blob: 93cf0a19cb01ca5a8fdad3bad2787aacb9bb4d0d [file] [log] [blame]
//! A simple binary heap with support for removal of arbitrary elements
//!
//! This heap is used to manage timer state in the event loop. All timeouts go
//! into this heap and we also cancel timeouts from this heap. The crucial
//! feature of this heap over the standard library's `BinaryHeap` is the ability
//! to remove arbitrary elements. (e.g. when a timer is canceled)
//!
//! Note that this heap is not at all optimized right now, it should hopefully
//! just work.
use std::mem;
use slab::Slab;
pub struct Heap<T> {
// Binary heap of items, plus the slab index indicating what position in the
// list they're in.
items: Vec<(T, usize)>,
// A map from a slab index (assigned to an item above) to the actual index
// in the array the item appears at.
index: Slab<usize>,
}
pub struct Slot {
idx: usize,
}
impl<T: Ord> Heap<T> {
pub fn new() -> Heap<T> {
Heap {
items: Vec::new(),
index: Slab::with_capacity(128),
}
}
/// Pushes an element onto this heap, returning a slot token indicating
/// where it was pushed on to.
///
/// The slot can later get passed to `remove` to remove the element from the
/// heap, but only if the element was previously not removed from the heap.
pub fn push(&mut self, t: T) -> Slot {
self.assert_consistent();
let len = self.items.len();
if self.index.len() == self.index.capacity() {
self.index.reserve_exact(len);
}
let slot_idx = self.index.insert(len);
self.items.push((t, slot_idx));
self.percolate_up(len);
self.assert_consistent();
Slot { idx: slot_idx }
}
pub fn peek(&self) -> Option<&T> {
self.assert_consistent();
self.items.get(0).map(|i| &i.0)
}
pub fn pop(&mut self) -> Option<T> {
self.assert_consistent();
if self.items.len() == 0 {
return None
}
let slot = Slot { idx: self.items[0].1 };
Some(self.remove(slot))
}
pub fn remove(&mut self, slot: Slot) -> T {
self.assert_consistent();
let idx = self.index.remove(slot.idx);
let (item, slot_idx) = self.items.swap_remove(idx);
debug_assert_eq!(slot.idx, slot_idx);
if idx < self.items.len() {
self.index[self.items[idx].1] = idx;
if self.items[idx].0 < item {
self.percolate_up(idx);
} else {
self.percolate_down(idx);
}
}
self.assert_consistent();
return item
}
fn percolate_up(&mut self, mut idx: usize) -> usize {
while idx > 0 {
let parent = (idx - 1) / 2;
if self.items[idx].0 >= self.items[parent].0 {
break
}
let (a, b) = self.items.split_at_mut(idx);
mem::swap(&mut a[parent], &mut b[0]);
self.index[a[parent].1] = parent;
self.index[b[0].1] = idx;
idx = parent;
}
return idx
}
fn percolate_down(&mut self, mut idx: usize) -> usize {
loop {
let left = 2 * idx + 1;
let right = 2 * idx + 2;
let mut swap_left = true;
match (self.items.get(left), self.items.get(right)) {
(Some(left), None) => {
if left.0 >= self.items[idx].0 {
break
}
}
(Some(left), Some(right)) => {
if left.0 < self.items[idx].0 {
if right.0 < left.0 {
swap_left = false;
}
} else if right.0 < self.items[idx].0 {
swap_left = false;
} else {
break
}
}
(None, None) => break,
(None, Some(_right)) => panic!("not possible"),
}
let (a, b) = if swap_left {
self.items.split_at_mut(left)
} else {
self.items.split_at_mut(right)
};
mem::swap(&mut a[idx], &mut b[0]);
self.index[a[idx].1] = idx;
self.index[b[0].1] = a.len();
idx = a.len();
}
return idx
}
fn assert_consistent(&self) {
if !cfg!(assert_timer_heap_consistent) {
return
}
assert_eq!(self.items.len(), self.index.len());
