| /* Copyright (c) 2010 The Chromium OS Authors. All rights reserved. |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| * |
| * Utility for ChromeOS-specific GPT partitions, Please see corresponding .c |
| * files for more details. |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <getopt.h> |
| #ifndef HAVE_MACOS |
| #include <linux/major.h> |
| #include <mtd/mtd-user.h> |
| #endif |
| #include <stdarg.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/ioctl.h> |
| #include <sys/mount.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include "cgpt.h" |
| #include "cgptlib_internal.h" |
| #include "crc32.h" |
| #include "vboot_host.h" |
| |
| static const char kErrorTag[] = "ERROR"; |
| static const char kWarningTag[] = "WARNING"; |
| |
| static void LogToStderr(const char *tag, const char *format, va_list ap) { |
| fprintf(stderr, "%s: ", tag); |
| vfprintf(stderr, format, ap); |
| } |
| |
| void Error(const char *format, ...) { |
| va_list ap; |
| va_start(ap, format); |
| LogToStderr(kErrorTag, format, ap); |
| va_end(ap); |
| } |
| |
| void Warning(const char *format, ...) { |
| va_list ap; |
| va_start(ap, format); |
| LogToStderr(kWarningTag, format, ap); |
| va_end(ap); |
| } |
| |
| int check_int_parse(char option, const char *buf) { |
| if (!*optarg || (buf && *buf)) { |
| Error("invalid argument to -%c: \"%s\"\n", option, optarg); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int check_int_limit(char option, int val, int low, int high) { |
| if (val < low || val > high) { |
| Error("value for -%c must be between %d and %d", option, low, high); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int CheckValid(const struct drive *drive) { |
| if ((drive->gpt.valid_headers != MASK_BOTH) || |
| (drive->gpt.valid_entries != MASK_BOTH)) { |
| Warning("One of the GPT headers/entries is invalid\n\n"); |
| return CGPT_FAILED; |
| } |
| return CGPT_OK; |
| } |
| |
| int Load(struct drive *drive, uint8_t **buf, |
| const uint64_t sector, |
| const uint64_t sector_bytes, |
| const uint64_t sector_count) { |
| int count; /* byte count to read */ |
| int nread; |
| |
| require(buf); |
| if (!sector_count || !sector_bytes) { |
| Error("%s() failed at line %d: sector_count=%d, sector_bytes=%d\n", |
| __FUNCTION__, __LINE__, sector_count, sector_bytes); |
| return CGPT_FAILED; |
| } |
| /* Make sure that sector_bytes * sector_count doesn't roll over. */ |
| if (sector_bytes > (UINT64_MAX / sector_count)) { |
| Error("%s() failed at line %d: sector_count=%d, sector_bytes=%d\n", |
| __FUNCTION__, __LINE__, sector_count, sector_bytes); |
| return CGPT_FAILED; |
| } |
| count = sector_bytes * sector_count; |
| *buf = malloc(count); |
| require(*buf); |
| |
| if (-1 == lseek(drive->fd, sector * sector_bytes, SEEK_SET)) { |
| Error("Can't seek: %s\n", strerror(errno)); |
| goto error_free; |
| } |
| |
| nread = read(drive->fd, *buf, count); |
| if (nread < count) { |
| Error("Can't read enough: %d, not %d\n", nread, count); |
| goto error_free; |
| } |
| |
| return CGPT_OK; |
| |
| error_free: |
| free(*buf); |
| *buf = 0; |
| return CGPT_FAILED; |
| } |
| |
| |
| int ReadPMBR(struct drive *drive) { |
| if (-1 == lseek(drive->fd, 0, SEEK_SET)) |
| return CGPT_FAILED; |
| |
| int nread = read(drive->fd, &drive->pmbr, sizeof(struct pmbr)); |
| if (nread != sizeof(struct pmbr)) |
| return CGPT_FAILED; |
| |
| return CGPT_OK; |
| } |
| |
| int WritePMBR(struct drive *drive) { |
| if (-1 == lseek(drive->fd, 0, SEEK_SET)) |
| return CGPT_FAILED; |
| |
| int nwrote = write(drive->fd, &drive->pmbr, sizeof(struct pmbr)); |
| if (nwrote != sizeof(struct pmbr)) |
| return CGPT_FAILED; |
| |
| return CGPT_OK; |
| } |
| |
| int Save(struct drive *drive, const uint8_t *buf, |
| const uint64_t sector, |
| const uint64_t sector_bytes, |
| const uint64_t sector_count) { |
| int count; /* byte count to write */ |
| int nwrote; |
| |
| require(buf); |
| count = sector_bytes * sector_count; |
| |
| if (-1 == lseek(drive->fd, sector * sector_bytes, SEEK_SET)) |
| return CGPT_FAILED; |
| |
| nwrote = write(drive->fd, buf, count); |
| if (nwrote < count) |
| return CGPT_FAILED; |
| |
| return CGPT_OK; |
| } |
| |
| static int GptLoad(struct drive *drive, uint32_t sector_bytes) { |
| drive->gpt.sector_bytes = sector_bytes; |
| if (drive->size % drive->gpt.sector_bytes) { |
| Error("Media size (%llu) is not a multiple of sector size(%d)\n", |
