blob: b82dadd3dae274f642415e49524c95ef3ae19d60 [file] [log] [blame]
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////
#include "tink/subtle/ecdsa_verify_boringssl.h"
#include <iostream>
#include <string>
#include <utility>
#include "gtest/gtest.h"
#include "absl/status/status.h"
#include "absl/strings/str_cat.h"
#include "include/rapidjson/document.h"
#include "tink/config/tink_fips.h"
#include "tink/public_key_sign.h"
#include "tink/public_key_verify.h"
#include "tink/subtle/common_enums.h"
#include "tink/subtle/ecdsa_sign_boringssl.h"
#include "tink/subtle/subtle_util_boringssl.h"
#include "tink/subtle/wycheproof_util.h"
#include "tink/util/status.h"
#include "tink/util/statusor.h"
#include "tink/util/test_matchers.h"
#include "tink/util/test_util.h"
namespace crypto {
namespace tink {
namespace subtle {
namespace {
using ::crypto::tink::test::StatusIs;
class EcdsaVerifyBoringSslTest : public ::testing::Test {};
TEST_F(EcdsaVerifyBoringSslTest, BasicSigning) {
if (IsFipsModeEnabled() && !FIPS_mode()) {
GTEST_SKIP()
<< "Test is skipped if kOnlyUseFips but BoringCrypto is unavailable.";
}
subtle::EcdsaSignatureEncoding encodings[2] = {
EcdsaSignatureEncoding::DER, EcdsaSignatureEncoding::IEEE_P1363};
for (EcdsaSignatureEncoding encoding : encodings) {
auto ec_key_result =
SubtleUtilBoringSSL::GetNewEcKey(EllipticCurveType::NIST_P256);
ASSERT_TRUE(ec_key_result.ok()) << ec_key_result.status();
auto ec_key = std::move(ec_key_result.value());
auto signer_result =
EcdsaSignBoringSsl::New(ec_key, HashType::SHA256, encoding);
ASSERT_TRUE(signer_result.ok()) << signer_result.status();
auto signer = std::move(signer_result.value());
auto verifier_result =
EcdsaVerifyBoringSsl::New(ec_key, HashType::SHA256, encoding);
ASSERT_TRUE(verifier_result.ok()) << verifier_result.status();
auto verifier = std::move(verifier_result.value());
std::string message = "some data to be signed";
auto sign_result = signer->Sign(message);
ASSERT_TRUE(sign_result.ok()) << sign_result.status();
std::string signature = sign_result.value();
EXPECT_NE(signature, message);
auto status = verifier->Verify(signature, message);
EXPECT_TRUE(status.ok()) << status;
status = verifier->Verify(signature + "some trailing data", message);
EXPECT_FALSE(status.ok()) << status;
status = verifier->Verify("some bad signature", message);
EXPECT_FALSE(status.ok());
status = verifier->Verify(signature, "some bad message");
EXPECT_FALSE(status.ok());
}
}
TEST_F(EcdsaVerifyBoringSslTest, EncodingsMismatch) {
if (IsFipsModeEnabled() && !FIPS_mode()) {
GTEST_SKIP()
<< "Test is skipped if kOnlyUseFips but BoringCrypto is unavailable.";
}
subtle::EcdsaSignatureEncoding encodings[2] = {
EcdsaSignatureEncoding::DER, EcdsaSignatureEncoding::IEEE_P1363};
for (EcdsaSignatureEncoding encoding : encodings) {
auto ec_key_result =
SubtleUtilBoringSSL::GetNewEcKey(EllipticCurveType::NIST_P256);
ASSERT_TRUE(ec_key_result.ok()) << ec_key_result.status();
auto ec_key = std::move(ec_key_result.value());
auto signer_result =
EcdsaSignBoringSsl::New(ec_key, HashType::SHA256, encoding);
ASSERT_TRUE(signer_result.ok()) << signer_result.status();
auto signer = std::move(signer_result.value());
auto verifier_result =
EcdsaVerifyBoringSsl::New(ec_key, HashType::SHA256,
encoding == EcdsaSignatureEncoding::DER
? EcdsaSignatureEncoding::IEEE_P1363
: EcdsaSignatureEncoding::DER);
ASSERT_TRUE(verifier_result.ok()) << verifier_result.status();
auto verifier = std::move(verifier_result.value());
