_nextline();
scan = reginput;
if (got_int)
break;
}
else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else
break;
++count;
}
break;
case PRINT:
case PRINT + ADD_NL:
testval = TRUE;
/*FALLTHROUGH*/
case SPRINT:
case SPRINT + ADD_NL:
while (count < maxcount)
{
if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline
|| reg_line_lbr)
break;
reg_nextline();
scan = reginput;
if (got_int)
break;
}
else if (ptr2cells(scan) == 1 && (testval || !VIM_ISDIGIT(*scan)))
{
mb_ptr_adv(scan);
}
else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else
break;
++count;
}
break;
case WHITE:
case WHITE + ADD_NL:
testval = mask = RI_WHITE;
do_class:
while (count < maxcount)
{
#ifdef FEAT_MBYTE
int l;
#endif
if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline
|| reg_line_lbr)
break;
reg_nextline();
scan = reginput;
if (got_int)
break;
}
#ifdef FEAT_MBYTE
else if (has_mbyte && (l = (*mb_ptr2len)(scan)) > 1)
{
if (testval != 0)
break;
scan += l;
}
#endif
else if ((class_tab[*scan] & mask) == testval)
++scan;
else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
else
break;
++count;
}
break;
case NWHITE:
case NWHITE + ADD_NL:
mask = RI_WHITE;
goto do_class;
case DIGIT:
case DIGIT + ADD_NL:
testval = mask = RI_DIGIT;
goto do_class;
case NDIGIT:
case NDIGIT + ADD_NL:
mask = RI_DIGIT;
goto do_class;
case HEX:
case HEX + ADD_NL:
testval = mask = RI_HEX;
goto do_class;
case NHEX:
case NHEX + ADD_NL:
mask = RI_HEX;
goto do_class;
case OCTAL:
case OCTAL + ADD_NL:
testval = mask = RI_OCTAL;
goto do_class;
case NOCTAL:
case NOCTAL + ADD_NL:
mask = RI_OCTAL;
goto do_class;
case WORD:
case WORD + ADD_NL:
testval = mask = RI_WORD;
goto do_class;
case NWORD:
case NWORD + ADD_NL:
mask = RI_WORD;
goto do_class;
case HEAD:
case HEAD + ADD_NL:
testval = mask = RI_HEAD;
goto do_class;
case NHEAD:
case NHEAD + ADD_NL:
mask = RI_HEAD;
goto do_class;
case ALPHA:
case ALPHA + ADD_NL:
testval = mask = RI_ALPHA;
goto do_class;
case NALPHA:
case NALPHA + ADD_NL:
mask = RI_ALPHA;
goto do_class;
case LOWER:
case LOWER + ADD_NL:
testval = mask = RI_LOWER;
goto do_class;
case NLOWER:
case NLOWER + ADD_NL:
mask = RI_LOWER;
goto do_class;
case UPPER:
case UPPER + ADD_NL:
testval = mask = RI_UPPER;
goto do_class;
case NUPPER:
case NUPPER + ADD_NL:
mask = RI_UPPER;
goto do_class;
case EXACTLY:
{
int cu, cl;
/* This doesn't do a multi-byte character, because a MULTIBYTECODE
* would have been used for it. It does handle single-byte
* characters, such as latin1. */
if (ireg_ic)
{
cu = MB_TOUPPER(*opnd);
cl = MB_TOLOWER(*opnd);
while (count < maxcount && (*scan == cu || *scan == cl))
{
count++;
scan++;
}
}
else
{
cu = *opnd;
while (count < maxcount && *scan == cu)
{
count++;
scan++;
}
}
break;
}
#ifdef FEAT_MBYTE
case MULTIBYTECODE:
{
int i, len, cf = 0;
/* Safety check (just in case 'encoding' was changed since
* compiling the program). */
if ((len = (*mb_ptr2len)(opnd)) > 1)
{
if (ireg_ic && enc_utf8)
cf = utf_fold(utf_ptr2char(opnd));
while (count < maxcount)
{
for (i = 0; i < len; ++i)
if (opnd[i] != scan[i])
break;
if (i < len && (!ireg_ic || !enc_utf8
|| utf_fold(utf_ptr2char(scan)) != cf))
break;
scan += len;
++count;
}
}
}
break;
#endif
case ANYOF:
case ANYOF + ADD_NL:
testval = TRUE;
/*FALLTHROUGH*/
case ANYBUT:
case ANYBUT + ADD_NL:
while (count < maxcount)
{
#ifdef FEAT_MBYTE
int len;
#endif
if (*scan == NUL)
{
if (!REG_MULTI || !WITH_NL(OP(p)) || reglnum > reg_maxline
|| reg_line_lbr)
break;
reg_nextline();
scan = reginput;
if (got_int)
break;
}
else if (reg_line_lbr && *scan == '\n' && WITH_NL(OP(p)))
++scan;
#ifdef FEAT_MBYTE
else if (has_mbyte && (len = (*mb_ptr2len)(scan)) > 1)
{
if ((cstrchr(opnd, (*mb_ptr2char)(scan)) == NULL) == testval)
break;
scan += len;
}
#endif
else
{
if ((cstrchr(opnd, *scan) == NULL) == testval)
break;
++scan;
}
++count;
}
break;
case NEWL:
while (count < maxcount
&& ((*scan == NUL && reglnum <= reg_maxline && !reg_line_lbr
&& REG_MULTI) || (*scan == '\n' && reg_line_lbr)))
{
count++;
if (reg_line_lbr)
ADVANCE_REGINPUT();
else
reg_nextline();
scan = reginput;
if (got_int)
break;
}
break;
default: /* Oh dear. Called inappropriately. */
EMSG(_(e_re_corr));
#ifdef DEBUG
printf("Called regrepeat with op code %d\n", OP(p));
#endif
break;
}
reginput = scan;
return (int)count;
}
/*
* regnext - dig the "next" pointer out of a node
* Returns NULL when calculating size, when there is no next item and when
* there is an error.
*/
static char_u *
regnext(p)
char_u *p;
{
int offset;
if (p == JUST_CALC_SIZE || reg_toolong)
return NULL;
offset = NEXT(p);
if (offset == 0)
return NULL;
if (OP(p) == BACK)
return p - offset;
else
return p + offset;
}
/*
* Check the regexp program for its magic number.
* Return TRUE if it's wrong.
*/
static int
prog_magic_wrong()
{
regprog_T *prog;
prog = REG_MULTI ? reg_mmatch->regprog : reg_match->regprog;
if (prog->engine == &nfa_regengine)
/* For NFA matcher we don't check the magic */
return FALSE;
if (UCHARAT(((bt_regprog_T *)prog)->program) != REGMAGIC)
{
EMSG(_(e_re_corr));
return TRUE;
}
return FALSE;
}
/*
* Cleanup the subexpressions, if this wasn't done yet.