| (long long unsigned int)drive->size, drive->gpt.sector_bytes); |
| return -1; |
| } |
| drive->gpt.streaming_drive_sectors = drive->size / drive->gpt.sector_bytes; |
| |
| /* TODO(namnguyen): Remove this and totally trust gpt_drive_sectors. */ |
| if (!(drive->gpt.flags & GPT_FLAG_EXTERNAL)) { |
| drive->gpt.gpt_drive_sectors = drive->gpt.streaming_drive_sectors; |
| } /* Else, we trust gpt.gpt_drive_sectors. */ |
| |
| // Read the data. |
| if (CGPT_OK != Load(drive, &drive->gpt.primary_header, |
| GPT_PMBR_SECTORS, |
| drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) { |
| Error("Cannot read primary GPT header\n"); |
| return -1; |
| } |
| if (CGPT_OK != Load(drive, &drive->gpt.secondary_header, |
| drive->gpt.gpt_drive_sectors - GPT_PMBR_SECTORS, |
| drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) { |
| Error("Cannot read secondary GPT header\n"); |
| return -1; |
| } |
| GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header; |
| if (CheckHeader(primary_header, 0, drive->gpt.streaming_drive_sectors, |
| drive->gpt.gpt_drive_sectors, |
| drive->gpt.flags) == 0) { |
| if (CGPT_OK != Load(drive, &drive->gpt.primary_entries, |
| primary_header->entries_lba, |
| drive->gpt.sector_bytes, |
| CalculateEntriesSectors(primary_header))) { |
| Error("Cannot read primary partition entry array\n"); |
| return -1; |
| } |
| } else { |
| Warning("Primary GPT header is %s\n", |
| memcmp(primary_header->signature, GPT_HEADER_SIGNATURE_IGNORED, |
| GPT_HEADER_SIGNATURE_SIZE) ? "invalid" : "being ignored"); |
| drive->gpt.primary_entries = calloc(MAX_NUMBER_OF_ENTRIES, |
| sizeof(GptEntry)); |
| } |
| GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header; |
| if (CheckHeader(secondary_header, 1, drive->gpt.streaming_drive_sectors, |
| drive->gpt.gpt_drive_sectors, |
| drive->gpt.flags) == 0) { |
| if (CGPT_OK != Load(drive, &drive->gpt.secondary_entries, |
| secondary_header->entries_lba, |
| drive->gpt.sector_bytes, |
| CalculateEntriesSectors(secondary_header))) { |
| Error("Cannot read secondary partition entry array\n"); |
| return -1; |
| } |
| } else { |
| Warning("Secondary GPT header is %s\n", |
| memcmp(primary_header->signature, GPT_HEADER_SIGNATURE_IGNORED, |
| GPT_HEADER_SIGNATURE_SIZE) ? "invalid" : "being ignored"); |
| drive->gpt.secondary_entries = calloc(MAX_NUMBER_OF_ENTRIES, |
| sizeof(GptEntry)); |
| } |
| return 0; |
| } |
| |
| static int GptSave(struct drive *drive) { |
| int errors = 0; |
| |
| if (!(drive->gpt.ignored & MASK_PRIMARY)) { |
| if (drive->gpt.modified & GPT_MODIFIED_HEADER1) { |
| if (CGPT_OK != Save(drive, drive->gpt.primary_header, |
| GPT_PMBR_SECTORS, |
| drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) { |
| errors++; |
| Error("Cannot write primary header: %s\n", strerror(errno)); |
| } |
| } |
| GptHeader* primary_header = (GptHeader*)drive->gpt.primary_header; |
| if (drive->gpt.modified & GPT_MODIFIED_ENTRIES1) { |
| if (CGPT_OK != Save(drive, drive->gpt.primary_entries, |
| primary_header->entries_lba, |
| drive->gpt.sector_bytes, |
| CalculateEntriesSectors(primary_header))) { |
| errors++; |
| Error("Cannot write primary entries: %s\n", strerror(errno)); |
| } |
| } |
| |
| // Sync primary GPT before touching secondary so one is always valid. |
| if (drive->gpt.modified & (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1)) |
| if (fsync(drive->fd) < 0 && errno == EIO) { |
| errors++; |
| Error("I/O error when trying to write primary GPT\n"); |
| } |
| } |
| |
| // Only start writing secondary GPT if primary was written correctly. |
| if (!errors && !(drive->gpt.ignored & MASK_SECONDARY)) { |
| if (drive->gpt.modified & GPT_MODIFIED_HEADER2) { |
| if(CGPT_OK != Save(drive, drive->gpt.secondary_header, |
| drive->gpt.gpt_drive_sectors - GPT_PMBR_SECTORS, |
| drive->gpt.sector_bytes, GPT_HEADER_SECTORS)) { |
| errors++; |
| Error("Cannot write secondary header: %s\n", strerror(errno)); |
| } |
| } |
| GptHeader* secondary_header = (GptHeader*)drive->gpt.secondary_header; |
| if (drive->gpt.modified & GPT_MODIFIED_ENTRIES2) { |
| if (CGPT_OK != Save(drive, drive->gpt.secondary_entries, |
| secondary_header->entries_lba, |
| drive->gpt.sector_bytes, |
| CalculateEntriesSectors(secondary_header))) { |
| errors++; |
| Error("Cannot write secondary entries: %s\n", strerror(errno)); |
| } |
| } |
| } |
| |
