| /* vi:set ts=8 sts=4 sw=4: |
| * |
| * VIM - Vi IMproved by Bram Moolenaar |
| * |
| * Do ":help uganda" in Vim to read copying and usage conditions. |
| * Do ":help credits" in Vim to see a list of people who contributed. |
| * See README.txt for an overview of the Vim source code. |
| * |
| * FIPS-180-2 compliant SHA-256 implementation |
| * GPL by Christophe Devine, applies to older version. |
| * Modified for md5deep, in public domain. |
| * Modified For Vim, Mohsin Ahmed, http://www.cs.albany.edu/~mosh |
| * Mohsin Ahmed states this work is distributed under the VIM License or GPL, |
| * at your choice. |
| * |
| * Vim specific notes: |
| * Functions exported by this file: |
| * 1. sha256_key() hashes the password to 64 bytes char string. |
| * 2. sha2_seed() generates a random header. |
| * sha256_self_test() is implicitly called once. |
| */ |
| |
| #include "vim.h" |
| |
| #if defined(FEAT_CRYPT) || defined(FEAT_PERSISTENT_UNDO) |
| |
| static void sha256_process(context_sha256_T *ctx, char_u data[64]); |
| |
| #define GET_UINT32(n, b, i) \ |
| { \ |
| (n) = ( (UINT32_T)(b)[(i) ] << 24) \ |
| | ( (UINT32_T)(b)[(i) + 1] << 16) \ |
| | ( (UINT32_T)(b)[(i) + 2] << 8) \ |
| | ( (UINT32_T)(b)[(i) + 3] ); \ |
| } |
| |
| #define PUT_UINT32(n,b,i) \ |
| { \ |
| (b)[(i) ] = (char_u)((n) >> 24); \ |
| (b)[(i) + 1] = (char_u)((n) >> 16); \ |
| (b)[(i) + 2] = (char_u)((n) >> 8); \ |
| (b)[(i) + 3] = (char_u)((n) ); \ |
| } |
| |
| void |
| sha256_start(context_sha256_T *ctx) |
| { |
| ctx->total[0] = 0; |
| ctx->total[1] = 0; |
| |
| ctx->state[0] = 0x6A09E667; |
| ctx->state[1] = 0xBB67AE85; |
| ctx->state[2] = 0x3C6EF372; |
| ctx->state[3] = 0xA54FF53A; |
| ctx->state[4] = 0x510E527F; |
| ctx->state[5] = 0x9B05688C; |
| ctx->state[6] = 0x1F83D9AB; |
| ctx->state[7] = 0x5BE0CD19; |
| } |
| |
| static void |
| sha256_process(context_sha256_T *ctx, char_u data[64]) |
| { |
| UINT32_T temp1, temp2, W[64]; |
| UINT32_T A, B, C, D, E, F, G, H; |
| |
| GET_UINT32(W[0], data, 0); |
| GET_UINT32(W[1], data, 4); |
| GET_UINT32(W[2], data, 8); |
| GET_UINT32(W[3], data, 12); |
| GET_UINT32(W[4], data, 16); |
| GET_UINT32(W[5], data, 20); |
| GET_UINT32(W[6], data, 24); |
| GET_UINT32(W[7], data, 28); |
| GET_UINT32(W[8], data, 32); |
| GET_UINT32(W[9], data, 36); |
| GET_UINT32(W[10], data, 40); |
| GET_UINT32(W[11], data, 44); |
| GET_UINT32(W[12], data, 48); |
| GET_UINT32(W[13], data, 52); |
| GET_UINT32(W[14], data, 56); |
| GET_UINT32(W[15], data, 60); |
| |
| #define SHR(x, n) ((x & 0xFFFFFFFF) >> n) |
| #define ROTR(x, n) (SHR(x, n) | (x << (32 - n))) |
| |
| #define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) |
| #define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) |
| |
| #define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) |
| #define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) |
| |
| #define F0(x, y, z) ((x & y) | (z & (x | y))) |
| #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| |
| #define R(t) \ |
| ( \ |
| W[t] = S1(W[t - 2]) + W[t - 7] + \ |
| S0(W[t - 15]) + W[t - 16] \ |
| ) |
| |
| #define P(a,b,c,d,e,f,g,h,x,K) \ |
| { \ |
| temp1 = h + S3(e) + F1(e, f, g) + K + x; \ |
| temp2 = S2(a) + F0(a, b, c); \ |
| d += temp1; h = temp1 + temp2; \ |