* This construction is used to clear the subexpressions only when they are
* used (to increase speed).
*/
static void
cleanup_subexpr()
{
if (need_clear_subexpr)
{
if (REG_MULTI)
{
/* Use 0xff to set lnum to -1 */
vim_memset(reg_startpos, 0xff, sizeof(lpos_T) * NSUBEXP);
vim_memset(reg_endpos, 0xff, sizeof(lpos_T) * NSUBEXP);
}
else
{
vim_memset(reg_startp, 0, sizeof(char_u *) * NSUBEXP);
vim_memset(reg_endp, 0, sizeof(char_u *) * NSUBEXP);
}
need_clear_subexpr = FALSE;
}
}
#ifdef FEAT_SYN_HL
static void
cleanup_zsubexpr()
{
if (need_clear_zsubexpr)
{
if (REG_MULTI)
{
/* Use 0xff to set lnum to -1 */
vim_memset(reg_startzpos, 0xff, sizeof(lpos_T) * NSUBEXP);
vim_memset(reg_endzpos, 0xff, sizeof(lpos_T) * NSUBEXP);
}
else
{
vim_memset(reg_startzp, 0, sizeof(char_u *) * NSUBEXP);
vim_memset(reg_endzp, 0, sizeof(char_u *) * NSUBEXP);
}
need_clear_zsubexpr = FALSE;
}
}
#endif
/*
* Save the current subexpr to "bp", so that they can be restored
* later by restore_subexpr().
*/
static void
save_subexpr(bp)
regbehind_T *bp;
{
int i;
/* When "need_clear_subexpr" is set we don't need to save the values, only
* remember that this flag needs to be set again when restoring. */
bp->save_need_clear_subexpr = need_clear_subexpr;
if (!need_clear_subexpr)
{
for (i = 0; i < NSUBEXP; ++i)
{
if (REG_MULTI)
{
bp->save_start[i].se_u.pos = reg_startpos[i];
bp->save_end[i].se_u.pos = reg_endpos[i];
}
else
{
bp->save_start[i].se_u.ptr = reg_startp[i];
bp->save_end[i].se_u.ptr = reg_endp[i];
}
}
}
}
/*
* Restore the subexpr from "bp".
*/
static void
restore_subexpr(bp)
regbehind_T *bp;
{
int i;
/* Only need to restore saved values when they are not to be cleared. */
need_clear_subexpr = bp->save_need_clear_subexpr;
if (!need_clear_subexpr)
{
for (i = 0; i < NSUBEXP; ++i)
{
if (REG_MULTI)
{
reg_startpos[i] = bp->save_start[i].se_u.pos;
reg_endpos[i] = bp->save_end[i].se_u.pos;
}
else
{
reg_startp[i] = bp->save_start[i].se_u.ptr;
reg_endp[i] = bp->save_end[i].se_u.ptr;
}
}
}
}
/*
* Advance reglnum, regline and reginput to the next line.
*/
static void
reg_nextline()
{
regline = reg_getline(++reglnum);
reginput = regline;
fast_breakcheck();
}
/*
* Save the input line and position in a regsave_T.
*/
static void
reg_save(save, gap)
regsave_T *save;
garray_T *gap;
{
if (REG_MULTI)
{
save->rs_u.pos.col = (colnr_T)(reginput - regline);
save->rs_u.pos.lnum = reglnum;
}
else
save->rs_u.ptr = reginput;
save->rs_len = gap->ga_len;
}
/*
* Restore the input line and position from a regsave_T.
*/
static void
reg_restore(save, gap)
regsave_T *save;
garray_T *gap;
{
if (REG_MULTI)
{
if (reglnum != save->rs_u.pos.lnum)
{
/* only call reg_getline() when the line number changed to save
* a bit of time */
reglnum = save->rs_u.pos.lnum;
regline = reg_getline(reglnum);
}
reginput = regline + save->rs_u.pos.col;
}
else
reginput = save->rs_u.ptr;
gap->ga_len = save->rs_len;
}
/*
* Return TRUE if current position is equal to saved position.
*/
static int
reg_save_equal(save)
regsave_T *save;
{
if (REG_MULTI)
return reglnum == save->rs_u.pos.lnum
&& reginput == regline + save->rs_u.pos.col;
return reginput == save->rs_u.ptr;
}
/*
* Tentatively set the sub-expression start to the current position (after
* calling regmatch() they will have changed). Need to save the existing
* values for when there is no match.
* Use se_save() to use pointer (save_se_multi()) or position (save_se_one()),
* depending on REG_MULTI.
*/
static void
save_se_multi(savep, posp)
save_se_T *savep;
lpos_T *posp;
{
savep->se_u.pos = *posp;
posp->lnum = reglnum;
posp->col = (colnr_T)(reginput - regline);
}
static void
save_se_one(savep, pp)
save_se_T *savep;
char_u **pp;
{
savep->se_u.ptr = *pp;
*pp = reginput;
}
/*
* Compare a number with the operand of RE_LNUM, RE_COL or RE_VCOL.
*/
static int
re_num_cmp(val, scan)
long_u val;
char_u *scan;
{
long_u n = OPERAND_MIN(scan);
if (OPERAND_CMP(scan) == '>')
return val > n;
if (OPERAND_CMP(scan) == '<')
return val < n;
return val == n;
}
#ifdef BT_REGEXP_DUMP
/*
* regdump - dump a regexp onto stdout in vaguely comprehensible form
*/
static void
regdump(pattern, r)
char_u *pattern;
bt_regprog_T *r;
{
char_u *s;
int op = EXACTLY; /* Arbitrary non-END op. */
char_u *next;
char_u *end = NULL;
FILE *f;
#ifdef BT_REGEXP_LOG
f = fopen("bt_regexp_log.log", "a");
#else
f = stdout;
#endif
if (f == NULL)
return;
fprintf(f, "-------------------------------------\n\r\nregcomp(%s):\r\n", pattern);
s = r->program + 1;
/*
* Loop until we find the END that isn't before a referred next (an END
* can also appear in a NOMATCH operand).