| if (drive->gpt.primary_header) |
| free(drive->gpt.primary_header); |
| drive->gpt.primary_header = 0; |
| if (drive->gpt.primary_entries) |
| free(drive->gpt.primary_entries); |
| drive->gpt.primary_entries = 0; |
| if (drive->gpt.secondary_header) |
| free(drive->gpt.secondary_header); |
| drive->gpt.secondary_header = 0; |
| if (drive->gpt.secondary_entries) |
| free(drive->gpt.secondary_entries); |
| drive->gpt.secondary_entries = 0; |
| return errors ? -1 : 0; |
| } |
| |
| /* |
| * Query drive size and bytes per sector. Return zero on success. On error, |
| * -1 is returned and errno is set appropriately. |
| */ |
| static int ObtainDriveSize(int fd, uint64_t* size, uint32_t* sector_bytes) { |
| struct stat stat; |
| if (fstat(fd, &stat) == -1) { |
| return -1; |
| } |
| #ifndef HAVE_MACOS |
| if ((stat.st_mode & S_IFMT) != S_IFREG) { |
| if (ioctl(fd, BLKGETSIZE64, size) < 0) { |
| return -1; |
| } |
| if (ioctl(fd, BLKSSZGET, sector_bytes) < 0) { |
| return -1; |
| } |
| } else { |
| *sector_bytes = 512; /* bytes */ |
| *size = stat.st_size; |
| } |
| #else |
| *sector_bytes = 512; /* bytes */ |
| *size = stat.st_size; |
| #endif |
| return 0; |
| } |
| |
| int DriveOpen(const char *drive_path, struct drive *drive, int mode, |
| uint64_t drive_size) { |
| uint32_t sector_bytes; |
| |
| require(drive_path); |
| require(drive); |
| |
| // Clear struct for proper error handling. |
| memset(drive, 0, sizeof(struct drive)); |
| |
| drive->fd = open(drive_path, mode | |
| #ifndef HAVE_MACOS |
| O_LARGEFILE | |
| #endif |
| O_NOFOLLOW); |
| if (drive->fd == -1) { |
| Error("Can't open %s: %s\n", drive_path, strerror(errno)); |
| return CGPT_FAILED; |
| } |
| |
| sector_bytes = 512; |
| uint64_t gpt_drive_size; |
| if (ObtainDriveSize(drive->fd, &gpt_drive_size, §or_bytes) != 0) { |
| Error("Can't get drive size and bytes per sector for %s: %s\n", |
| drive_path, strerror(errno)); |
| goto error_close; |
| } |
| |
| drive->gpt.gpt_drive_sectors = gpt_drive_size / sector_bytes; |
| if (drive_size == 0) { |
| drive->size = gpt_drive_size; |
| drive->gpt.flags = 0; |
| } else { |
| drive->size = drive_size; |
| drive->gpt.flags = GPT_FLAG_EXTERNAL; |
| } |
| |
| |
| if (GptLoad(drive, sector_bytes)) { |
| goto error_close; |
| } |
| |
| // We just load the data. Caller must validate it. |
| return CGPT_OK; |
| |
| error_close: |
| (void) DriveClose(drive, 0); |
| return CGPT_FAILED; |
| } |
| |
| |
| int DriveClose(struct drive *drive, int update_as_needed) { |
| int errors = 0; |
| |
| if (update_as_needed) { |
| if (GptSave(drive)) { |
| errors++; |
| } |
| } |
| |
| // Sync early! Only sync file descriptor here, and leave the whole system sync |
| // outside cgpt because whole system sync would trigger tons of disk accesses |
| // and timeout tests. |
| fsync(drive->fd); |
| |
| close(drive->fd); |
| |
| return errors ? CGPT_FAILED : CGPT_OK; |
| } |
| |
| |
| /* GUID conversion functions. Accepted format: |
| * |
| * "C12A7328-F81F-11D2-BA4B-00A0C93EC93B" |
| * |
| * Returns CGPT_OK if parsing is successful; otherwise CGPT_FAILED. |
| */ |
| int StrToGuid(const char *str, Guid *guid) { |
| uint32_t time_low; |
| uint16_t time_mid; |
| uint16_t time_high_and_version; |
| unsigned int chunk[11]; |
| |
| if (11 != sscanf(str, "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X", |
| chunk+0, |
| chunk+1, |
| chunk+2, |
| chunk+3, |
| chunk+4, |
| chunk+5, |
| chunk+6, |
| chunk+7, |
| chunk+8, |
| chunk+9, |
| chunk+10)) { |
| printf("FAILED\n"); |
| return CGPT_FAILED; |
| } |
| |
| time_low = chunk[0] & 0xffffffff; |
| time_mid = chunk[1] & 0xffff; |
| time_high_and_version = chunk[2] & 0xffff; |
| |
| guid->u.Uuid.time_low = htole32(time_low); |
| guid->u.Uuid.time_mid = htole16(time_mid); |
| guid->u.Uuid.time_high_and_version = htole16(time_high_and_version); |
| |
| guid->u.Uuid.clock_seq_high_and_reserved = chunk[3] & 0xff; |
| guid->u.Uuid.clock_seq_low = chunk[4] & 0xff; |
| guid->u.Uuid.node[0] = chunk[5] & 0xff; |
| guid->u.Uuid.node[1] = chunk[6] & 0xff; |
| guid->u.Uuid.node[2] = chunk[7] & 0xff; |
| guid->u.Uuid.node[3] = chunk[8] & 0xff; |
| guid->u.Uuid.node[4] = chunk[9] & 0xff; |
| guid->u.Uuid.node[5] = chunk[10] & 0xff; |
| |
| return CGPT_OK; |
| } |
| void GuidToStr(const Guid *guid, char *str, unsigned int buflen) { |
| require(buflen >= GUID_STRLEN); |
| require(snprintf(str, buflen, |
