blob: 647ea45bf86101d0856935ebba719fef57afffcc [file] [log] [blame]
//! Support for creating futures that represent intervals.
//!
//! This module contains the `Interval` type which is a stream that will
//! resolve at a fixed intervals in future
use std::io;
use std::time::{Duration, Instant};
use futures::{Poll, Async};
use futures::stream::{Stream};
use reactor::{Remote, Handle};
use reactor::timeout_token::TimeoutToken;
/// A stream representing notifications at fixed interval
///
/// Intervals are created through the `Interval::new` or
/// `Interval::new_at` methods indicating when a first notification
/// should be triggered and when it will be repeated.
///
/// Note that timeouts are not intended for high resolution timers, but rather
/// they will likely fire some granularity after the exact instant that they're
/// otherwise indicated to fire at.
pub struct Interval {
token: TimeoutToken,
next: Instant,
interval: Duration,
handle: Remote,
}
impl Interval {
/// Creates a new interval which will fire at `dur` time into the future,
/// and will repeat every `dur` interval after
///
/// This function will return a future that will resolve to the actual
/// interval object. The interval object itself is then a stream which will
/// be set to fire at the specified intervals
pub fn new(dur: Duration, handle: &Handle) -> io::Result<Interval> {
Interval::new_at(Instant::now() + dur, dur, handle)
}
/// Creates a new interval which will fire at the time specified by `at`,
/// and then will repeat every `dur` interval after
///
/// This function will return a future that will resolve to the actual
/// timeout object. The timeout object itself is then a future which will be
/// set to fire at the specified point in the future.
pub fn new_at(at: Instant, dur: Duration, handle: &Handle)
-> io::Result<Interval>
{
Ok(Interval {
token: try!(TimeoutToken::new(at, &handle)),
next: at,
interval: dur,
handle: handle.remote().clone(),
})
}
/// Polls this `Interval` instance to see if it's elapsed, assuming the
/// current time is specified by `now`.
///
/// The `Future::poll` implementation for `Interval` will call `Instant::now`
/// each time it's invoked, but in some contexts this can be a costly
/// operation. This method is provided to amortize the cost by avoiding
/// usage of `Instant::now`, assuming that it's been called elsewhere.
///
/// This function takes the assumed current time as the first parameter and
/// otherwise functions as this future's `poll` function. This will block a
/// task if one isn't already blocked or update a previous one if already
/// blocked.
fn poll_at(&mut self, now: Instant) -> Poll<Option<()>, io::Error> {
if self.next <= now {
self.next = next_interval(self.next, now, self.interval);
self.token.reset_timeout(self.next, &self.handle);
Ok(Async::Ready(Some(())))
} else {
self.token.update_timeout(&self.handle);
Ok(Async::NotReady)
}
}
}
impl Stream for Interval {
type Item = ();
type Error = io::Error;
fn poll(&mut self) -> Poll<Option<()>, io::Error> {
// TODO: is this fast enough?
self.poll_at(Instant::now())
}
}
impl Drop for Interval {
fn drop(&mut self) {
self.token.cancel_timeout(&self.handle);
}
}
/// Converts Duration object to raw nanoseconds if possible
///
/// This is useful to divide intervals.
///
/// While technically for large duration it's impossible to represent any
/// duration as nanoseconds, the largest duration we can represent is about
/// 427_000 years. Large enough for any interval we would use or calculate in
/// tokio.
fn duration_to_nanos(dur: Duration) -> Option<u64> {
dur.as_secs()
.checked_mul(1_000_000_000)
.and_then(|v| v.checked_add(dur.subsec_nanos() as u64))
}
fn next_interval(prev: Instant, now: Instant, interval: Duration) -> Instant {
let new = prev + interval;
if new > now {
return new;
} else {
let spent_ns = duration_to_nanos(now.duration_since(prev))
.expect("interval should be expired");
let interval_ns = duration_to_nanos(interval)
.expect("interval is less that 427 thousand years");
let mult = spent_ns/interval_ns + 1;
assert!(mult < (1 << 32),
"can't skip more than 4 billion intervals of {:?} \
(trying to skip {})", interval, mult);
return prev + interval * (mult as u32);
}
}
#[cfg(test)]
mod test {
use std::time::{Instant, Duration};
use super::next_interval;
struct Timeline(Instant);
impl Timeline {
fn new() -> Timeline {
Timeline(Instant::now())
}
fn at(&self, millis: u64) -> Instant {
self.0 + Duration::from_millis(millis)
}
fn at_ns(&self, sec: u64, nanos: u32) -> Instant {
self.0 + Duration::new(sec, nanos)
}
}
fn dur(millis: u64) -> Duration {
Duration::from_millis(millis)
}
// The math around Instant/Duration isn't 100% precise due to rounding
// errors, see #249 for more info
fn almost_eq(a: Instant, b: Instant) -> bool {
if a == b {
true
} else if a > b {
a - b < Duration::from_millis(1)
} else {
b - a < Duration::from_millis(1)
}
}
#[test]
fn norm_next() {
let tm = Timeline::new();
assert!(almost_eq(next_interval(tm.at(1), tm.at(2), dur(10)),
tm.at(11)));
assert!(almost_eq(next_interval(tm.at(7777), tm.at(7788), dur(100)),
tm.at(7877)));
assert!(almost_eq(next_interval(tm.at(1), tm.at(1000), dur(2100)),
tm.at(2101)));
}
#[test]
fn fast_forward() {
let tm = Timeline::new();
assert!(almost_eq(next_interval(tm.at(1), tm.at(1000), dur(10)),
tm.at(1001)));
assert!(almost_eq(next_interval(tm.at(7777), tm.at(8888), dur(100)),
tm.at(8977)));
assert!(almost_eq(next_interval(tm.at(1), tm.at(10000), dur(2100)),
tm.at(10501)));
}
/// TODO: this test actually should be successful, but since we can't
/// multiply Duration on anything larger than u32 easily we decided
/// to allow it to fail for now
#[test]
#[should_panic(expected = "can't skip more than 4 billion intervals")]
fn large_skip() {
let tm = Timeline::new();
assert_eq!(next_interval(
tm.at_ns(0, 1), tm.at_ns(25, 0), Duration::new(0, 2)),
tm.at_ns(25, 1));
}
}