*/
while (op != END || s <= end)
{
op = OP(s);
fprintf(f, "%2d%s", (int)(s - r->program), regprop(s)); /* Where, what. */
next = regnext(s);
if (next == NULL) /* Next ptr. */
fprintf(f, "(0)");
else
fprintf(f, "(%d)", (int)((s - r->program) + (next - s)));
if (end < next)
end = next;
if (op == BRACE_LIMITS)
{
/* Two short ints */
fprintf(f, " minval %ld, maxval %ld", OPERAND_MIN(s), OPERAND_MAX(s));
s += 8;
}
s += 3;
if (op == ANYOF || op == ANYOF + ADD_NL
|| op == ANYBUT || op == ANYBUT + ADD_NL
|| op == EXACTLY)
{
/* Literal string, where present. */
fprintf(f, "\nxxxxxxxxx\n");
while (*s != NUL)
fprintf(f, "%c", *s++);
fprintf(f, "\nxxxxxxxxx\n");
s++;
}
fprintf(f, "\r\n");
}
/* Header fields of interest. */
if (r->regstart != NUL)
fprintf(f, "start `%s' 0x%x; ", r->regstart < 256
? (char *)transchar(r->regstart)
: "multibyte", r->regstart);
if (r->reganch)
fprintf(f, "anchored; ");
if (r->regmust != NULL)
fprintf(f, "must have \"%s\"", r->regmust);
fprintf(f, "\r\n");
#ifdef BT_REGEXP_LOG
fclose(f);
#endif
}
#endif /* BT_REGEXP_DUMP */
#ifdef DEBUG
/*
* regprop - printable representation of opcode
*/
static char_u *
regprop(op)
char_u *op;
{
char *p;
static char buf[50];
STRCPY(buf, ":");
switch ((int) OP(op))
{
case BOL:
p = "BOL";
break;
case EOL:
p = "EOL";
break;
case RE_BOF:
p = "BOF";
break;
case RE_EOF:
p = "EOF";
break;
case CURSOR:
p = "CURSOR";
break;
case RE_VISUAL:
p = "RE_VISUAL";
break;
case RE_LNUM:
p = "RE_LNUM";
break;
case RE_MARK:
p = "RE_MARK";
break;
case RE_COL:
p = "RE_COL";
break;
case RE_VCOL:
p = "RE_VCOL";
break;
case BOW:
p = "BOW";
break;
case EOW:
p = "EOW";
break;
case ANY:
p = "ANY";
break;
case ANY + ADD_NL:
p = "ANY+NL";
break;
case ANYOF:
p = "ANYOF";
break;
case ANYOF + ADD_NL:
p = "ANYOF+NL";
break;
case ANYBUT:
p = "ANYBUT";
break;
case ANYBUT + ADD_NL:
p = "ANYBUT+NL";
break;
case IDENT:
p = "IDENT";
break;
case IDENT + ADD_NL:
p = "IDENT+NL";
break;
case SIDENT:
p = "SIDENT";
break;
case SIDENT + ADD_NL:
p = "SIDENT+NL";
break;
case KWORD:
p = "KWORD";
break;
case KWORD + ADD_NL:
p = "KWORD+NL";
break;
case SKWORD:
p = "SKWORD";
break;
case SKWORD + ADD_NL:
p = "SKWORD+NL";
break;
case FNAME:
p = "FNAME";
break;
case FNAME + ADD_NL:
p = "FNAME+NL";
break;
case SFNAME:
p = "SFNAME";
break;
case SFNAME + ADD_NL:
p = "SFNAME+NL";
break;
case PRINT:
p = "PRINT";
break;
case PRINT + ADD_NL:
p = "PRINT+NL";
break;
case SPRINT:
p = "SPRINT";
break;
case SPRINT + ADD_NL:
p = "SPRINT+NL";
break;
case WHITE:
p = "WHITE";
break;
case WHITE + ADD_NL:
p = "WHITE+NL";
break;
case NWHITE:
p = "NWHITE";
break;
case NWHITE + ADD_NL:
p = "NWHITE+NL";
break;
case DIGIT:
p = "DIGIT";
break;
case DIGIT + ADD_NL:
p = "DIGIT+NL";
break;
case NDIGIT:
p = "NDIGIT";
break;
case NDIGIT + ADD_NL:
p = "NDIGIT+NL";
break;
case HEX:
p = "HEX";
break;
case HEX + ADD_NL:
p = "HEX+NL";
break;
case NHEX:
p = "NHEX";
break;
case NHEX + ADD_NL:
p = "NHEX+NL";
break;
case OCTAL:
p = "OCTAL";
break;
case OCTAL + ADD_NL:
p = "OCTAL+NL";
break;
case NOCTAL:
p = "NOCTAL";
break;
case NOCTAL + ADD_NL:
p = "NOCTAL+NL";
break;
case WORD:
p = "WORD";
break;
case WORD + ADD_NL:
p = "WORD+NL";
break;
case NWORD:
p = "NWORD";
break;
case NWORD + ADD_NL:
p = "NWORD+NL";
break;
case HEAD:
p = "HEAD";
break;
case HEAD + ADD_NL:
p = "HEAD+NL";
break;
case NHEAD:
p = "NHEAD";
break;
case NHEAD + ADD_NL:
p = "NHEAD+NL";
break;
case ALPHA:
p = "ALPHA";
break;
case ALPHA + ADD_NL:
p = "ALPHA+NL";
break;
case NALPHA:
p = "NALPHA";
break;
case NALPHA + ADD_NL:
p = "NALPHA+NL";
break;
case LOWER:
p = "LOWER";
break;
case LOWER + ADD_NL:
p = "LOWER+NL";
break;
case NLOWER:
p = "NLOWER";
break;
case NLOWER + ADD_NL:
p = "NLOWER+NL";
break;
case UPPER:
p = "UPPER";
break;
case UPPER + ADD_NL:
p = "UPPER+NL";
break;
case NUPPER:
p = "NUPPER";
break;
case NUPPER + ADD_NL:
p = "NUPPER+NL";
break;
case BRANCH:
p = "BRANCH";
break;
case EXACTLY:
p = "EXACTLY";
break;
case NOTHING:
p = "NOTHING";
break;
case BACK:
p = "BACK";
break;
case END:
p = "END";
break;
case MOPEN + 0:
p = "MATCH START";
break;
case MOPEN + 1:
case MOPEN + 2:
case MOPEN + 3:
case MOPEN + 4:
case MOPEN + 5:
case MOPEN + 6:
case MOPEN + 7:
case MOPEN + 8:
case MOPEN + 9:
sprintf(buf + STRLEN(buf), "MOPEN%d", OP(op) - MOPEN);
p = NULL;
break;
case MCLOSE + 0:
p = "MATCH END";
break;
case MCLOSE + 1:
case MCLOSE + 2:
case MCLOSE + 3:
case MCLOSE + 4:
case MCLOSE + 5:
case MCLOSE + 6:
case MCLOSE + 7:
case MCLOSE + 8:
case MCLOSE + 9:
sprintf(buf + STRLEN(buf), "MCLOSE%d", OP(op) - MCLOSE);
p = NULL;
break;
case BACKREF + 1:
case BACKREF + 2:
case BACKREF + 3:
case BACKREF + 4:
case BACKREF + 5:
case BACKREF + 6:
case BACKREF + 7:
case BACKREF + 8:
case BACKREF + 9:
sprintf(buf + STRLEN(buf), "BACKREF%d", OP(op) - BACKREF);
p = NULL;
break;
case NOPEN:
p = "NOPEN";
break;
case NCLOSE:
p = "NCLOSE";
break;
#ifdef FEAT_SYN_HL
case ZOPEN + 1:
case ZOPEN + 2:
case ZOPEN + 3:
case ZOPEN + 4:
case ZOPEN + 5:
case ZOPEN + 6:
case ZOPEN + 7:
case ZOPEN + 8:
case ZOPEN + 9:
sprintf(buf + STRLEN(buf), "ZOPEN%d", OP(op) - ZOPEN);
p = NULL;
break;
case ZCLOSE + 1:
case ZCLOSE + 2:
case ZCLOSE + 3:
case ZCLOSE + 4:
case ZCLOSE + 5:
case ZCLOSE + 6:
case ZCLOSE + 7:
case ZCLOSE + 8:
case ZCLOSE + 9:
sprintf(buf + STRLEN(buf), "ZCLOSE%d", OP(op) - ZCLOSE);
p = NULL;
break;
case ZREF + 1:
case ZREF + 2:
case ZREF + 3:
case ZREF + 4:
case ZREF + 5:
case ZREF + 6:
case ZREF + 7:
case ZREF + 8:
case ZREF + 9:
sprintf(buf + STRLEN(buf), "ZREF%d", OP(op) - ZREF);
p = NULL;
break;
#endif
case STAR:
p = "STAR";
break;
case PLUS:
p = "PLUS";
break;
case NOMATCH:
p = "NOMATCH";
break;
case MATCH:
p = "MATCH";
break;
case BEHIND:
p = "BEHIND";
break;
case NOBEHIND:
p = "NOBEHIND";
break;
case SUBPAT:
p = "SUBPAT";
break;
case BRACE_LIMITS:
p = "BRACE_LIMITS";
break;
case BRACE_SIMPLE:
p = "BRACE_SIMPLE";
break;
case BRACE_COMPLEX + 0:
case BRACE_COMPLEX + 1:
case BRACE_COMPLEX + 2:
case BRACE_COMPLEX + 3:
case BRACE_COMPLEX + 4:
case BRACE_COMPLEX + 5:
case BRACE_COMPLEX + 6:
case BRACE_COMPLEX + 7:
case BRACE_COMPLEX + 8:
case BRACE_COMPLEX + 9:
sprintf(buf + STRLEN(buf), "BRACE_COMPLEX%d", OP(op) - BRACE_COMPLEX);
p = NULL;
break;
#ifdef FEAT_MBYTE
case MULTIBYTECODE:
p = "MULTIBYTECODE";
break;
#endif
case NEWL:
p = "NEWL";
break;
default:
sprintf(buf + STRLEN(buf), "corrupt %d", OP(op));
p = NULL;
break;
}
if (p != NULL)
STRCAT(buf, p);
return (char_u *)buf;
}
#endif /* DEBUG */
#ifdef FEAT_MBYTE
static void mb_decompose __ARGS((int c, int *c1, int *c2, int *c3));
typedef struct
{
int a, b, c;
} decomp_T;
/* 0xfb20 - 0xfb4f */
static decomp_T decomp_table[0xfb4f-0xfb20+1] =
{
{0x5e2,0,0}, /* 0xfb20 alt ayin */
{0x5d0,0,0}, /* 0xfb21 alt alef */
{0x5d3,0,0}, /* 0xfb22 alt dalet */
{0x5d4,0,0}, /* 0xfb23 alt he */
{0x5db,0,0}, /* 0xfb24 alt kaf */
{0x5dc,0,0}, /* 0xfb25 alt lamed */
{0x5dd,0,0}, /* 0xfb26 alt mem-sofit */
{0x5e8,0,0}, /* 0xfb27 alt resh */
{0x5ea,0,0}, /* 0xfb28 alt tav */
{'+', 0, 0}, /* 0xfb29 alt plus */
{0x5e9, 0x5c1, 0}, /* 0xfb2a shin+shin-dot */
{0x5e9, 0x5c2, 0}, /* 0xfb2b shin+sin-dot */
{0x5e9, 0x5c1, 0x5bc}, /* 0xfb2c shin+shin-dot+dagesh */
{0x5e9, 0x5c2, 0x5bc}, /* 0xfb2d shin+sin-dot+dagesh */
{0x5d0, 0x5b7, 0}, /* 0xfb2e alef+patah */
{0x5d0, 0x5b8, 0}, /* 0xfb2f alef+qamats */
{0x5d0, 0x5b4, 0}, /* 0xfb30 alef+hiriq */
{0x5d1, 0x5bc, 0}, /* 0xfb31 bet+dagesh */
{0x5d2, 0x5bc, 0}, /* 0xfb32 gimel+dagesh */
{0x5d3, 0x5bc, 0}, /* 0xfb33 dalet+dagesh */
{0x5d4, 0x5bc, 0}, /* 0xfb34 he+dagesh */
{0x5d5, 0x5bc, 0}, /* 0xfb35 vav+dagesh */
{0x5d6, 0x5bc, 0}, /* 0xfb36 zayin+dagesh */
{0xfb37, 0, 0}, /* 0xfb37 -- UNUSED */
{0x5d8, 0x5bc, 0}, /* 0xfb38 tet+dagesh */
{0x5d9, 0x5bc, 0}, /* 0xfb39 yud+dagesh */
{0x5da, 0x5bc, 0}, /* 0xfb3a kaf sofit+dagesh */
{0x5db, 0x5bc, 0}, /* 0xfb3b kaf+dagesh */
{0x5dc, 0x5bc, 0}, /* 0xfb3c lamed+dagesh */
{0xfb3d, 0, 0}, /* 0xfb3d -- UNUSED */
{0x5de, 0x5bc, 0}, /* 0xfb3e mem+dagesh */
{0xfb3f, 0, 0}, /* 0xfb3f -- UNUSED */
{0x5e0, 0x5bc, 0}, /* 0xfb40 nun+dagesh */
{0x5e1, 0x5bc, 0}, /* 0xfb41 samech+dagesh */
{0xfb42, 0, 0}, /* 0xfb42 -- UNUSED */
{0x5e3, 0x5bc, 0}, /* 0xfb43 pe sofit+dagesh */
{0x5e4, 0x5bc,0}, /* 0xfb44 pe+dagesh */
{0xfb45, 0, 0}, /* 0xfb45 -- UNUSED */
{0x5e6, 0x5bc, 0}, /* 0xfb46 tsadi+dagesh */
{0x5e7, 0x5bc, 0}, /* 0xfb47 qof+dagesh */
{0x5e8, 0x5bc, 0}, /* 0xfb48 resh+dagesh */
{0x5e9, 0x5bc, 0}, /* 0xfb49 shin+dagesh */
{0x5ea, 0x5bc, 0}, /* 0xfb4a tav+dagesh */
{0x5d5, 0x5b9, 0}, /* 0xfb4b vav+holam */
{0x5d1, 0x5bf, 0}, /* 0xfb4c bet+rafe */
{0x5db, 0x5bf, 0}, /* 0xfb4d kaf+rafe */
{0x5e4, 0x5bf, 0}, /* 0xfb4e pe+rafe */
{0x5d0, 0x5dc, 0} /* 0xfb4f alef-lamed */
};
static void
mb_decompose(c, c1, c2, c3)
int c, *c1, *c2, *c3;
{
decomp_T d;
if (c >= 0xfb20 && c <= 0xfb4f)
{
d = decomp_table[c - 0xfb20];
*c1 = d.a;
*c2 = d.b;
*c3 = d.c;
}
else
{
*c1 = c;
*c2 = *c3 = 0;
}
}
#endif
/*
* Compare two strings, ignore case if ireg_ic set.