std::string message = "some data to be signed";
auto sign_result = signer->Sign(message);
ASSERT_TRUE(sign_result.ok()) << sign_result.status();
std::string signature = sign_result.value();
EXPECT_NE(signature, message);
auto status = verifier->Verify(signature, message);
EXPECT_FALSE(status.ok()) << status;
}
}
TEST_F(EcdsaVerifyBoringSslTest, NewErrors) {
if (IsFipsModeEnabled() && !FIPS_mode()) {
GTEST_SKIP()
<< "Test is skipped if kOnlyUseFips but BoringCrypto is unavailable.";
}
auto ec_key =
SubtleUtilBoringSSL::GetNewEcKey(EllipticCurveType::NIST_P256).value();
auto verifier_result = EcdsaVerifyBoringSsl::New(
ec_key, HashType::SHA1, EcdsaSignatureEncoding::IEEE_P1363);
EXPECT_FALSE(verifier_result.ok()) << verifier_result.status();
}
static util::StatusOr<std::unique_ptr<EcdsaVerifyBoringSsl>> GetVerifier(
const rapidjson::Value& test_group,
subtle::EcdsaSignatureEncoding encoding) {
SubtleUtilBoringSSL::EcKey key;
key.pub_x = WycheproofUtil::GetInteger(test_group["key"]["wx"]);
key.pub_y = WycheproofUtil::GetInteger(test_group["key"]["wy"]);
key.curve = WycheproofUtil::GetEllipticCurveType(test_group["key"]["curve"]);
HashType md = WycheproofUtil::GetHashType(test_group["sha"]);
auto result = EcdsaVerifyBoringSsl::New(key, md, encoding);
if (!result.ok()) {
std::cout << "Failed: " << result.status() << "\n";
}
return result;
}
// Tests signature verification using the test vectors in the specified file.
// allow_skipping determines whether it is OK to skip a test because
// a verfier cannot be constructed. This option can be used for
// if a file contains test vectors that are not necessarily supported
// by tink.
bool TestSignatures(const std::string& filename, bool allow_skipping,
subtle::EcdsaSignatureEncoding encoding) {
std::unique_ptr<rapidjson::Document> root =
WycheproofUtil::ReadTestVectors(filename);
std::cout << (*root)["algorithm"].GetString();
std::cout << "generator version " << (*root)["generatorVersion"].GetString();
std::cout << "expected version 0.2.5";
int passed_tests = 0;
int failed_tests = 0;
for (const rapidjson::Value& test_group : (*root)["testGroups"].GetArray()) {
auto verifier_result = GetVerifier(test_group, encoding);
if (!verifier_result.ok()) {
std::string curve = test_group["key"]["curve"].GetString();
if (allow_skipping) {
std::cout << "Could not construct verifier for curve " << curve
<< verifier_result.status();
} else {
ADD_FAILURE() << "Could not construct verifier for curve " << curve
<< verifier_result.status();
failed_tests += test_group["tests"].GetArray().Size();
}
continue;
}
auto verifier = std::move(verifier_result.value());
for (const rapidjson::Value& test : test_group["tests"].GetArray()) {
std::string expected = test["result"].GetString();
std::string msg = WycheproofUtil::GetBytes(test["msg"]);
std::string sig = WycheproofUtil::GetBytes(test["sig"]);
std::string id =
absl::StrCat(test["tcId"].GetInt(), " ", test["comment"].GetString());
auto status = verifier->Verify(sig, msg);
if (expected == "valid") {
if (status.ok()) {
++passed_tests;
} else {
++failed_tests;
ADD_FAILURE() << "Valid signature not verified:" << id
<< " status:" << status;
}
} else if (expected == "invalid") {
if (!status.ok()) {
++passed_tests;
} else {
++failed_tests;
ADD_FAILURE() << "Invalid signature verified:" << id;
}
} else if (expected == "acceptable") {
// The validity of the signature is undefined. Hence the test passes
// but we log the result since we might still want to know if the
// library is strict or forgiving.
