blob: e7c9af84b452812bc105f8bed2d28658d17c6c84 [file] [log] [blame]
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////
// Definitions for Elliptic Curve Digital Signature Algorithm (ECDSA).
syntax = "proto3";
package google.crypto.tink;
import "proto/common.proto";
option java_package = "com.google.crypto.tink.proto";
option java_multiple_files = true;
option objc_class_prefix = "TINKPB";
option go_package = "github.com/google/tink/proto/ecdsa_go_proto";
enum EcdsaSignatureEncoding {
UNKNOWN_ENCODING = 0;
// The signature's format is r || s, where r and s are zero-padded and have the same size in
// bytes as the order of the curve. For example, for NIST P-256 curve, r and s are zero-padded to
// 32 bytes.
IEEE_P1363 = 1;
// The signature is encoded using ASN.1
// (https://tools.ietf.org/html/rfc5480#appendix-A):
// ECDSA-Sig-Value :: = SEQUENCE {
// r INTEGER,
// s INTEGER
// }
DER = 2;
}
// Protos for Ecdsa.
message EcdsaParams {
// Required.
HashType hash_type = 1;
// Required.
EllipticCurveType curve = 2;
// Required.
EcdsaSignatureEncoding encoding = 3;
}
// key_type: type.googleapis.com/google.crypto.tink.EcdsaPublicKey
message EcdsaPublicKey {
// Required.
uint32 version = 1;
// Required.
EcdsaParams params = 2;
// Affine coordinates of the public key in bigendian representation. The
// public key is a point (x, y) on the curve defined by params.curve. For
// ECDH, it is crucial to verify whether the public key point (x, y) is on the
// private's key curve. For ECDSA, such verification is a defense in depth.
// Required.
bytes x = 3;
// Required.
bytes y = 4;
}
// key_type: type.googleapis.com/google.crypto.tink.EcdsaPrivateKey
message EcdsaPrivateKey {
// Required.
uint32 version = 1;
// Required.
EcdsaPublicKey public_key = 2;
// Unsigned big integer in bigendian representation.
// Required.
bytes key_value = 3;
}
message EcdsaKeyFormat {
// Required.
EcdsaParams params = 2;
}