* Return 0 if strings match, non-zero otherwise.
* Correct the length "*n" when composing characters are ignored.
*/
static int
cstrncmp(s1, s2, n)
char_u *s1, *s2;
int *n;
{
int result;
if (!ireg_ic)
result = STRNCMP(s1, s2, *n);
else
result = MB_STRNICMP(s1, s2, *n);
#ifdef FEAT_MBYTE
/* if it failed and it's utf8 and we want to combineignore: */
if (result != 0 && enc_utf8 && ireg_icombine)
{
char_u *str1, *str2;
int c1, c2, c11, c12;
int junk;
/* we have to handle the strcmp ourselves, since it is necessary to
* deal with the composing characters by ignoring them: */
str1 = s1;
str2 = s2;
c1 = c2 = 0;
while ((int)(str1 - s1) < *n)
{
c1 = mb_ptr2char_adv(&str1);
c2 = mb_ptr2char_adv(&str2);
/* decompose the character if necessary, into 'base' characters
* because I don't care about Arabic, I will hard-code the Hebrew
* which I *do* care about! So sue me... */
if (c1 != c2 && (!ireg_ic || utf_fold(c1) != utf_fold(c2)))
{
/* decomposition necessary? */
mb_decompose(c1, &c11, &junk, &junk);
mb_decompose(c2, &c12, &junk, &junk);
c1 = c11;
c2 = c12;
if (c11 != c12 && (!ireg_ic || utf_fold(c11) != utf_fold(c12)))
break;
}
}
result = c2 - c1;
if (result == 0)
*n = (int)(str2 - s2);
}
#endif
return result;
}
/*
* cstrchr: This function is used a lot for simple searches, keep it fast!
*/
static char_u *
cstrchr(s, c)
char_u *s;
int c;
{
char_u *p;
int cc;
if (!ireg_ic
#ifdef FEAT_MBYTE
|| (!enc_utf8 && mb_char2len(c) > 1)
#endif
)
return vim_strchr(s, c);
/* tolower() and toupper() can be slow, comparing twice should be a lot
* faster (esp. when using MS Visual C++!).
* For UTF-8 need to use folded case. */
#ifdef FEAT_MBYTE
if (enc_utf8 && c > 0x80)
cc = utf_fold(c);
else
#endif
if (MB_ISUPPER(c))
cc = MB_TOLOWER(c);
else if (MB_ISLOWER(c))
cc = MB_TOUPPER(c);
else
return vim_strchr(s, c);
#ifdef FEAT_MBYTE
if (has_mbyte)
{
for (p = s; *p != NUL; p += (*mb_ptr2len)(p))
{
if (enc_utf8 && c > 0x80)
{
if (utf_fold(utf_ptr2char(p)) == cc)
return p;
}
else if (*p == c || *p == cc)
return p;
}
}
else
#endif
/* Faster version for when there are no multi-byte characters. */
for (p = s; *p != NUL; ++p)
if (*p == c || *p == cc)
return p;
return NULL;
}
/***************************************************************
* regsub stuff *
***************************************************************/
/* This stuff below really confuses cc on an SGI -- webb */
#ifdef __sgi
# undef __ARGS
# define __ARGS(x) ()
#endif
/*
* We should define ftpr as a pointer to a function returning a pointer to
* a function returning a pointer to a function ...
* This is impossible, so we declare a pointer to a function returning a
* pointer to a function returning void. This should work for all compilers.
*/
typedef void (*(*fptr_T) __ARGS((int *, int)))();
static fptr_T do_upper __ARGS((int *, int));
static fptr_T do_Upper __ARGS((int *, int));
static fptr_T do_lower __ARGS((int *, int));
static fptr_T do_Lower __ARGS((int *, int));
static int vim_regsub_both __ARGS((char_u *source, char_u *dest, int copy, int magic, int backslash));
static fptr_T
do_upper(d, c)
int *d;
int c;
{
*d = MB_TOUPPER(c);
return (fptr_T)NULL;
}
static fptr_T
do_Upper(d, c)
int *d;
int c;
{
*d = MB_TOUPPER(c);
return (fptr_T)do_Upper;
}
static fptr_T
do_lower(d, c)
int *d;
int c;
{
*d = MB_TOLOWER(c);
return (fptr_T)NULL;
}
static fptr_T
do_Lower(d, c)
int *d;
int c;
{
*d = MB_TOLOWER(c);
return (fptr_T)do_Lower;
}
/*
* regtilde(): Replace tildes in the pattern by the old pattern.
*
* Short explanation of the tilde: It stands for the previous replacement
* pattern. If that previous pattern also contains a ~ we should go back a
* step further... But we insert the previous pattern into the current one
* and remember that.
* This still does not handle the case where "magic" changes. So require the
* user to keep his hands off of "magic".
*
* The tildes are parsed once before the first call to vim_regsub().