| "%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X", |
| le32toh(guid->u.Uuid.time_low), |
| le16toh(guid->u.Uuid.time_mid), |
| le16toh(guid->u.Uuid.time_high_and_version), |
| guid->u.Uuid.clock_seq_high_and_reserved, |
| guid->u.Uuid.clock_seq_low, |
| guid->u.Uuid.node[0], guid->u.Uuid.node[1], |
| guid->u.Uuid.node[2], guid->u.Uuid.node[3], |
| guid->u.Uuid.node[4], guid->u.Uuid.node[5]) == GUID_STRLEN-1); |
| } |
| |
| /* Convert possibly unterminated UTF16 string to UTF8. |
| * Caller must prepare enough space for UTF8, which could be up to |
| * twice the byte length of UTF16 string plus the terminating '\0'. |
| * See the following table for encoding lengths. |
| * |
| * Code point UTF16 UTF8 |
| * 0x0000-0x007F 2 bytes 1 byte |
| * 0x0080-0x07FF 2 bytes 2 bytes |
| * 0x0800-0xFFFF 2 bytes 3 bytes |
| * 0x10000-0x10FFFF 4 bytes 4 bytes |
| * |
| * This function uses a simple state meachine to convert UTF-16 char(s) to |
| * a code point. Once a code point is parsed out, the state machine throws |
| * out sequencial UTF-8 chars in one time. |
| * |
| * Return: CGPT_OK --- all character are converted successfully. |
| * CGPT_FAILED --- convert error, i.e. output buffer is too short. |
| */ |
| int UTF16ToUTF8(const uint16_t *utf16, unsigned int maxinput, |
| uint8_t *utf8, unsigned int maxoutput) |
| { |
| size_t s16idx, s8idx; |
| uint32_t code_point = 0; |
| int code_point_ready = 1; // code point is ready to output. |
| int retval = CGPT_OK; |
| |
| if (!utf16 || !maxinput || !utf8 || !maxoutput) |
| return CGPT_FAILED; |
| |
| maxoutput--; /* plan for termination now */ |
| |
| for (s16idx = s8idx = 0; |
| s16idx < maxinput && utf16[s16idx] && maxoutput; |
| s16idx++) { |
| uint16_t codeunit = le16toh(utf16[s16idx]); |
| |
| if (code_point_ready) { |
| if (codeunit >= 0xD800 && codeunit <= 0xDBFF) { |
| /* high surrogate, need the low surrogate. */ |
| code_point_ready = 0; |
| code_point = (codeunit & 0x03FF) + 0x0040; |
| } else { |
| /* BMP char, output it. */ |
| code_point = codeunit; |
| } |
| } else { |
| /* expect the low surrogate */ |
| if (codeunit >= 0xDC00 && codeunit <= 0xDFFF) { |
| code_point = (code_point << 10) | (codeunit & 0x03FF); |
| code_point_ready = 1; |
| } else { |
| /* the second code unit is NOT the low surrogate. Unexpected. */ |
| code_point_ready = 0; |
| retval = CGPT_FAILED; |
| break; |
| } |
| } |
| |
| /* If UTF code point is ready, output it. */ |
| if (code_point_ready) { |
| require(code_point <= 0x10FFFF); |
| if (code_point <= 0x7F && maxoutput >= 1) { |
| maxoutput -= 1; |
| utf8[s8idx++] = code_point & 0x7F; |
| } else if (code_point <= 0x7FF && maxoutput >= 2) { |
| maxoutput -= 2; |
| utf8[s8idx++] = 0xC0 | (code_point >> 6); |
| utf8[s8idx++] = 0x80 | (code_point & 0x3F); |
| } else if (code_point <= 0xFFFF && maxoutput >= 3) { |
| maxoutput -= 3; |
| utf8[s8idx++] = 0xE0 | (code_point >> 12); |
| utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F); |
| utf8[s8idx++] = 0x80 | (code_point & 0x3F); |
| } else if (code_point <= 0x10FFFF && maxoutput >= 4) { |
| maxoutput -= 4; |
| utf8[s8idx++] = 0xF0 | (code_point >> 18); |
| utf8[s8idx++] = 0x80 | ((code_point >> 12) & 0x3F); |
| utf8[s8idx++] = 0x80 | ((code_point >> 6) & 0x3F); |
| utf8[s8idx++] = 0x80 | (code_point & 0x3F); |
| } else { |
| /* buffer underrun */ |
| retval = CGPT_FAILED; |
| break; |
| } |
| } |
| } |
| utf8[s8idx++] = 0; |
| return retval; |
| } |
| |
| /* Convert UTF8 string to UTF16. The UTF8 string must be null-terminated. |
| * Caller must prepare enough space for UTF16, including a terminating 0x0000. |
| * See the following table for encoding lengths. In any case, the caller |
| * just needs to prepare the byte length of UTF8 plus the terminating 0x0000. |
| * |
| * Code point UTF16 UTF8 |
| * 0x0000-0x007F 2 bytes 1 byte |
| * 0x0080-0x07FF 2 bytes 2 bytes |
| * 0x0800-0xFFFF 2 bytes 3 bytes |
| * 0x10000-0x10FFFF 4 bytes 4 bytes |
| * |
| * This function converts UTF8 chars to a code point first. Then, convrts it |
| * to UTF16 code unit(s). |
| * |
| * Return: CGPT_OK --- all character are converted successfully. |
| * CGPT_FAILED --- convert error, i.e. output buffer is too short. |
| */ |
| int UTF8ToUTF16(const uint8_t *utf8, uint16_t *utf16, unsigned int maxoutput) |
| { |
| size_t s16idx, s8idx; |
| uint32_t code_point = 0; |
