blob: 79692237f16768275401c788ca6a69da4ec2b13f [file] [log] [blame]
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef TINK_REGISTRY_H_
#define TINK_REGISTRY_H_
#include <mutex> // NOLINT(build/c++11)
#include <typeinfo>
#include <unordered_map>
#include "tink/catalogue.h"
#include "tink/key_manager.h"
#include "tink/keyset_handle.h"
#include "tink/primitive_set.h"
#include "tink/util/errors.h"
#include "tink/util/protobuf_helper.h"
#include "tink/util/status.h"
#include "tink/util/validation.h"
#include "proto/tink.pb.h"
namespace crypto {
namespace tink {
// Registry for KeyMangers.
//
// It is essentially a big container (map) that for each supported key
// type holds a corresponding KeyManager object, which "understands"
// the key type (i.e. the KeyManager can instantiate the primitive
// corresponding to given key, or can generate new keys of the
// supported key type). Registry is initialized at startup, and is
// later used to instantiate primitives for given keys or keysets.
// Keeping KeyManagers for all primitives in a single Registry (rather
// than having a separate KeyManager per primitive) enables modular
// construction of compound primitives from "simple" ones, e.g.,
// AES-CTR-HMAC AEAD encryption uses IND-CPA encryption and a MAC.
//
// Note that regular users will usually not work directly with
// Registry, but rather via primitive factories, which in the
// background query the Registry for specific KeyManagers. Registry
// is public though, to enable configurations with custom primitives
// and KeyManagers.
class Registry {
public:
// Returns a catalogue with the given name (if any found).
// Keeps the ownership of the catalogue.
// TODO(przydatek): consider changing return value to
// StatusOr<std::reference_wrapper<KeyManager<P>>>
// (cannot return reference directly, as StatusOr does not support it,
// see https://goo.gl/x0ymDz)
template <class P>
static crypto::tink::util::StatusOr<const Catalogue<P>*> get_catalogue(
const std::string& catalogue_name);
// Adds the given 'catalogue' under the specified 'catalogue_name',
// to enable custom configuration of key types and key managers.
//
// Adding a custom catalogue should be a one-time operation,
// and fails if the given 'catalogue' tries to override
// an existing, different catalogue for the specified name.
//
// Takes ownership of 'catalogue', which must be non-nullptr
// (in case of failure, 'catalogue' is deleted).
template <class P>
static crypto::tink::util::Status AddCatalogue(
const std::string& catalogue_name, Catalogue<P>* catalogue);
// Registers the given 'manager' for the key type 'manager->get_key_type()'.
// Takes ownership of 'manager', which must be non-nullptr.
template <class P>
static crypto::tink::util::Status RegisterKeyManager(
KeyManager<P>* manager, bool new_key_allowed);
template <class P>
static crypto::tink::util::Status RegisterKeyManager(KeyManager<P>* manager) {
return RegisterKeyManager(manager, /* new_key_allowed= */ true);
}
// Returns a key manager for the given type_url (if any found).
// Keeps the ownership of the manager.
// TODO(przydatek): consider changing return value to
// StatusOr<std::reference_wrapper<KeyManager<P>>>
// (cannot return reference directly, as StatusOr does not support it,
// see https://goo.gl/x0ymDz)
template <class P>
static crypto::tink::util::StatusOr<const KeyManager<P>*> get_key_manager(
const std::string& type_url);
// Convenience method for creating a new primitive for the key given
// in 'key_data'. It looks up a KeyManager identified by key_data.type_url,
// and calls manager's GetPrimitive(key_data)-method.
template <class P>
static crypto::tink::util::StatusOr<std::unique_ptr<P>> GetPrimitive(
const google::crypto::tink::KeyData& key_data);
// Convenience method for creating a new primitive for the key given
// in 'key'. It looks up a KeyManager identified by type_url,
// and calls manager's GetPrimitive(key)-method.
template <class P>
static crypto::tink::util::StatusOr<std::unique_ptr<P>> GetPrimitive(
const std::string& type_url, const portable_proto::MessageLite& key);
// Creates a set of primitives corresponding to the keys with
// (status == ENABLED) in the keyset given in 'keyset_handle',
// assuming all the corresponding key managers are present (keys
// with (status != ENABLED) are skipped).
//
// The returned set is usually later "wrapped" into a class that
// implements the corresponding Primitive-interface.
template <class P>
static crypto::tink::util::StatusOr<std::unique_ptr<PrimitiveSet<P>>>
GetPrimitives(const KeysetHandle& keyset_handle,
const KeyManager<P>* custom_manager);
// Generates a new KeyData for the specified 'key_template'.
// It looks up a KeyManager identified by key_template.type_url,
// and calls KeyManager::NewKeyData.
