blob: 5c4485bf091158689c5a9be1de6eef91d1fc9847 [file] [log] [blame]
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////////////
#include "tink/subtle/ecies_hkdf_recipient_kem_boringssl.h"
#include "absl/memory/memory.h"
#include "openssl/bn.h"
#include "openssl/curve25519.h"
#include "openssl/ec.h"
#include "tink/subtle/common_enums.h"
#include "tink/subtle/hkdf.h"
#include "tink/subtle/subtle_util_boringssl.h"
#include "tink/util/errors.h"
namespace crypto {
namespace tink {
namespace subtle {
// static
util::StatusOr<std::unique_ptr<EciesHkdfRecipientKemBoringSsl>>
EciesHkdfRecipientKemBoringSsl::New(EllipticCurveType curve,
const std::string& priv_key) {
switch (curve) {
case EllipticCurveType::NIST_P256:
case EllipticCurveType::NIST_P384:
case EllipticCurveType::NIST_P521:
return EciesHkdfNistPCurveRecipientKemBoringSsl::New(curve, priv_key);
case EllipticCurveType::CURVE25519:
return EciesHkdfX25519RecipientKemBoringSsl::New(curve, priv_key);
default:
return util::Status(util::error::UNIMPLEMENTED,
"Unsupported elliptic curve");
}
}
// static
util::StatusOr<std::unique_ptr<EciesHkdfRecipientKemBoringSsl>>
EciesHkdfNistPCurveRecipientKemBoringSsl::New(EllipticCurveType curve,
const std::string& priv_key) {
if (priv_key.empty()) {
return util::Status(util::error::INVALID_ARGUMENT, "empty priv_key");
}
auto status_or_ec_group = SubtleUtilBoringSSL::GetEcGroup(curve);
if (!status_or_ec_group.ok()) return status_or_ec_group.status();
// TODO(przydatek): consider refactoring SubtleUtilBoringSSL,
// so that the saved group can be used for KEM operations.
std::unique_ptr<EciesHkdfRecipientKemBoringSsl> recipient_kem(
new EciesHkdfNistPCurveRecipientKemBoringSsl(
curve, priv_key, status_or_ec_group.ValueOrDie()));
return std::move(recipient_kem);
}
EciesHkdfNistPCurveRecipientKemBoringSsl::
EciesHkdfNistPCurveRecipientKemBoringSsl(EllipticCurveType curve,
const std::string& priv_key_value,
EC_GROUP* ec_group)
: curve_(curve), priv_key_value_(priv_key_value), ec_group_(ec_group) {}
util::StatusOr<std::string> EciesHkdfNistPCurveRecipientKemBoringSsl::GenerateKey(
absl::string_view kem_bytes, HashType hash, absl::string_view hkdf_salt,
absl::string_view hkdf_info, uint32_t key_size_in_bytes,
EcPointFormat point_format) const {
auto status_or_ec_point =
SubtleUtilBoringSSL::EcPointDecode(curve_, point_format, kem_bytes);
if (!status_or_ec_point.ok()) {
return ToStatusF(util::error::INVALID_ARGUMENT,
"Invalid KEM bytes: %s",
status_or_ec_point.status().error_message().c_str());
}
bssl::UniquePtr<EC_POINT> pub_key =
std::move(status_or_ec_point.ValueOrDie());
bssl::UniquePtr<BIGNUM> priv_key(
BN_bin2bn(reinterpret_cast<const unsigned char*>(priv_key_value_.data()),
priv_key_value_.size(), nullptr));
auto status_or_string = SubtleUtilBoringSSL::ComputeEcdhSharedSecret(
curve_, priv_key.get(), pub_key.get());
if (!status_or_string.ok()) {
return status_or_string.status();
}
std::string shared_secret(status_or_string.ValueOrDie());
return Hkdf::ComputeEciesHkdfSymmetricKey(
hash, kem_bytes, shared_secret, hkdf_salt, hkdf_info, key_size_in_bytes);
}
EciesHkdfX25519RecipientKemBoringSsl::EciesHkdfX25519RecipientKemBoringSsl(
const std::string& private_key) {
private_key.copy(reinterpret_cast<char*>(private_key_),
X25519_PRIVATE_KEY_LEN);
}
// static
util::StatusOr<std::unique_ptr<EciesHkdfRecipientKemBoringSsl>>
EciesHkdfX25519RecipientKemBoringSsl::New(EllipticCurveType curve,
const std::string& priv_key) {
if (curve != CURVE25519) {
return util::Status(util::error::INVALID_ARGUMENT,
"curve is not CURVE25519");
}
if (priv_key.size() != X25519_PUBLIC_VALUE_LEN) {
return util::Status(util::error::INVALID_ARGUMENT,
"pubx has unexpected length");
}
std::unique_ptr<EciesHkdfRecipientKemBoringSsl> recipient_kem(
new EciesHkdfX25519RecipientKemBoringSsl(priv_key));
return std::move(recipient_kem);
}
crypto::tink::util::StatusOr<std::string>
EciesHkdfX25519RecipientKemBoringSsl::GenerateKey(
absl::string_view kem_bytes, HashType hash, absl::string_view hkdf_salt,
absl::string_view hkdf_info, uint32_t key_size_in_bytes,
EcPointFormat point_format) const {
if (point_format != EcPointFormat::COMPRESSED) {
return util::Status(
util::error::INVALID_ARGUMENT,
"X25519 only supports compressed elliptic curve points");
}
if (kem_bytes.size() != X25519_PUBLIC_VALUE_LEN) {
return util::Status(util::error::INVALID_ARGUMENT,
"kem_bytes has unexpected size");
}
uint8_t shared_key[X25519_SHARED_KEY_LEN];
X25519(shared_key, private_key_,
reinterpret_cast<const uint8_t*>(kem_bytes.data()));
std::string shared_secret(shared_key, &shared_key[X25519_SHARED_KEY_LEN]);
return Hkdf::ComputeEciesHkdfSymmetricKey(
hash, kem_bytes, shared_secret, hkdf_salt, hkdf_info, key_size_in_bytes);
}
} // namespace subtle
} // namespace tink
} // namespace crypto