| unsigned int expected_units = 1; |
| unsigned int decoded_units = 1; |
| int retval = CGPT_OK; |
| |
| if (!utf8 || !utf16 || !maxoutput) |
| return CGPT_FAILED; |
| |
| maxoutput--; /* plan for termination */ |
| |
| for (s8idx = s16idx = 0; |
| utf8[s8idx] && maxoutput; |
| s8idx++) { |
| uint8_t code_unit; |
| code_unit = utf8[s8idx]; |
| |
| if (expected_units != decoded_units) { |
| /* Trailing bytes of multi-byte character */ |
| if ((code_unit & 0xC0) == 0x80) { |
| code_point = (code_point << 6) | (code_unit & 0x3F); |
| ++decoded_units; |
| } else { |
| /* Unexpected code unit. */ |
| retval = CGPT_FAILED; |
| break; |
| } |
| } else { |
| /* parsing a new code point. */ |
| decoded_units = 1; |
| if (code_unit <= 0x7F) { |
| code_point = code_unit; |
| expected_units = 1; |
| } else if (code_unit <= 0xBF) { |
| /* 0x80-0xBF must NOT be the heading byte unit of a new code point. */ |
| retval = CGPT_FAILED; |
| break; |
| } else if (code_unit >= 0xC2 && code_unit <= 0xDF) { |
| code_point = code_unit & 0x1F; |
| expected_units = 2; |
| } else if (code_unit >= 0xE0 && code_unit <= 0xEF) { |
| code_point = code_unit & 0x0F; |
| expected_units = 3; |
| } else if (code_unit >= 0xF0 && code_unit <= 0xF4) { |
| code_point = code_unit & 0x07; |
| expected_units = 4; |
| } else { |
| /* illegal code unit: 0xC0-0xC1, 0xF5-0xFF */ |
| retval = CGPT_FAILED; |
| break; |
| } |
| } |
| |
| /* If no more unit is needed, output the UTF16 unit(s). */ |
| if ((retval == CGPT_OK) && |
| (expected_units == decoded_units)) { |
| /* Check if the encoding is the shortest possible UTF-8 sequence. */ |
| switch (expected_units) { |
| case 2: |
| if (code_point <= 0x7F) retval = CGPT_FAILED; |
| break; |
| case 3: |
| if (code_point <= 0x7FF) retval = CGPT_FAILED; |
| break; |
| case 4: |
| if (code_point <= 0xFFFF) retval = CGPT_FAILED; |
| break; |
| } |
| if (retval == CGPT_FAILED) break; /* leave immediately */ |
| |
| if ((code_point <= 0xD7FF) || |
| (code_point >= 0xE000 && code_point <= 0xFFFF)) { |
| utf16[s16idx++] = code_point; |
| maxoutput -= 1; |
| } else if (code_point >= 0x10000 && code_point <= 0x10FFFF && |
| maxoutput >= 2) { |
| utf16[s16idx++] = 0xD800 | ((code_point >> 10) - 0x0040); |
| utf16[s16idx++] = 0xDC00 | (code_point & 0x03FF); |
| maxoutput -= 2; |
| } else { |
| /* Three possibilities fall into here. Both are failure cases. |
| * a. surrogate pair (non-BMP characters; 0xD800~0xDFFF) |
| * b. invalid code point > 0x10FFFF |
| * c. buffer underrun |
| */ |
| retval = CGPT_FAILED; |
| break; |
| } |
| } |
| } |
| |
| /* A null-terminator shows up before the UTF8 sequence ends. */ |
| if (expected_units != decoded_units) { |
| retval = CGPT_FAILED; |
| } |
| |
| utf16[s16idx++] = 0; |
| return retval; |
| } |
| |
| /* global types to compare against */ |
| const Guid guid_chromeos_firmware = GPT_ENT_TYPE_CHROMEOS_FIRMWARE; |
| const Guid guid_chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; |
| const Guid guid_chromeos_rootfs = GPT_ENT_TYPE_CHROMEOS_ROOTFS; |
| const Guid guid_linux_data = GPT_ENT_TYPE_LINUX_DATA; |
| const Guid guid_chromeos_reserved = GPT_ENT_TYPE_CHROMEOS_RESERVED; |
| const Guid guid_efi = GPT_ENT_TYPE_EFI; |
| const Guid guid_unused = GPT_ENT_TYPE_UNUSED; |
| |
| const static struct { |
| const Guid *type; |
| char *name; |
| char *description; |
| } supported_types[] = { |
| {&guid_chromeos_firmware, "firmware", "ChromeOS firmware"}, |
| {&guid_chromeos_kernel, "kernel", "ChromeOS kernel"}, |
| {&guid_chromeos_rootfs, "rootfs", "ChromeOS rootfs"}, |
| {&guid_linux_data, "data", "Linux data"}, |
| {&guid_chromeos_reserved, "reserved", "ChromeOS reserved"}, |
| {&guid_efi, "efi", "EFI System Partition"}, |
| {&guid_unused, "unused", "Unused (nonexistent) partition"}, |
| }; |
| |
| /* Resolves human-readable GPT type. |
| * Returns CGPT_OK if found. |
| * Returns CGPT_FAILED if no known type found. */ |
| int ResolveType(const Guid *type, char *buf) { |
| int i; |
| for (i = 0; i < ARRAY_COUNT(supported_types); ++i) { |
| if (!memcmp(type, supported_types[i].type, sizeof(Guid))) { |
| strcpy(buf, supported_types[i].description); |
| return CGPT_OK; |
| } |
| } |
| return CGPT_FAILED; |
| } |
| |
| int SupportedType(const char *name, Guid *type) { |
| int i; |
| for (i = 0; i < ARRAY_COUNT(supported_types); ++i) { |
| if (!strcmp(name, supported_types[i].name)) { |