for (i, &(_, j)) in self.items.iter().enumerate() {
if self.index[j] != i {
panic!("self.index[j] != i : i={} j={} self.index[j]={}",
i, j, self.index[j]);
}
}
for (i, &(ref item, _)) in self.items.iter().enumerate() {
if i > 0 {
assert!(*item >= self.items[(i - 1) / 2].0, "bad at index: {}", i);
}
if let Some(left) = self.items.get(2 * i + 1) {
assert!(*item <= left.0, "bad left at index: {}", i);
}
if let Some(right) = self.items.get(2 * i + 2) {
assert!(*item <= right.0, "bad right at index: {}", i);
}
}
}
}
#[cfg(test)]
mod tests {
use super::Heap;
#[test]
fn simple() {
let mut h = Heap::new();
h.push(1);
h.push(2);
h.push(8);
h.push(4);
assert_eq!(h.pop(), Some(1));
assert_eq!(h.pop(), Some(2));
assert_eq!(h.pop(), Some(4));
assert_eq!(h.pop(), Some(8));
assert_eq!(h.pop(), None);
assert_eq!(h.pop(), None);
}
#[test]
fn simple2() {
let mut h = Heap::new();
h.push(5);
h.push(4);
h.push(3);
h.push(2);
h.push(1);
assert_eq!(h.pop(), Some(1));
h.push(8);
assert_eq!(h.pop(), Some(2));
h.push(1);
assert_eq!(h.pop(), Some(1));
assert_eq!(h.pop(), Some(3));
assert_eq!(h.pop(), Some(4));
h.push(5);
assert_eq!(h.pop(), Some(5));
assert_eq!(h.pop(), Some(5));
assert_eq!(h.pop(), Some(8));
}
#[test]
fn remove() {
let mut h = Heap::new();
h.push(5);
h.push(4);
h.push(3);
let two = h.push(2);
h.push(1);
assert_eq!(h.pop(), Some(1));
assert_eq!(h.remove(two), 2);
h.push(1);
assert_eq!(h.pop(), Some(1));
assert_eq!(h.pop(), Some(3));
}
fn vec2heap<T: Ord>(v: Vec<T>) -> Heap<T> {
let mut h = Heap::new();
for t in v {
h.push(t);
}
return h
}
#[test]
fn test_peek_and_pop() {
let data = vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1];
let mut sorted = data.clone();
sorted.sort();
let mut heap = vec2heap(data);
while heap.peek().is_some() {
assert_eq!(heap.peek().unwrap(), sorted.first().unwrap());
assert_eq!(heap.pop().unwrap(), sorted.remove(0));
}
}
#[test]
fn test_push() {
let mut heap = Heap::new();
heap.push(-2);
heap.push(-4);
heap.push(-9);
assert!(*heap.peek().unwrap() == -9);
heap.push(-11);
assert!(*heap.peek().unwrap() == -11);
heap.push(-5);
assert!(*heap.peek().unwrap() == -11);
heap.push(-27);
assert!(*heap.peek().unwrap() == -27);
heap.push(-3);
assert!(*heap.peek().unwrap() == -27);
heap.push(-103);
assert!(*heap.peek().unwrap() == -103);
}
fn check_to_vec(mut data: Vec<i32>) {
let mut heap = Heap::new();
for data in data.iter() {
heap.push(*data);
}
data.sort();
let mut v = Vec::new();
while let Some(i) = heap.pop() {
v.push(i);
}
assert_eq!(v, data);
}
#[test]
fn test_to_vec() {
check_to_vec(vec![]);
check_to_vec(vec![5]);
check_to_vec(vec![3, 2]);
check_to_vec(vec![2, 3]);
check_to_vec(vec![5, 1, 2]);
check_to_vec(vec![1, 100, 2, 3]);
check_to_vec(vec![1, 3, 5, 7, 9, 2, 4, 6, 8, 0]);
check_to_vec(vec![2, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1]);
check_to_vec(vec![9, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0]);
check_to_vec(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
check_to_vec(vec![10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]);
check_to_vec(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2]);
check_to_vec(vec![5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1]);
}
#[test]
fn test_empty_pop() {
let mut heap = Heap::<i32>::new();
assert!(heap.pop().is_none());
}
#[test]
fn test_empty_peek() {
let empty = Heap::<i32>::new();
assert!(empty.peek().is_none());
}
}