*/
char_u *
regtilde(source, magic)
char_u *source;
int magic;
{
char_u *newsub = source;
char_u *tmpsub;
char_u *p;
int len;
int prevlen;
for (p = newsub; *p; ++p)
{
if ((*p == '~' && magic) || (*p == '\\' && *(p + 1) == '~' && !magic))
{
if (reg_prev_sub != NULL)
{
/* length = len(newsub) - 1 + len(prev_sub) + 1 */
prevlen = (int)STRLEN(reg_prev_sub);
tmpsub = alloc((unsigned)(STRLEN(newsub) + prevlen));
if (tmpsub != NULL)
{
/* copy prefix */
len = (int)(p - newsub); /* not including ~ */
mch_memmove(tmpsub, newsub, (size_t)len);
/* interpret tilde */
mch_memmove(tmpsub + len, reg_prev_sub, (size_t)prevlen);
/* copy postfix */
if (!magic)
++p; /* back off \ */
STRCPY(tmpsub + len + prevlen, p + 1);
if (newsub != source) /* already allocated newsub */
vim_free(newsub);
newsub = tmpsub;
p = newsub + len + prevlen;
}
}
else if (magic)
STRMOVE(p, p + 1); /* remove '~' */
else
STRMOVE(p, p + 2); /* remove '\~' */
--p;
}
else
{
if (*p == '\\' && p[1]) /* skip escaped characters */
++p;
#ifdef FEAT_MBYTE
if (has_mbyte)
p += (*mb_ptr2len)(p) - 1;
#endif
}
}
vim_free(reg_prev_sub);
if (newsub != source) /* newsub was allocated, just keep it */
reg_prev_sub = newsub;
else /* no ~ found, need to save newsub */
reg_prev_sub = vim_strsave(newsub);
return newsub;
}
#ifdef FEAT_EVAL
static int can_f_submatch = FALSE; /* TRUE when submatch() can be used */
/* These pointers are used instead of reg_match and reg_mmatch for
* reg_submatch(). Needed for when the substitution string is an expression
* that contains a call to substitute() and submatch(). */
static regmatch_T *submatch_match;
static regmmatch_T *submatch_mmatch;
static linenr_T submatch_firstlnum;
static linenr_T submatch_maxline;
static int submatch_line_lbr;
#endif
#if defined(FEAT_MODIFY_FNAME) || defined(FEAT_EVAL) || defined(PROTO)
/*
* vim_regsub() - perform substitutions after a vim_regexec() or
* vim_regexec_multi() match.
*
* If "copy" is TRUE really copy into "dest".
* If "copy" is FALSE nothing is copied, this is just to find out the length
* of the result.
*
* If "backslash" is TRUE, a backslash will be removed later, need to double
* them to keep them, and insert a backslash before a CR to avoid it being
* replaced with a line break later.
*
* Note: The matched text must not change between the call of
* vim_regexec()/vim_regexec_multi() and vim_regsub()! It would make the back
* references invalid!
*
* Returns the size of the replacement, including terminating NUL.
*/
int
vim_regsub(rmp, source, dest, copy, magic, backslash)
regmatch_T *rmp;
char_u *source;
char_u *dest;
int copy;
int magic;
int backslash;
{
reg_match = rmp;
reg_mmatch = NULL;
reg_maxline = 0;
reg_buf = curbuf;
return vim_regsub_both(source, dest, copy, magic, backslash);
}
#endif
int
vim_regsub_multi(rmp, lnum, source, dest, copy, magic, backslash)
regmmatch_T *rmp;
linenr_T lnum;
char_u *source;
char_u *dest;
int copy;
int magic;
int backslash;
{
reg_match = NULL;
reg_mmatch = rmp;
reg_buf = curbuf; /* always works on the current buffer! */
reg_firstlnum = lnum;
reg_maxline = curbuf->b_ml.ml_line_count - lnum;
return vim_regsub_both(source, dest, copy, magic, backslash);
}
static int
vim_regsub_both(source, dest, copy, magic, backslash)
char_u *source;
char_u *dest;
int copy;
int magic;
int backslash;
{
char_u *src;
char_u *dst;
char_u *s;
int c;
int cc;
int no = -1;
fptr_T func_all = (fptr_T)NULL;
fptr_T func_one = (fptr_T)NULL;
linenr_T clnum = 0; /* init for GCC */
int len = 0; /* init for GCC */
#ifdef FEAT_EVAL
static char_u *eval_result = NULL;
#endif
/* Be paranoid... */
if (source == NULL || dest == NULL)
{
EMSG(_(e_null));
return 0;
}
if (prog_magic_wrong())
return 0;
src = source;
dst = dest;
/*
* When the substitute part starts with "\=" evaluate it as an expression.
*/
if (source[0] == '\\' && source[1] == '='
#ifdef FEAT_EVAL
&& !can_f_submatch /* can't do this recursively */
#endif
)
{
#ifdef FEAT_EVAL
/* To make sure that the length doesn't change between checking the
* length and copying the string, and to speed up things, the
* resulting string is saved from the call with "copy" == FALSE to the
* call with "copy" == TRUE. */
if (copy)
{
if (eval_result != NULL)
{
STRCPY(dest, eval_result);
dst += STRLEN(eval_result);
vim_free(eval_result);
eval_result = NULL;
}
}
else
{
win_T *save_reg_win;
int save_ireg_ic;
vim_free(eval_result);
/* The expression may contain substitute(), which calls us
* recursively. Make sure submatch() gets the text from the first
* level. Don't need to save "reg_buf", because
* vim_regexec_multi() can't be called recursively. */
submatch_match = reg_match;
submatch_mmatch = reg_mmatch;
submatch_firstlnum = reg_firstlnum;
submatch_maxline = reg_maxline;
submatch_line_lbr = reg_line_lbr;
save_reg_win = reg_win;
save_ireg_ic = ireg_ic;
can_f_submatch = TRUE;
eval_result = eval_to_string(source + 2, NULL, TRUE);
if (eval_result != NULL)
{
int had_backslash = FALSE;
for (s = eval_result; *s != NUL; mb_ptr_adv(s))
{
/* Change NL to CR, so that it becomes a line break,
* unless called from vim_regexec_nl().
* Skip over a backslashed character. */
if (*s == NL && !submatch_line_lbr)
*s = CAR;
else if (*s == '\\' && s[1] != NUL)
{
++s;
/* Change NL to CR here too, so that this works:
* :s/abc\\\ndef/\="aaa\\\nbbb"/ on text:
* abc\
* def
* Not when called from vim_regexec_nl().