| memcpy(type, supported_types[i].type, sizeof(Guid)); |
| return CGPT_OK; |
| } |
| } |
| return CGPT_FAILED; |
| } |
| |
| void PrintTypes(void) { |
| int i; |
| printf("The partition type may also be given as one of these aliases:\n\n"); |
| for (i = 0; i < ARRAY_COUNT(supported_types); ++i) { |
| printf(" %-10s %s\n", supported_types[i].name, |
| supported_types[i].description); |
| } |
| printf("\n"); |
| } |
| |
| static GptHeader* GetGptHeader(const GptData *gpt) { |
| if (gpt->valid_headers & MASK_PRIMARY) |
| return (GptHeader*)gpt->primary_header; |
| else if (gpt->valid_headers & MASK_SECONDARY) |
| return (GptHeader*)gpt->secondary_header; |
| else |
| return 0; |
| } |
| |
| uint32_t GetNumberOfEntries(const struct drive *drive) { |
| GptHeader *header = GetGptHeader(&drive->gpt); |
| if (!header) |
| return 0; |
| return header->number_of_entries; |
| } |
| |
| |
| GptEntry *GetEntry(GptData *gpt, int secondary, uint32_t entry_index) { |
| GptHeader *header = GetGptHeader(gpt); |
| uint8_t *entries; |
| uint32_t stride = header->size_of_entry; |
| require(stride); |
| require(entry_index < header->number_of_entries); |
| |
| if (secondary == PRIMARY) { |
| entries = gpt->primary_entries; |
| } else if (secondary == SECONDARY) { |
| entries = gpt->secondary_entries; |
| } else { /* ANY_VALID */ |
| require(secondary == ANY_VALID); |
| if (gpt->valid_entries & MASK_PRIMARY) { |
| entries = gpt->primary_entries; |
| } else { |
| require(gpt->valid_entries & MASK_SECONDARY); |
| entries = gpt->secondary_entries; |
| } |
| } |
| |
| return (GptEntry*)(&entries[stride * entry_index]); |
| } |
| |
| void SetLegacyBoot(struct drive *drive, int secondary, uint32_t entry_index, |
| int legacy_boot) { |
| require(legacy_boot >= 0 && legacy_boot <= CGPT_ATTRIBUTE_MAX_LEGACY_BOOT); |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, entry_index); |
| SetEntryLegacyBoot(entry, legacy_boot); |
| } |
| |
| int GetLegacyBoot(struct drive *drive, int secondary, uint32_t entry_index) { |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, entry_index); |
| return GetEntryLegacyBoot(entry); |
| } |
| |
| void SetPriority(struct drive *drive, int secondary, uint32_t entry_index, |
| int priority) { |
| require(priority >= 0 && priority <= CGPT_ATTRIBUTE_MAX_PRIORITY); |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, entry_index); |
| SetEntryPriority(entry, priority); |
| } |
| |
| int GetPriority(struct drive *drive, int secondary, uint32_t entry_index) { |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, entry_index); |
| return GetEntryPriority(entry); |
| } |
| |
| void SetTries(struct drive *drive, int secondary, uint32_t entry_index, |
| int tries) { |
| require(tries >= 0 && tries <= CGPT_ATTRIBUTE_MAX_TRIES); |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, entry_index); |
| SetEntryTries(entry, tries); |
| } |
| |
| int GetTries(struct drive *drive, int secondary, uint32_t entry_index) { |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, entry_index); |
| return GetEntryTries(entry); |
| } |
| |
| void SetSuccessful(struct drive *drive, int secondary, uint32_t entry_index, |
| int success) { |
| require(success >= 0 && success <= CGPT_ATTRIBUTE_MAX_SUCCESSFUL); |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, entry_index); |
| SetEntrySuccessful(entry, success); |
| } |
| |
| int GetSuccessful(struct drive *drive, int secondary, uint32_t entry_index) { |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, entry_index); |
| return GetEntrySuccessful(entry); |
| } |
| |
| void SetRaw(struct drive *drive, int secondary, uint32_t entry_index, |
| uint32_t raw) { |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, entry_index); |
| entry->attrs.fields.gpt_att = (uint16_t)raw; |
| } |
| |
| void UpdateAllEntries(struct drive *drive) { |
| RepairEntries(&drive->gpt, MASK_PRIMARY); |
| RepairHeader(&drive->gpt, MASK_PRIMARY); |
| |
| drive->gpt.modified |= (GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1 | |
| GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES2); |
| UpdateCrc(&drive->gpt); |
| } |
| |
| int IsUnused(struct drive *drive, int secondary, uint32_t index) { |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, index); |
| return GuidIsZero(&entry->type); |
| } |
| |
| int IsKernel(struct drive *drive, int secondary, uint32_t index) { |
