| /* Copyright (c) 2015 The Chromium OS Authors. All rights reserved. |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| * |
| * Boot descriptor block firmware RSA |
| */ |
| |
| #include <string.h> |
| #include "bdb.h" |
| |
| /* Public key structure in RAM */ |
| struct public_key { |
| uint32_t arrsize; /* Size of n[] and rr[] arrays in elements */ |
| uint32_t n0inv; /* -1 / n[0] mod 2^32 */ |
| const uint32_t *n; /* Modulus as little endian array */ |
| const uint32_t *rr; /* R^2 as little endian array */ |
| }; |
| |
| /** |
| * a[] -= mod |
| */ |
| static void subM(const struct public_key *key, uint32_t *a) |
| { |
| int64_t A = 0; |
| uint32_t i; |
| for (i = 0; i < key->arrsize; ++i) { |
| A += (uint64_t)a[i] - key->n[i]; |
| a[i] = (uint32_t)A; |
| A >>= 32; |
| } |
| } |
| |
| /** |
| * Return a[] >= mod |
| */ |
| int vb2_mont_ge(const struct public_key *key, uint32_t *a) |
| { |
| uint32_t i; |
| for (i = key->arrsize; i;) { |
| --i; |
| if (a[i] < key->n[i]) |
| return 0; |
| if (a[i] > key->n[i]) |
| return 1; |
| } |
| return 1; /* equal */ |
| } |
| |
| /** |
| * Montgomery c[] += a * b[] / R % mod |
| */ |
| static void montMulAdd(const struct public_key *key, |
| uint32_t *c, |
| const uint32_t a, |
| const uint32_t *b) |
| { |
| uint64_t A = (uint64_t)a * b[0] + c[0]; |
| uint32_t d0 = (uint32_t)A * key->n0inv; |
| uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A; |
| uint32_t i; |
| |
| for (i = 1; i < key->arrsize; ++i) { |
| A = (A >> 32) + (uint64_t)a * b[i] + c[i]; |
| B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A; |
| c[i - 1] = (uint32_t)B; |
| } |
| |
| A = (A >> 32) + (B >> 32); |
| |
| c[i - 1] = (uint32_t)A; |
| |
| if (A >> 32) { |
| subM(key, c); |
| } |
| } |
| |
| /** |
| * Montgomery c[] = a[] * b[] / R % mod |
| */ |
| static void montMul(const struct public_key *key, |
| uint32_t *c, |
| const uint32_t *a, |
| const uint32_t *b) |
| { |
| uint32_t i; |
| for (i = 0; i < key->arrsize; ++i) { |
| c[i] = 0; |
| } |
| for (i = 0; i < key->arrsize; ++i) { |
| montMulAdd(key, c, a[i], b); |
| } |
| } |
| |
| int vb2_safe_memcmp(const void *s1, const void *s2, size_t size) |
| { |
| const unsigned char *us1 = s1; |
| const unsigned char *us2 = s2; |
| int result = 0; |
| |
| if (0 == size) |
| return 0; |
| |
| /* |
| * Code snippet without data-dependent branch due to Nate Lawson |
| * (nate@root.org) of Root Labs. |
| */ |
| while (size--) |
| result |= *us1++ ^ *us2++; |
| |
| return result != 0; |
| } |
| |
| /* |
| * PKCS 1.5 padding (from the RSA PKCS#1 v2.1 standard) |
| * |
| * Depending on the RSA key size and hash function, the padding is calculated |
| * as follows: |
| * |
| * 0x00 || 0x01 || PS || 0x00 || T |
| * |
| * T: DER Encoded DigestInfo value which depends on the hash function used. |
| * |
| * SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || H. |
| * |
| * Length(T) = 51 octets for SHA-256 |
| * |
| * PS: octet string consisting of {Length(RSA Key) - Length(T) - 3} 0xFF |
| */ |
| static const uint8_t sha256_tail[] = { |
| 0x00,0x30,0x31,0x30,0x0d,0x06,0x09,0x60, |
| 0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x01, |