// This method should be used solely for key management.
static crypto::tink::util::StatusOr<
std::unique_ptr<google::crypto::tink::KeyData>>
NewKeyData(const google::crypto::tink::KeyTemplate& key_template);
// Convenience method for extracting the public key data from the
// private key given in serialized_private_key.
// It looks up a KeyManager identified by type_url, which must
// be a PrivateKeyManager, and calls PrivateKeyManager::GetPublicKeyData.
static crypto::tink::util::StatusOr<
std::unique_ptr<google::crypto::tink::KeyData>>
GetPublicKeyData(const std::string& type_url,
const std::string& serialized_private_key);
// Resets the registry.
// After reset the registry is empty, i.e. it contains neither catalogues
// nor key managers. This method is intended for testing only.
static void Reset();
private:
typedef std::unordered_map<std::string,
std::unique_ptr<void, void (*)(void*)>>
LabelToObjectMap;
typedef std::unordered_map<std::string, const char*> LabelToTypeNameMap;
typedef std::unordered_map<std::string, bool> LabelToBoolMap;
typedef std::unordered_map<std::string, const KeyFactory*>
LabelToKeyFactoryMap;
static std::recursive_mutex maps_mutex_;
// Maps for key manager data.
static LabelToObjectMap type_to_manager_map_; // guarded by maps_mutex_
static LabelToTypeNameMap type_to_primitive_map_; // guarded by maps_mutex_
static LabelToBoolMap type_to_new_key_allowed_map_; // by maps_mutex_
static LabelToKeyFactoryMap type_to_key_factory_map_; // by maps_mutex_
// Maps for catalogue-data.
static LabelToObjectMap name_to_catalogue_map_; // guarded by maps_mutex_
static LabelToTypeNameMap name_to_primitive_map_; // guarded by maps_mutex_
static crypto::tink::util::StatusOr<bool> get_new_key_allowed(
const std::string& type_url);
static crypto::tink::util::StatusOr<const KeyFactory*> get_key_factory(
const std::string& type_url);
};
///////////////////////////////////////////////////////////////////////////////
// Implementation details.
template <class P>
void delete_manager(void* t) {
delete static_cast<KeyManager<P>*>(t);
}
template <class P>
void delete_catalogue(void* t) {
delete static_cast<Catalogue<P>*>(t);
}
// static
template <class P>
crypto::tink::util::Status Registry::AddCatalogue(
const std::string& catalogue_name, Catalogue<P>* catalogue) {
if (catalogue == nullptr) {
return crypto::tink::util::Status(
crypto::tink::util::error::INVALID_ARGUMENT,
"Parameter 'catalogue' must be non-null.");
}
std::unique_ptr<void, void (*)(void*)> entry(catalogue, delete_catalogue<P>);
std::lock_guard<std::recursive_mutex> lock(maps_mutex_);
auto curr_catalogue = name_to_catalogue_map_.find(catalogue_name);
if (curr_catalogue != name_to_catalogue_map_.end()) {
auto existing = static_cast<Catalogue<P>*>(curr_catalogue->second.get());
if (typeid(*existing).name() != typeid(*catalogue).name()) {
return ToStatusF(crypto::tink::util::error::ALREADY_EXISTS,
"A catalogue named '%s' has been already added.",
catalogue_name.c_str());
}
} else {
name_to_catalogue_map_.insert(
std::make_pair(catalogue_name, std::move(entry)));
name_to_primitive_map_.insert(
std::make_pair(catalogue_name, typeid(P).name()));
}
return crypto::tink::util::Status::OK;
}
// static
template <class P>
crypto::tink::util::StatusOr<const Catalogue<P>*> Registry::get_catalogue(
const std::string& catalogue_name) {
std::lock_guard<std::recursive_mutex> lock(maps_mutex_);
auto catalogue_entry = name_to_catalogue_map_.find(catalogue_name);
if (catalogue_entry == name_to_catalogue_map_.end()) {
return ToStatusF(crypto::tink::util::error::NOT_FOUND,
"No catalogue named '%s' has been added.",
catalogue_name.c_str());
}
if (name_to_primitive_map_[catalogue_name] != typeid(P).name()) {
return ToStatusF(crypto::tink::util::error::INVALID_ARGUMENT,
"Wrong Primitive type for catalogue named '%s': "
"got '%s', expected '%s'",
catalogue_name.c_str(), typeid(P).name(),
name_to_primitive_map_[catalogue_name]);
}
return static_cast<Catalogue<P>*>(catalogue_entry->second.get());
}
// static
template <class P>
crypto::tink::util::Status Registry::RegisterKeyManager(
KeyManager<P>* manager, bool new_key_allowed) {
if (manager == nullptr) {
return crypto::tink::util::Status(
crypto::tink::util::error::INVALID_ARGUMENT,
"Parameter 'manager' must be non-null.");
}