*/
if (*s == NL && !submatch_line_lbr)
*s = CAR;
had_backslash = TRUE;
}
}
if (had_backslash && backslash)
{
/* Backslashes will be consumed, need to double them. */
s = vim_strsave_escaped(eval_result, (char_u *)"\\");
if (s != NULL)
{
vim_free(eval_result);
eval_result = s;
}
}
dst += STRLEN(eval_result);
}
reg_match = submatch_match;
reg_mmatch = submatch_mmatch;
reg_firstlnum = submatch_firstlnum;
reg_maxline = submatch_maxline;
reg_line_lbr = submatch_line_lbr;
reg_win = save_reg_win;
ireg_ic = save_ireg_ic;
can_f_submatch = FALSE;
}
#endif
}
else
while ((c = *src++) != NUL)
{
if (c == '&' && magic)
no = 0;
else if (c == '\\' && *src != NUL)
{
if (*src == '&' && !magic)
{
++src;
no = 0;
}
else if ('0' <= *src && *src <= '9')
{
no = *src++ - '0';
}
else if (vim_strchr((char_u *)"uUlLeE", *src))
{
switch (*src++)
{
case 'u': func_one = (fptr_T)do_upper;
continue;
case 'U': func_all = (fptr_T)do_Upper;
continue;
case 'l': func_one = (fptr_T)do_lower;
continue;
case 'L': func_all = (fptr_T)do_Lower;
continue;
case 'e':
case 'E': func_one = func_all = (fptr_T)NULL;
continue;
}
}
}
if (no < 0) /* Ordinary character. */
{
if (c == K_SPECIAL && src[0] != NUL && src[1] != NUL)
{
/* Copy a special key as-is. */
if (copy)
{
*dst++ = c;
*dst++ = *src++;
*dst++ = *src++;
}
else
{
dst += 3;
src += 2;
}
continue;
}
if (c == '\\' && *src != NUL)
{
/* Check for abbreviations -- webb */
switch (*src)
{
case 'r': c = CAR; ++src; break;
case 'n': c = NL; ++src; break;
case 't': c = TAB; ++src; break;
/* Oh no! \e already has meaning in subst pat :-( */
/* case 'e': c = ESC; ++src; break; */
case 'b': c = Ctrl_H; ++src; break;
/* If "backslash" is TRUE the backslash will be removed
* later. Used to insert a literal CR. */
default: if (backslash)
{
if (copy)
*dst = '\\';
++dst;
}
c = *src++;
}
}
#ifdef FEAT_MBYTE
else if (has_mbyte)
c = mb_ptr2char(src - 1);
#endif
/* Write to buffer, if copy is set. */
if (func_one != (fptr_T)NULL)
/* Turbo C complains without the typecast */
func_one = (fptr_T)(func_one(&cc, c));
else if (func_all != (fptr_T)NULL)
/* Turbo C complains without the typecast */
func_all = (fptr_T)(func_all(&cc, c));
else /* just copy */
cc = c;
#ifdef FEAT_MBYTE
if (has_mbyte)
{
int totlen = mb_ptr2len(src - 1);
if (copy)
mb_char2bytes(cc, dst);
dst += mb_char2len(cc) - 1;
if (enc_utf8)
{
int clen = utf_ptr2len(src - 1);
/* If the character length is shorter than "totlen", there
* are composing characters; copy them as-is. */
if (clen < totlen)
{
if (copy)
mch_memmove(dst + 1, src - 1 + clen,
(size_t)(totlen - clen));
dst += totlen - clen;
}
}
src += totlen - 1;
}
else
#endif
if (copy)
*dst = cc;
dst++;
}
else
{
if (REG_MULTI)
{
clnum = reg_mmatch->startpos[no].lnum;
if (clnum < 0 || reg_mmatch->endpos[no].lnum < 0)
s = NULL;
else
{
s = reg_getline(clnum) + reg_mmatch->startpos[no].col;
if (reg_mmatch->endpos[no].lnum == clnum)
len = reg_mmatch->endpos[no].col
- reg_mmatch->startpos[no].col;
else
len = (int)STRLEN(s);
}
}
else
{
s = reg_match->startp[no];
if (reg_match->endp[no] == NULL)
s = NULL;
else
len = (int)(reg_match->endp[no] - s);
}
if (s != NULL)
{
for (;;)
{
if (len == 0)
{
if (REG_MULTI)
{
if (reg_mmatch->endpos[no].lnum == clnum)
break;
if (copy)
*dst = CAR;
++dst;
s = reg_getline(++clnum);
if (reg_mmatch->endpos[no].lnum == clnum)
len = reg_mmatch->endpos[no].col;
else
len = (int)STRLEN(s);
}
else
break;
}
else if (*s == NUL) /* we hit NUL. */
{
if (copy)
EMSG(_(e_re_damg));
goto exit;
}
else
{
if (backslash && (*s == CAR || *s == '\\'))
{
/*
* Insert a backslash in front of a CR, otherwise
* it will be replaced by a line break.
* Number of backslashes will be halved later,
* double them here.
*/
if (copy)
{
dst[0] = '\\';
dst[1] = *s;
}
dst += 2;
}
else
{
#ifdef FEAT_MBYTE
if (has_mbyte)
c = mb_ptr2char(s);
else
#endif
c = *s;
if (func_one != (fptr_T)NULL)
/* Turbo C complains without the typecast */
func_one = (fptr_T)(func_one(&cc, c));
else if (func_all != (fptr_T)NULL)
/* Turbo C complains without the typecast */
func_all = (fptr_T)(func_all(&cc, c));
else /* just copy */
cc = c;
#ifdef FEAT_MBYTE
if (has_mbyte)
{
int l;
/* Copy composing characters separately, one
* at a time. */
if (enc_utf8)
l = utf_ptr2len(s) - 1;
else
l = mb_ptr2len(s) - 1;
s += l;
len -= l;
if (copy)
mb_char2bytes(cc, dst);
dst += mb_char2len(cc) - 1;
}
else
#endif
if (copy)
*dst = cc;
dst++;
}
++s;
--len;
}
}
}
no = -1;
}
}
if (copy)
*dst = NUL;
exit:
return (int)((dst - dest) + 1);
}
#ifdef FEAT_EVAL
static char_u *reg_getline_submatch __ARGS((linenr_T lnum));
/*
* Call reg_getline() with the line numbers from the submatch. If a
* substitute() was used the reg_maxline and other values have been
* overwritten.
*/
static char_u *
reg_getline_submatch(lnum)
linenr_T lnum;
{
char_u *s;
linenr_T save_first = reg_firstlnum;
linenr_T save_max = reg_maxline;
reg_firstlnum = submatch_firstlnum;
reg_maxline = submatch_maxline;
s = reg_getline(lnum);
reg_firstlnum = save_first;
reg_maxline = save_max;
return s;
}
/*
* Used for the submatch() function: get the string from the n'th submatch in
* allocated memory.
* Returns NULL when not in a ":s" command and for a non-existing submatch.
*/
char_u *
reg_submatch(no)
int no;
{
char_u *retval = NULL;
char_u *s;
int len;
int round;
linenr_T lnum;
if (!can_f_submatch || no < 0)
return NULL;
if (submatch_match == NULL)
{
/*
* First round: compute the length and allocate memory.
* Second round: copy the text.