| 0x05,0x00,0x04,0x20 |
| }; |
| |
| int vb2_check_padding(const uint8_t *sig, const struct public_key *key, |
| uint32_t pad_size) |
| { |
| /* Determine padding to use depending on the signature type */ |
| const uint32_t tail_size = sizeof(sha256_tail); |
| int result = 0; |
| int i; |
| |
| /* First 2 bytes are always 0x00 0x01 */ |
| result |= *sig++ ^ 0x00; |
| result |= *sig++ ^ 0x01; |
| |
| /* Then 0xff bytes until the tail */ |
| for (i = 0; i < pad_size - tail_size - 2; i++) |
| result |= *sig++ ^ 0xff; |
| |
| /* |
| * Then the tail. Even though there are probably no timing issues |
| * here, we use vb2_safe_memcmp() just to be on the safe side. |
| */ |
| result |= vb2_safe_memcmp(sig, sha256_tail, tail_size); |
| |
| return result ? BDB_ERROR_DIGEST : BDB_SUCCESS; |
| } |
| |
| /* Array size for RSA4096 */ |
| #define ARRSIZE4096 (4096 / 32) |
| |
| /** |
| * In-place public exponentiation. (exponent 65537, key size 4096 bits) |
| * |
| * @param key Key to use in signing |
| * @param inout Input and output big-endian byte array |
| */ |
| static void modpowF4(const struct public_key *key, uint8_t *inout) |
| { |
| uint32_t a[ARRSIZE4096]; |
| uint32_t aR[ARRSIZE4096]; |
| uint32_t aaR[ARRSIZE4096]; |
| uint32_t *aaa = aaR; /* Re-use location. */ |
| int i; |
| |
| /* Convert from big endian byte array to little endian word array. */ |
| for (i = 0; i < ARRSIZE4096; ++i) { |
| uint32_t tmp = |
| (inout[((ARRSIZE4096 - 1 - i) * 4) + 0] << 24) | |
| (inout[((ARRSIZE4096 - 1 - i) * 4) + 1] << 16) | |
| (inout[((ARRSIZE4096 - 1 - i) * 4) + 2] << 8) | |
| (inout[((ARRSIZE4096 - 1 - i) * 4) + 3] << 0); |
| a[i] = tmp; |
| } |
| |
| montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */ |
| for (i = 0; i < 16; i+=2) { |
| montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ |
| montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */ |
| } |
| montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */ |
| |
| /* Make sure aaa < mod; aaa is at most 1x mod too large. */ |
| if (vb2_mont_ge(key, aaa)) { |
| subM(key, aaa); |
| } |
| |
| /* Convert to bigendian byte array */ |
| for (i = ARRSIZE4096 - 1; i >= 0; --i) { |
| uint32_t tmp = aaa[i]; |
| *inout++ = (uint8_t)(tmp >> 24); |
| *inout++ = (uint8_t)(tmp >> 16); |
| *inout++ = (uint8_t)(tmp >> 8); |
| *inout++ = (uint8_t)(tmp >> 0); |
| } |
| } |
| |
| int bdb_rsa4096_verify(const uint8_t *key_data, |
| const uint8_t *sig, |
| const uint8_t *digest) |
| { |
| const uint32_t *kdata32 = (const uint32_t *)key_data; |
| struct public_key key; |
| uint8_t sig_work[BDB_RSA4096_SIG_SIZE]; |
| uint32_t pad_size; |
| int rv; |
| |
| /* Unpack key */ |
| if (kdata32[0] != ARRSIZE4096) |
| return BDB_ERROR_DIGEST; /* Wrong key size */ |
| |
| key.arrsize = kdata32[0]; |
| key.n0inv = kdata32[1]; |
| key.n = kdata32 + 2; |
| key.rr = kdata32 + 2 + key.arrsize; |
| |
| /* Copy signature to work buffer */ |
| memcpy(sig_work, sig, sizeof(sig_work)); |
| |
| modpowF4(&key, sig_work); |
| |
| /* |
| * Check padding. Continue on to check the digest even if error to |
| * reduce the risk of timing based attacks. |
| */ |
| pad_size = key.arrsize * sizeof(uint32_t) - BDB_SHA256_DIGEST_SIZE; |