| } |
| |
| A = ctx->state[0]; |
| B = ctx->state[1]; |
| C = ctx->state[2]; |
| D = ctx->state[3]; |
| E = ctx->state[4]; |
| F = ctx->state[5]; |
| G = ctx->state[6]; |
| H = ctx->state[7]; |
| |
| P( A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98); |
| P( H, A, B, C, D, E, F, G, W[ 1], 0x71374491); |
| P( G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF); |
| P( F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5); |
| P( E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B); |
| P( D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1); |
| P( C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4); |
| P( B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5); |
| P( A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98); |
| P( H, A, B, C, D, E, F, G, W[ 9], 0x12835B01); |
| P( G, H, A, B, C, D, E, F, W[10], 0x243185BE); |
| P( F, G, H, A, B, C, D, E, W[11], 0x550C7DC3); |
| P( E, F, G, H, A, B, C, D, W[12], 0x72BE5D74); |
| P( D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE); |
| P( C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7); |
| P( B, C, D, E, F, G, H, A, W[15], 0xC19BF174); |
| P( A, B, C, D, E, F, G, H, R(16), 0xE49B69C1); |
| P( H, A, B, C, D, E, F, G, R(17), 0xEFBE4786); |
| P( G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6); |
| P( F, G, H, A, B, C, D, E, R(19), 0x240CA1CC); |
| P( E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F); |
| P( D, E, F, G, H, A, B, C, R(21), 0x4A7484AA); |
| P( C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC); |
| P( B, C, D, E, F, G, H, A, R(23), 0x76F988DA); |
| P( A, B, C, D, E, F, G, H, R(24), 0x983E5152); |
| P( H, A, B, C, D, E, F, G, R(25), 0xA831C66D); |
| P( G, H, A, B, C, D, E, F, R(26), 0xB00327C8); |
| P( F, G, H, A, B, C, D, E, R(27), 0xBF597FC7); |
| P( E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3); |
| P( D, E, F, G, H, A, B, C, R(29), 0xD5A79147); |
| P( C, D, E, F, G, H, A, B, R(30), 0x06CA6351); |
| P( B, C, D, E, F, G, H, A, R(31), 0x14292967); |
| P( A, B, C, D, E, F, G, H, R(32), 0x27B70A85); |
| P( H, A, B, C, D, E, F, G, R(33), 0x2E1B2138); |
| P( G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC); |
| P( F, G, H, A, B, C, D, E, R(35), 0x53380D13); |
| P( E, F, G, H, A, B, C, D, R(36), 0x650A7354); |
| P( D, E, F, G, H, A, B, C, R(37), 0x766A0ABB); |
| P( C, D, E, F, G, H, A, B, R(38), 0x81C2C92E); |
| P( B, C, D, E, F, G, H, A, R(39), 0x92722C85); |
| P( A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1); |
| P( H, A, B, C, D, E, F, G, R(41), 0xA81A664B); |
| P( G, H, A, B, C, D, E, F, R(42), 0xC24B8B70); |
| P( F, G, H, A, B, C, D, E, R(43), 0xC76C51A3); |
| P( E, F, G, H, A, B, C, D, R(44), 0xD192E819); |
| P( D, E, F, G, H, A, B, C, R(45), 0xD6990624); |
| P( C, D, E, F, G, H, A, B, R(46), 0xF40E3585); |
| P( B, C, D, E, F, G, H, A, R(47), 0x106AA070); |
| P( A, B, C, D, E, F, G, H, R(48), 0x19A4C116); |
| P( H, A, B, C, D, E, F, G, R(49), 0x1E376C08); |
| P( G, H, A, B, C, D, E, F, R(50), 0x2748774C); |
| P( F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5); |
| P( E, F, G, H, A, B, C, D, R(52), 0x391C0CB3); |
| P( D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A); |