*/
for (round = 1; round <= 2; ++round)
{
lnum = submatch_mmatch->startpos[no].lnum;
if (lnum < 0 || submatch_mmatch->endpos[no].lnum < 0)
return NULL;
s = reg_getline_submatch(lnum) + submatch_mmatch->startpos[no].col;
if (s == NULL) /* anti-crash check, cannot happen? */
break;
if (submatch_mmatch->endpos[no].lnum == lnum)
{
/* Within one line: take form start to end col. */
len = submatch_mmatch->endpos[no].col
- submatch_mmatch->startpos[no].col;
if (round == 2)
vim_strncpy(retval, s, len);
++len;
}
else
{
/* Multiple lines: take start line from start col, middle
* lines completely and end line up to end col. */
len = (int)STRLEN(s);
if (round == 2)
{
STRCPY(retval, s);
retval[len] = '\n';
}
++len;
++lnum;
while (lnum < submatch_mmatch->endpos[no].lnum)
{
s = reg_getline_submatch(lnum++);
if (round == 2)
STRCPY(retval + len, s);
len += (int)STRLEN(s);
if (round == 2)
retval[len] = '\n';
++len;
}
if (round == 2)
STRNCPY(retval + len, reg_getline_submatch(lnum),
submatch_mmatch->endpos[no].col);
len += submatch_mmatch->endpos[no].col;
if (round == 2)
retval[len] = NUL;
++len;
}
if (retval == NULL)
{
retval = lalloc((long_u)len, TRUE);
if (retval == NULL)
return NULL;
}
}
}
else
{
s = submatch_match->startp[no];
if (s == NULL || submatch_match->endp[no] == NULL)
retval = NULL;
else
retval = vim_strnsave(s, (int)(submatch_match->endp[no] - s));
}
return retval;
}
#endif
static regengine_T bt_regengine =
{
bt_regcomp,
bt_regexec,
#if defined(FEAT_MODIFY_FNAME) || defined(FEAT_EVAL) \
|| defined(FIND_REPLACE_DIALOG) || defined(PROTO)
bt_regexec_nl,
#endif
bt_regexec_multi
#ifdef DEBUG
,(char_u *)""
#endif
};
#include "regexp_nfa.c"
static regengine_T nfa_regengine =
{
nfa_regcomp,
nfa_regexec,
#if defined(FEAT_MODIFY_FNAME) || defined(FEAT_EVAL) \
|| defined(FIND_REPLACE_DIALOG) || defined(PROTO)
nfa_regexec_nl,
#endif
nfa_regexec_multi
#ifdef DEBUG
,(char_u *)""
#endif
};
/* Which regexp engine to use? Needed for vim_regcomp().
* Must match with 'regexpengine'. */
static int regexp_engine = 0;
#define AUTOMATIC_ENGINE 0
#define BACKTRACKING_ENGINE 1
#define NFA_ENGINE 2
#ifdef DEBUG
static char_u regname[][30] = {
"AUTOMATIC Regexp Engine",
"BACKTRACKING Regexp Engine",
"NFA Regexp Engine"
};
#endif
/*
* Compile a regular expression into internal code.
* Returns the program in allocated memory. Returns NULL for an error.
*/
regprog_T *
vim_regcomp(expr_arg, re_flags)
char_u *expr_arg;
int re_flags;
{
regprog_T *prog = NULL;
char_u *expr = expr_arg;
syntax_error = FALSE;
regexp_engine = p_re;
/* Check for prefix "\%#=", that sets the regexp engine */
if (STRNCMP(expr, "\\%#=", 4) == 0)
{
int newengine = expr[4] - '0';
if (newengine == AUTOMATIC_ENGINE
|| newengine == BACKTRACKING_ENGINE
|| newengine == NFA_ENGINE)
{
regexp_engine = expr[4] - '0';
expr += 5;
#ifdef DEBUG
EMSG3("New regexp mode selected (%d): %s", regexp_engine,
regname[newengine]);
#endif
}
else
{
EMSG(_("E864: \\%#= can only be followed by 0, 1, or 2. The automatic engine will be used "));
regexp_engine = AUTOMATIC_ENGINE;
}
}
#ifdef DEBUG
bt_regengine.expr = expr;
nfa_regengine.expr = expr;
#endif
/*
* First try the NFA engine, unless backtracking was requested.
*/
if (regexp_engine != BACKTRACKING_ENGINE)
prog = nfa_regengine.regcomp(expr, re_flags);
else
prog = bt_regengine.regcomp(expr, re_flags);
if (prog == NULL) /* error compiling regexp with initial engine */
{
#ifdef BT_REGEXP_DEBUG_LOG
if (regexp_engine != BACKTRACKING_ENGINE) /* debugging log for NFA */
{
FILE *f;
f = fopen(BT_REGEXP_DEBUG_LOG_NAME, "a");
if (f)
{
if (!syntax_error)
fprintf(f, "NFA engine could not handle \"%s\"\n", expr);
else
fprintf(f, "Syntax error in \"%s\"\n", expr);
fclose(f);
}
else
EMSG2("(NFA) Could not open \"%s\" to write !!!",
BT_REGEXP_DEBUG_LOG_NAME);
/*
if (syntax_error)
EMSG("NFA Regexp: Syntax Error !");
*/
}
#endif
/*
* If NFA engine failed, then revert to the backtracking engine.
* Except when there was a syntax error, which was properly handled by
* NFA engine.
*/
if (regexp_engine == AUTOMATIC_ENGINE)
if (!syntax_error)
prog = bt_regengine.regcomp(expr, re_flags);
} /* endif prog==NULL */
return prog;
}
/*
* Match a regexp against a string.
* "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
* Uses curbuf for line count and 'iskeyword'.
*
* Return TRUE if there is a match, FALSE if not.
*/
int
vim_regexec(rmp, line, col)
regmatch_T *rmp;
char_u *line; /* string to match against */
colnr_T col; /* column to start looking for match */
{
return rmp->regprog->engine->regexec(rmp, line, col);
}
#if defined(FEAT_MODIFY_FNAME) || defined(FEAT_EVAL) \
|| defined(FIND_REPLACE_DIALOG) || defined(PROTO)
/*
* Like vim_regexec(), but consider a "\n" in "line" to be a line break.
*/
int
vim_regexec_nl(rmp, line, col)
regmatch_T *rmp;
char_u *line;
colnr_T col;
{
return rmp->regprog->engine->regexec_nl(rmp, line, col);
}
#endif
/*
* Match a regexp against multiple lines.
* "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
* Uses curbuf for line count and 'iskeyword'.
*
* Return zero if there is no match. Return number of lines contained in the
* match otherwise.
*/
long
vim_regexec_multi(rmp, win, buf, lnum, col, tm)
regmmatch_T *rmp;
win_T *win; /* window in which to search or NULL */
buf_T *buf; /* buffer in which to search */
linenr_T lnum; /* nr of line to start looking for match */
colnr_T col; /* column to start looking for match */
proftime_T *tm; /* timeout limit or NULL */
{
return rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col, tm);
}