std::string type_url = manager->get_key_type();
std::unique_ptr<void, void (*)(void*)> entry(manager, delete_manager<P>);
if (!manager->DoesSupport(type_url)) {
return ToStatusF(crypto::tink::util::error::INVALID_ARGUMENT,
"The manager does not support type '%s'.",
type_url.c_str());
}
std::lock_guard<std::recursive_mutex> lock(maps_mutex_);
auto curr_manager = type_to_manager_map_.find(type_url);
if (curr_manager != type_to_manager_map_.end()) {
auto existing = static_cast<KeyManager<P>*>(curr_manager->second.get());
if (typeid(*existing).name() != typeid(*manager).name()) {
return ToStatusF(crypto::tink::util::error::ALREADY_EXISTS,
"A manager for type '%s' has been already registered.",
type_url.c_str());
} else {
auto curr_new_key_allowed = type_to_new_key_allowed_map_.find(type_url);
if (!curr_new_key_allowed->second && new_key_allowed) {
return ToStatusF(crypto::tink::util::error::ALREADY_EXISTS,
"A manager for type '%s' has been already registered "
"with forbidden new key operation.",
type_url.c_str());
} else {
curr_new_key_allowed->second = new_key_allowed;
}
}
} else {
type_to_manager_map_.insert(
std::make_pair(type_url, std::move(entry)));
type_to_primitive_map_.insert(
std::make_pair(type_url, typeid(P).name()));
type_to_new_key_allowed_map_.insert(
std::make_pair(type_url, new_key_allowed));
type_to_key_factory_map_.insert(
std::make_pair(type_url, &(manager->get_key_factory())));
}
return crypto::tink::util::Status::OK;
}
// static
template <class P>
crypto::tink::util::StatusOr<const KeyManager<P>*> Registry::get_key_manager(
const std::string& type_url) {
std::lock_guard<std::recursive_mutex> lock(maps_mutex_);
auto manager_entry = type_to_manager_map_.find(type_url);
if (manager_entry == type_to_manager_map_.end()) {
return ToStatusF(crypto::tink::util::error::NOT_FOUND,
"No manager for type '%s' has been registered.",
type_url.c_str());
}
if (type_to_primitive_map_[type_url] != typeid(P).name()) {
return ToStatusF(crypto::tink::util::error::INVALID_ARGUMENT,
"Wrong Primitive type for key type '%s': "
"got '%s', expected '%s'",
type_url.c_str(), typeid(P).name(),
type_to_primitive_map_[type_url]);
}
return static_cast<KeyManager<P>*>(manager_entry->second.get());
}
// static
template <class P>
crypto::tink::util::StatusOr<std::unique_ptr<P>> Registry::GetPrimitive(
const google::crypto::tink::KeyData& key_data) {
auto key_manager_result = get_key_manager<P>(key_data.type_url());
if (key_manager_result.ok()) {
return key_manager_result.ValueOrDie()->GetPrimitive(key_data);
}
return key_manager_result.status();
}
// static
template <class P>
crypto::tink::util::StatusOr<std::unique_ptr<P>> Registry::GetPrimitive(
const std::string& type_url, const portable_proto::MessageLite& key) {
auto key_manager_result = get_key_manager<P>(type_url);
if (key_manager_result.ok()) {
return key_manager_result.ValueOrDie()->GetPrimitive(key);
}
return key_manager_result.status();
}
// static
template <class P>
crypto::tink::util::StatusOr<std::unique_ptr<PrimitiveSet<P>>>
Registry::GetPrimitives(const KeysetHandle& keyset_handle,
const KeyManager<P>* custom_manager) {
crypto::tink::util::Status status =
ValidateKeyset(keyset_handle.get_keyset());
if (!status.ok()) return status;
std::unique_ptr<PrimitiveSet<P>> primitives(new PrimitiveSet<P>());
for (const google::crypto::tink::Keyset::Key& key :
keyset_handle.get_keyset().key()) {
if (key.status() == google::crypto::tink::KeyStatusType::ENABLED) {
std::unique_ptr<P> primitive;
if (custom_manager != nullptr &&
custom_manager->DoesSupport(key.key_data().type_url())) {
auto primitive_result = custom_manager->GetPrimitive(key.key_data());
if (!primitive_result.ok()) return primitive_result.status();
primitive = std::move(primitive_result.ValueOrDie());
} else {
auto primitive_result = GetPrimitive<P>(key.key_data());
if (!primitive_result.ok()) return primitive_result.status();
primitive = std::move(primitive_result.ValueOrDie());
}
auto entry_result = primitives->AddPrimitive(std::move(primitive), key);
if (!entry_result.ok()) return entry_result.status();
if (key.key_id() == keyset_handle.get_keyset().primary_key_id()) {
primitives->set_primary(entry_result.ValueOrDie());
}
}
}
return std::move(primitives);
}
} // namespace tink
} // namespace crypto
#endif // TINK_REGISTRY_H_