| P( C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F); |
| P( B, C, D, E, F, G, H, A, R(55), 0x682E6FF3); |
| P( A, B, C, D, E, F, G, H, R(56), 0x748F82EE); |
| P( H, A, B, C, D, E, F, G, R(57), 0x78A5636F); |
| P( G, H, A, B, C, D, E, F, R(58), 0x84C87814); |
| P( F, G, H, A, B, C, D, E, R(59), 0x8CC70208); |
| P( E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA); |
| P( D, E, F, G, H, A, B, C, R(61), 0xA4506CEB); |
| P( C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7); |
| P( B, C, D, E, F, G, H, A, R(63), 0xC67178F2); |
| |
| ctx->state[0] += A; |
| ctx->state[1] += B; |
| ctx->state[2] += C; |
| ctx->state[3] += D; |
| ctx->state[4] += E; |
| ctx->state[5] += F; |
| ctx->state[6] += G; |
| ctx->state[7] += H; |
| } |
| |
| void |
| sha256_update(context_sha256_T *ctx, char_u *input, UINT32_T length) |
| { |
| UINT32_T left, fill; |
| |
| if (length == 0) |
| return; |
| |
| left = ctx->total[0] & 0x3F; |
| fill = 64 - left; |
| |
| ctx->total[0] += length; |
| ctx->total[0] &= 0xFFFFFFFF; |
| |
| if (ctx->total[0] < length) |
| ctx->total[1]++; |
| |
| if (left && length >= fill) |
| { |
| memcpy((void *)(ctx->buffer + left), (void *)input, fill); |
| sha256_process(ctx, ctx->buffer); |
| length -= fill; |
| input += fill; |
| left = 0; |
| } |
| |
| while (length >= 64) |
| { |
| sha256_process(ctx, input); |
| length -= 64; |
| input += 64; |
| } |
| |
| if (length) |
| memcpy((void *)(ctx->buffer + left), (void *)input, length); |
| } |
| |
| static char_u sha256_padding[64] = { |
| 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| }; |
| |
| void |
| sha256_finish(context_sha256_T *ctx, char_u digest[32]) |
| { |
| UINT32_T last, padn; |
| UINT32_T high, low; |
| char_u msglen[8]; |
| |
| high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); |
| low = (ctx->total[0] << 3); |
| |
| PUT_UINT32(high, msglen, 0); |
| PUT_UINT32(low, msglen, 4); |
| |
| last = ctx->total[0] & 0x3F; |
| padn = (last < 56) ? (56 - last) : (120 - last); |
| |
| sha256_update(ctx, sha256_padding, padn); |
| sha256_update(ctx, msglen, 8); |
| |
| PUT_UINT32(ctx->state[0], digest, 0); |
| PUT_UINT32(ctx->state[1], digest, 4); |
| PUT_UINT32(ctx->state[2], digest, 8); |
| PUT_UINT32(ctx->state[3], digest, 12); |
| PUT_UINT32(ctx->state[4], digest, 16); |
| PUT_UINT32(ctx->state[5], digest, 20); |
| PUT_UINT32(ctx->state[6], digest, 24); |
| PUT_UINT32(ctx->state[7], digest, 28); |
| } |
| #endif /* FEAT_CRYPT || FEAT_PERSISTENT_UNDO */ |
| |
| #if defined(FEAT_CRYPT) || defined(PROTO) |
| static unsigned int get_some_time(void); |
| |
| /* |
| * Returns hex digest of "buf[buf_len]" in a static array. |
| * if "salt" is not NULL also do "salt[salt_len]". |
| */ |
| char_u * |
| sha256_bytes( |
| char_u *buf, |
| int buf_len, |
| char_u *salt, |
| int salt_len) |
| { |
| char_u sha256sum[32]; |
| static char_u hexit[65]; |
| int j; |
| context_sha256_T ctx; |
| |
| sha256_self_test(); |
| |
| sha256_start(&ctx); |
| sha256_update(&ctx, buf, buf_len); |
| if (salt != NULL) |
| sha256_update(&ctx, salt, salt_len); |
| sha256_finish(&ctx, sha256sum); |
| for (j = 0; j < 32; j++) |
| sprintf((char *)hexit + j * 2, "%02x", sha256sum[j]); |
| hexit[sizeof(hexit) - 1] = '\0'; |
| return hexit; |