++passed_tests;
std::cout << "Acceptable signature:" << id << ":" << status;
} else {
++failed_tests;
ADD_FAILURE() << "Invalid field result:" << expected;
}
}
}
int num_tests = (*root)["numberOfTests"].GetInt();
std::cout << "total number of tests: " << num_tests;
std::cout << "number of tests passed:" << passed_tests;
std::cout << "number of tests failed:" << failed_tests;
return failed_tests == 0;
}
TEST_F(EcdsaVerifyBoringSslTest, WycheproofCurveP256) {
if (IsFipsModeEnabled() && !FIPS_mode()) {
GTEST_SKIP()
<< "Test is skipped if kOnlyUseFips but BoringCrypto is unavailable.";
}
ASSERT_TRUE(TestSignatures("ecdsa_secp256r1_sha256_test.json", false,
subtle::EcdsaSignatureEncoding::DER));
}
TEST_F(EcdsaVerifyBoringSslTest, WycheproofCurveP384) {
if (IsFipsModeEnabled() && !FIPS_mode()) {
GTEST_SKIP()
<< "Test is skipped if kOnlyUseFips but BoringCrypto is unavailable.";
}
ASSERT_TRUE(TestSignatures("ecdsa_secp384r1_sha512_test.json", false,
subtle::EcdsaSignatureEncoding::DER));
}
TEST_F(EcdsaVerifyBoringSslTest, WycheproofCurveP521) {
if (IsFipsModeEnabled() && !FIPS_mode()) {
GTEST_SKIP()
<< "Test is skipped if kOnlyUseFips but BoringCrypto is unavailable.";
}
ASSERT_TRUE(TestSignatures("ecdsa_secp521r1_sha512_test.json", false,
subtle::EcdsaSignatureEncoding::DER));
}
TEST_F(EcdsaVerifyBoringSslTest, WycheproofWithIeeeP1363Encoding) {
if (IsFipsModeEnabled() && !FIPS_mode()) {
GTEST_SKIP()
<< "Test is skipped if kOnlyUseFips but BoringCrypto is unavailable.";
}
ASSERT_TRUE(TestSignatures("ecdsa_webcrypto_test.json", true,
subtle::EcdsaSignatureEncoding::IEEE_P1363));
}
// FIPS-only mode test
TEST_F(EcdsaVerifyBoringSslTest, TestFipsFailWithoutBoringCrypto) {
if (!IsFipsModeEnabled() || FIPS_mode()) {
GTEST_SKIP()
<< "Test assumes kOnlyUseFips but BoringCrypto is unavailable.";
}
auto ec_key =
SubtleUtilBoringSSL::GetNewEcKey(EllipticCurveType::NIST_P256).value();
EXPECT_THAT(EcdsaVerifyBoringSsl::New(ec_key, HashType::SHA256,
EcdsaSignatureEncoding::DER)
.status(),
StatusIs(absl::StatusCode::kInternal));
ec_key =
SubtleUtilBoringSSL::GetNewEcKey(EllipticCurveType::NIST_P384).value();
EXPECT_THAT(EcdsaVerifyBoringSsl::New(ec_key, HashType::SHA256,
EcdsaSignatureEncoding::DER)
.status(),
StatusIs(absl::StatusCode::kInternal));
ec_key =
SubtleUtilBoringSSL::GetNewEcKey(EllipticCurveType::NIST_P521).value();
EXPECT_THAT(EcdsaVerifyBoringSsl::New(ec_key, HashType::SHA256,
EcdsaSignatureEncoding::DER)
.status(),
StatusIs(absl::StatusCode::kInternal));
}
} // namespace
} // namespace subtle
} // namespace tink
} // namespace crypto