| rv = vb2_check_padding(sig_work, &key, pad_size); |
| |
| /* |
| * Check digest. Even though there are probably no timing issues here, |
| * use vb2_safe_memcmp() just to be on the safe side. (That's also why |
| * we don't return before this check if the padding check failed.) |
| */ |
| if (vb2_safe_memcmp(sig_work + pad_size, digest, |
| BDB_SHA256_DIGEST_SIZE)) |
| rv = BDB_ERROR_DIGEST; |
| |
| return rv; |
| } |
| |
| /* Array size for RSA3072B */ |
| #define ARRSIZE3072B (3072 / 32) |
| |
| /** |
| * In-place public exponentiation. (exponent 3, key size 3072 bits) |
| * |
| * @param key Key to use in signing |
| * @param inout Input and output big-endian byte array |
| */ |
| static void modpow3(const struct public_key *key, uint8_t *inout) |
| { |
| uint32_t a[ARRSIZE3072B]; |
| uint32_t aR[ARRSIZE3072B]; |
| uint32_t aaR[ARRSIZE3072B]; |
| uint32_t *aaa = aR; /* Re-use location */ |
| int i; |
| |
| /* Convert from big endian byte array to little endian word array. */ |
| for (i = 0; i < ARRSIZE3072B; ++i) { |
| uint32_t tmp = |
| (inout[((ARRSIZE3072B - 1 - i) * 4) + 0] << 24) | |
| (inout[((ARRSIZE3072B - 1 - i) * 4) + 1] << 16) | |
| (inout[((ARRSIZE3072B - 1 - i) * 4) + 2] << 8) | |
| (inout[((ARRSIZE3072B - 1 - i) * 4) + 3] << 0); |
| a[i] = tmp; |
| } |
| |
| montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */ |
| montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ |
| montMul(key, aaa, aaR, a); /* aaa = aaR * a / R mod M */ |
| |
| /* Make sure aaa < mod; aaa is at most 1x mod too large. */ |
| if (vb2_mont_ge(key, aaa)) { |
| subM(key, aaa); |
| } |
| |
| /* Convert to bigendian byte array */ |
| for (i = ARRSIZE3072B - 1; i >= 0; --i) { |
| uint32_t tmp = aaa[i]; |
| *inout++ = (uint8_t)(tmp >> 24); |
| *inout++ = (uint8_t)(tmp >> 16); |
| *inout++ = (uint8_t)(tmp >> 8); |
| *inout++ = (uint8_t)(tmp >> 0); |
| } |
| } |
| |
| int bdb_rsa3072b_verify(const uint8_t *key_data, |
| const uint8_t *sig, |
| const uint8_t *digest) |
| { |
| const uint32_t *kdata32 = (const uint32_t *)key_data; |
| struct public_key key; |
| uint8_t sig_work[BDB_RSA3072B_SIG_SIZE]; |
| uint32_t pad_size; |
| int rv; |
| |
| /* Unpack key */ |
| if (kdata32[0] != ARRSIZE3072B) |
| return BDB_ERROR_DIGEST; /* Wrong key size */ |
| |
| key.arrsize = kdata32[0]; |
| key.n0inv = kdata32[1]; |
| key.n = kdata32 + 2; |
| key.rr = kdata32 + 2 + key.arrsize; |
| |
| /* Copy signature to work buffer */ |
| memcpy(sig_work, sig, sizeof(sig_work)); |
| |
| modpow3(&key, sig_work); |
| |
| /* |
| * Check padding. Continue on to check the digest even if error to |
| * reduce the risk of timing based attacks. |
| */ |
| pad_size = key.arrsize * sizeof(uint32_t) - BDB_SHA256_DIGEST_SIZE; |
| rv = vb2_check_padding(sig_work, &key, pad_size); |
| |
| /* |
| * Check digest. Even though there are probably no timing issues here, |
| * use vb2_safe_memcmp() just to be on the safe side. (That's also why |
| * we don't return before this check if the padding check failed.) |
| */ |
| if (vb2_safe_memcmp(sig_work + pad_size, digest, |
| BDB_SHA256_DIGEST_SIZE)) |
| rv = BDB_ERROR_DIGEST; |
| |
| return rv; |
| } |