| } |
| |
| /* |
| * Returns sha256(buf) as 64 hex chars in static array. |
| */ |
| char_u * |
| sha256_key( |
| char_u *buf, |
| char_u *salt, |
| int salt_len) |
| { |
| /* No passwd means don't encrypt */ |
| if (buf == NULL || *buf == NUL) |
| return (char_u *)""; |
| |
| return sha256_bytes(buf, (int)STRLEN(buf), salt, salt_len); |
| } |
| |
| /* |
| * These are the standard FIPS-180-2 test vectors |
| */ |
| |
| static char *sha_self_test_msg[] = { |
| "abc", |
| "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
| NULL |
| }; |
| |
| static char *sha_self_test_vector[] = { |
| "ba7816bf8f01cfea414140de5dae2223" \ |
| "b00361a396177a9cb410ff61f20015ad", |
| "248d6a61d20638b8e5c026930c3e6039" \ |
| "a33ce45964ff2167f6ecedd419db06c1", |
| "cdc76e5c9914fb9281a1c7e284d73e67" \ |
| "f1809a48a497200e046d39ccc7112cd0" |
| }; |
| |
| /* |
| * Perform a test on the SHA256 algorithm. |
| * Return FAIL or OK. |
| */ |
| int |
| sha256_self_test(void) |
| { |
| int i, j; |
| char output[65]; |
| context_sha256_T ctx; |
| char_u buf[1000]; |
| char_u sha256sum[32]; |
| static int failures = 0; |
| char_u *hexit; |
| static int sha256_self_tested = 0; |
| |
| if (sha256_self_tested > 0) |
| return failures > 0 ? FAIL : OK; |
| sha256_self_tested = 1; |
| |
| for (i = 0; i < 3; i++) |
| { |
| if (i < 2) |
| { |
| hexit = sha256_bytes((char_u *)sha_self_test_msg[i], |
| (int)STRLEN(sha_self_test_msg[i]), |
| NULL, 0); |
| STRCPY(output, hexit); |
| } |
| else |
| { |
| sha256_start(&ctx); |
| vim_memset(buf, 'a', 1000); |
| for (j = 0; j < 1000; j++) |
| sha256_update(&ctx, (char_u *)buf, 1000); |
| sha256_finish(&ctx, sha256sum); |
| for (j = 0; j < 32; j++) |
| sprintf(output + j * 2, "%02x", sha256sum[j]); |
| } |
| if (memcmp(output, sha_self_test_vector[i], 64)) |
| { |
| failures++; |
| output[sizeof(output) - 1] = '\0'; |
| /* printf("sha256_self_test %d failed %s\n", i, output); */ |
| } |
| } |
| return failures > 0 ? FAIL : OK; |
| } |
| |
| static unsigned int |
| get_some_time(void) |
| { |
| # ifdef HAVE_GETTIMEOFDAY |
| struct timeval tv; |
| |
| /* Using usec makes it less predictable. */ |
| gettimeofday(&tv, NULL); |
| return (unsigned int)(tv.tv_sec + tv.tv_usec); |
| # else |
| return (unsigned int)time(NULL); |
| # endif |
| } |
| |
| /* |
| * Fill "header[header_len]" with random_data. |
| * Also "salt[salt_len]" when "salt" is not NULL. |
| */ |
| void |
| sha2_seed( |
| char_u *header, |
| int header_len, |
| char_u *salt, |
| int salt_len) |
| { |
| int i; |
| static char_u random_data[1000]; |
| char_u sha256sum[32]; |
| context_sha256_T ctx; |
| |
| srand(get_some_time()); |
| |
| for (i = 0; i < (int)sizeof(random_data) - 1; i++) |
| random_data[i] = (char_u)((get_some_time() ^ rand()) & 0xff); |
| sha256_start(&ctx); |
| sha256_update(&ctx, (char_u *)random_data, sizeof(random_data)); |
| sha256_finish(&ctx, sha256sum); |
| |
| /* put first block into header. */ |
| for (i = 0; i < header_len; i++) |
| header[i] = sha256sum[i % sizeof(sha256sum)]; |
| |
| /* put remaining block into salt. */ |
| if (salt != NULL) |
| for (i = 0; i < salt_len; i++) |
| salt[i] = sha256sum[(i + header_len) % sizeof(sha256sum)]; |
| } |
| |
| #endif /* FEAT_CRYPT */ |