| GptEntry *entry; |
| entry = GetEntry(&drive->gpt, secondary, index); |
| return GuidEqual(&entry->type, &guid_chromeos_kernel); |
| } |
| |
| |
| #define TOSTRING(A) #A |
| const char *GptError(int errnum) { |
| const char *error_string[] = { |
| TOSTRING(GPT_SUCCESS), |
| TOSTRING(GPT_ERROR_NO_VALID_KERNEL), |
| TOSTRING(GPT_ERROR_INVALID_HEADERS), |
| TOSTRING(GPT_ERROR_INVALID_ENTRIES), |
| TOSTRING(GPT_ERROR_INVALID_SECTOR_SIZE), |
| TOSTRING(GPT_ERROR_INVALID_SECTOR_NUMBER), |
| TOSTRING(GPT_ERROR_INVALID_UPDATE_TYPE) |
| }; |
| if (errnum < 0 || errnum >= ARRAY_COUNT(error_string)) |
| return "<illegal value>"; |
| return error_string[errnum]; |
| } |
| |
| /* Update CRC value if necessary. */ |
| void UpdateCrc(GptData *gpt) { |
| GptHeader *primary_header, *secondary_header; |
| |
| primary_header = (GptHeader*)gpt->primary_header; |
| secondary_header = (GptHeader*)gpt->secondary_header; |
| |
| if (gpt->modified & GPT_MODIFIED_ENTRIES1 && |
| memcmp(primary_header, GPT_HEADER_SIGNATURE2, |
| GPT_HEADER_SIGNATURE_SIZE)) { |
| size_t entries_size = primary_header->size_of_entry * |
| primary_header->number_of_entries; |
| primary_header->entries_crc32 = |
| Crc32(gpt->primary_entries, entries_size); |
| } |
| if (gpt->modified & GPT_MODIFIED_ENTRIES2) { |
| size_t entries_size = secondary_header->size_of_entry * |
| secondary_header->number_of_entries; |
| secondary_header->entries_crc32 = |
| Crc32(gpt->secondary_entries, entries_size); |
| } |
| if (gpt->modified & GPT_MODIFIED_HEADER1) { |
| primary_header->header_crc32 = 0; |
| primary_header->header_crc32 = Crc32( |
| (const uint8_t *)primary_header, sizeof(GptHeader)); |
| } |
| if (gpt->modified & GPT_MODIFIED_HEADER2) { |
| secondary_header->header_crc32 = 0; |
| secondary_header->header_crc32 = Crc32( |
| (const uint8_t *)secondary_header, sizeof(GptHeader)); |
| } |
| } |
| /* Two headers are NOT bitwise identical. For example, my_lba pointers to header |
| * itself so that my_lba in primary and secondary is definitely different. |
| * Only the following fields should be identical. |
| * |
| * first_usable_lba |
| * last_usable_lba |
| * number_of_entries |
| * size_of_entry |
| * disk_uuid |
| * |
| * If any of above field are not matched, overwrite secondary with primary since |
| * we always trust primary. |
| * If any one of header is invalid, copy from another. */ |
| int IsSynonymous(const GptHeader* a, const GptHeader* b) { |
| if ((a->first_usable_lba == b->first_usable_lba) && |
| (a->last_usable_lba == b->last_usable_lba) && |
| (a->number_of_entries == b->number_of_entries) && |
| (a->size_of_entry == b->size_of_entry) && |
| (!memcmp(&a->disk_uuid, &b->disk_uuid, sizeof(Guid)))) |
| return 1; |
| return 0; |
| } |
| |
| /* Primary entries and secondary entries should be bitwise identical. |
| * If two entries tables are valid, compare them. If not the same, |
| * overwrites secondary with primary (primary always has higher priority), |
| * and marks secondary as modified. |
| * If only one is valid, overwrites invalid one. |
| * If all are invalid, does nothing. |
| * This function returns bit masks for GptData.modified field. |
| * Note that CRC is NOT re-computed in this function. |
| */ |
| uint8_t RepairEntries(GptData *gpt, const uint32_t valid_entries) { |
| /* If we have an alternate GPT header signature, don't overwrite |
| * the secondary GPT with the primary one as that might wipe the |
| * partition table. Also don't overwrite the primary one with the |
| * secondary one as that will stop Windows from booting. */ |
| GptHeader* h = (GptHeader*)(gpt->primary_header); |
| if (!memcmp(h->signature, GPT_HEADER_SIGNATURE2, GPT_HEADER_SIGNATURE_SIZE)) |
| return 0; |
| |
| if (gpt->valid_headers & MASK_PRIMARY) { |
| h = (GptHeader*)gpt->primary_header; |
| } else if (gpt->valid_headers & MASK_SECONDARY) { |
| h = (GptHeader*)gpt->secondary_header; |
| } else { |
| /* We cannot trust any header, don't update entries. */ |
| return 0; |
| } |
| |
| size_t entries_size = h->number_of_entries * h->size_of_entry; |
| if (valid_entries == MASK_BOTH) { |
| if (memcmp(gpt->primary_entries, gpt->secondary_entries, entries_size)) { |
| memcpy(gpt->secondary_entries, gpt->primary_entries, entries_size); |
| return GPT_MODIFIED_ENTRIES2; |
| } |
| } else if (valid_entries == MASK_PRIMARY) { |
| memcpy(gpt->secondary_entries, gpt->primary_entries, entries_size); |
