blob: 810fd04838fd5398f21ea4ab2b81810a8705eac0 [file] [log] [blame]
//! A multithreaded version of an echo server
//!
//! This server implements the same functionality as the `echo` example, except
//! that this example will use all cores of the machine to do I/O instead of
//! just one. This examples works by having the main thread using blocking I/O
//! and shipping accepted sockets to worker threads in a round-robin fashion.
//!
//! To see this server in action, you can run this in one terminal:
//!
//! cargo run --example echo-threads
//!
//! and in another terminal you can run:
//!
//! cargo run --example connect 127.0.0.1:8080
extern crate futures;
extern crate num_cpus;
extern crate tokio_core;
extern crate tokio_io;
use std::env;
use std::net::{self, SocketAddr};
use std::thread;
use futures::Future;
use futures::stream::Stream;
use futures::sync::mpsc;
use tokio_io::AsyncRead;
use tokio_io::io::copy;
use tokio_core::net::TcpStream;
use tokio_core::reactor::Core;
fn main() {
// First argument, the address to bind
let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
let addr = addr.parse::<SocketAddr>().unwrap();
// Second argument, the number of threads we'll be using
let num_threads = env::args().nth(2).and_then(|s| s.parse().ok())
.unwrap_or(num_cpus::get());
// Use `std::net` to bind the requested port, we'll use this on the main
// thread below
let listener = net::TcpListener::bind(&addr).expect("failed to bind");
println!("Listening on: {}", addr);
// Spin up our worker threads, creating a channel routing to each worker
// thread that we'll use below.
let mut channels = Vec::new();
for _ in 0..num_threads {
let (tx, rx) = mpsc::unbounded();
channels.push(tx);
thread::spawn(|| worker(rx));
}
// Infinitely accept sockets from our `std::net::TcpListener`, as this'll do
// blocking I/O. Each socket is then shipped round-robin to a particular
// thread which will associate the socket with the corresponding event loop
// and process the connection.
let mut next = 0;
for socket in listener.incoming() {
let socket = socket.expect("failed to accept");
channels[next].unbounded_send(socket).expect("worker thread died");
next = (next + 1) % channels.len();
}
}
fn worker(rx: mpsc::UnboundedReceiver<net::TcpStream>) {
let mut core = Core::new().unwrap();
let handle = core.handle();
let done = rx.for_each(move |socket| {
// First up when we receive a socket we associate it with our event loop
// using the `TcpStream::from_stream` API. After that the socket is not
// a `tokio_core::net::TcpStream` meaning it's in nonblocking mode and
// ready to be used with Tokio
let socket = TcpStream::from_stream(socket, &handle)
.expect("failed to associate TCP stream");
let addr = socket.peer_addr().expect("failed to get remote address");
// Like the single-threaded `echo` example we split the socket halves
// and use the `copy` helper to ship bytes back and forth. Afterwards we
// spawn the task to run concurrently on this thread, and then print out
// what happened afterwards
let (reader, writer) = socket.split();
let amt = copy(reader, writer);
let msg = amt.then(move |result| {
match result {
Ok((amt, _, _)) => println!("wrote {} bytes to {}", amt, addr),
Err(e) => println!("error on {}: {}", addr, e),
}
Ok(())
});
handle.spawn(msg);
Ok(())
});
core.run(done).unwrap();
}