| return GPT_MODIFIED_ENTRIES2; |
| } else if (valid_entries == MASK_SECONDARY) { |
| memcpy(gpt->primary_entries, gpt->secondary_entries, entries_size); |
| return GPT_MODIFIED_ENTRIES1; |
| } |
| |
| return 0; |
| } |
| |
| /* The above five fields are shared between primary and secondary headers. |
| * We can recover one header from another through copying those fields. */ |
| void CopySynonymousParts(GptHeader* target, const GptHeader* source) { |
| target->first_usable_lba = source->first_usable_lba; |
| target->last_usable_lba = source->last_usable_lba; |
| target->number_of_entries = source->number_of_entries; |
| target->size_of_entry = source->size_of_entry; |
| memcpy(&target->disk_uuid, &source->disk_uuid, sizeof(Guid)); |
| } |
| |
| /* This function repairs primary and secondary headers if possible. |
| * If both headers are valid (CRC32 is correct) but |
| * a) indicate inconsistent usable LBA ranges, |
| * b) inconsistent partition entry size and number, |
| * c) inconsistent disk_uuid, |
| * we will use the primary header to overwrite secondary header. |
| * If primary is invalid (CRC32 is wrong), then we repair it from secondary. |
| * If secondary is invalid (CRC32 is wrong), then we repair it from primary. |
| * This function returns the bitmasks for modified header. |
| * Note that CRC value is NOT re-computed in this function. UpdateCrc() will |
| * do it later. |
| */ |
| uint8_t RepairHeader(GptData *gpt, const uint32_t valid_headers) { |
| GptHeader *primary_header, *secondary_header; |
| |
| primary_header = (GptHeader*)gpt->primary_header; |
| secondary_header = (GptHeader*)gpt->secondary_header; |
| |
| if (valid_headers == MASK_BOTH) { |
| if (!IsSynonymous(primary_header, secondary_header)) { |
| CopySynonymousParts(secondary_header, primary_header); |
| return GPT_MODIFIED_HEADER2; |
| } |
| } else if (valid_headers == MASK_PRIMARY) { |
| memcpy(secondary_header, primary_header, sizeof(GptHeader)); |
| secondary_header->my_lba = gpt->gpt_drive_sectors - 1; /* the last sector */ |
| secondary_header->alternate_lba = primary_header->my_lba; |
| secondary_header->entries_lba = secondary_header->my_lba - |
| CalculateEntriesSectors(primary_header); |
| return GPT_MODIFIED_HEADER2; |
| } else if (valid_headers == MASK_SECONDARY) { |
| memcpy(primary_header, secondary_header, sizeof(GptHeader)); |
| primary_header->my_lba = GPT_PMBR_SECTORS; /* the second sector on drive */ |
| primary_header->alternate_lba = secondary_header->my_lba; |
| /* TODO (namnguyen): Preserve (header, entries) padding space. */ |
| primary_header->entries_lba = primary_header->my_lba + GPT_HEADER_SECTORS; |
| return GPT_MODIFIED_HEADER1; |
| } |
| |
| return 0; |
| } |
| |
| int CgptGetNumNonEmptyPartitions(CgptShowParams *params) { |
| struct drive drive; |
| int gpt_retval; |
| int retval; |
| |
| if (params == NULL) |
| return CGPT_FAILED; |
| |
| if (CGPT_OK != DriveOpen(params->drive_name, &drive, O_RDONLY, |
| params->drive_size)) |
| return CGPT_FAILED; |
| |
| if (GPT_SUCCESS != (gpt_retval = GptSanityCheck(&drive.gpt))) { |
| Error("GptSanityCheck() returned %d: %s\n", |
| gpt_retval, GptError(gpt_retval)); |
| retval = CGPT_FAILED; |
| goto done; |
| } |
| |
| params->num_partitions = 0; |
| int numEntries = GetNumberOfEntries(&drive); |
| int i; |
| for(i = 0; i < numEntries; i++) { |
| GptEntry *entry = GetEntry(&drive.gpt, ANY_VALID, i); |
| if (GuidIsZero(&entry->type)) |
| continue; |
| |
| params->num_partitions++; |
| } |
| |
| retval = CGPT_OK; |
| |
| done: |
| DriveClose(&drive, 0); |
| return retval; |
| } |
| |
| int GuidEqual(const Guid *guid1, const Guid *guid2) { |
| return (0 == memcmp(guid1, guid2, sizeof(Guid))); |
| } |
| |
| int GuidIsZero(const Guid *gp) { |
| return GuidEqual(gp, &guid_unused); |
| } |
| |
| void PMBRToStr(struct pmbr *pmbr, char *str, unsigned int buflen) { |
| char buf[GUID_STRLEN]; |
| if (GuidIsZero(&pmbr->boot_guid)) { |
| require(snprintf(str, buflen, "PMBR") < buflen); |
| } else { |
| GuidToStr(&pmbr->boot_guid, buf, sizeof(buf)); |
| require(snprintf(str, buflen, "PMBR (Boot GUID: %s)", buf) < buflen); |
| } |
| } |
| |
| /* Optional */ |
| int __GenerateGuid(Guid *newguid) { return CGPT_FAILED; }; |
| #ifndef HAVE_MACOS |
| int GenerateGuid(Guid *newguid) __attribute__((weak, alias("__GenerateGuid"))); |
| #endif |