blob: 98339194f687f91ee8e8783285c729a48d4f3f4b [file] [log] [blame] [edit]
// Copyright 2016 syzkaller project authors. All rights reserved.
// Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file.
// This file is shared between executor and csource package.
#include <stdlib.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#if SYZ_EXECUTOR
const int kExtraCoverSize = 256 << 10;
struct cover_t;
static void cover_reset(cover_t* cov);
#endif
#if SYZ_EXECUTOR || SYZ_THREADED
#include <linux/futex.h>
#include <pthread.h>
typedef struct {
int state;
} event_t;
static void event_init(event_t* ev)
{
ev->state = 0;
}
static void event_reset(event_t* ev)
{
ev->state = 0;
}
static void event_set(event_t* ev)
{
if (ev->state)
exitf("event already set");
__atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE);
syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000);
}
static void event_wait(event_t* ev)
{
while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0);
}
static int event_isset(event_t* ev)
{
return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE);
}
static int event_timedwait(event_t* ev, uint64 timeout)
{
uint64 start = current_time_ms();
uint64 now = start;
for (;;) {
uint64 remain = timeout - (now - start);
struct timespec ts;
ts.tv_sec = remain / 1000;
ts.tv_nsec = (remain % 1000) * 1000 * 1000;
syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts);
if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE))
return 1;
now = current_time_ms();
if (now - start > timeout)
return 0;
}
}
#endif
#if SYZ_EXECUTOR || SYZ_REPEAT || SYZ_NET_INJECTION || SYZ_FAULT || SYZ_SANDBOX_NONE || \
SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID || \
SYZ_FAULT || SYZ_LEAK || SYZ_BINFMT_MISC || SYZ_SYSCTL || \
((__NR_syz_usb_connect || __NR_syz_usb_connect_ath9k) && USB_DEBUG) || \
__NR_syz_usbip_server_init
#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
static bool write_file(const char* file, const char* what, ...)
{
char buf[1024];
va_list args;
va_start(args, what);
vsnprintf(buf, sizeof(buf), what, args);
va_end(args);
buf[sizeof(buf) - 1] = 0;
int len = strlen(buf);
int fd = open(file, O_WRONLY | O_CLOEXEC);
if (fd == -1)
return false;
if (write(fd, buf, len) != len) {
int err = errno;
close(fd);
debug("write(%s) failed: %d\n", file, err);
errno = err;
return false;
}
close(fd);
return true;
}
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES || SYZ_NET_INJECTION || SYZ_DEVLINK_PCI || SYZ_WIFI || SYZ_802154 || \
__NR_syz_genetlink_get_family_id || __NR_syz_80211_inject_frame || __NR_syz_80211_join_ibss || SYZ_NIC_VF
#include <arpa/inet.h>
#include <errno.h>
#include <net/if.h>
#include <netinet/in.h>
#include <stdbool.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <linux/genetlink.h>
#include <linux/if_addr.h>
#include <linux/if_link.h>
#include <linux/in6.h>
#include <linux/neighbour.h>
#include <linux/net.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <linux/veth.h>
struct nlmsg {
char* pos;
int nesting;
struct nlattr* nested[8];
char buf[4096];
};
static void netlink_init(struct nlmsg* nlmsg, int typ, int flags,
const void* data, int size)
{
memset(nlmsg, 0, sizeof(*nlmsg));
struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf;
hdr->nlmsg_type = typ;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags;
memcpy(hdr + 1, data, size);
nlmsg->pos = (char*)(hdr + 1) + NLMSG_ALIGN(size);
}
static void netlink_attr(struct nlmsg* nlmsg, int typ,
const void* data, int size)
{
struct nlattr* attr = (struct nlattr*)nlmsg->pos;
attr->nla_len = sizeof(*attr) + size;
attr->nla_type = typ;
if (size > 0)
memcpy(attr + 1, data, size);
nlmsg->pos += NLMSG_ALIGN(attr->nla_len);
}
#if SYZ_EXECUTOR || SYZ_NET_DEVICES || SYZ_802154
static void netlink_nest(struct nlmsg* nlmsg, int typ)
{
struct nlattr* attr = (struct nlattr*)nlmsg->pos;
attr->nla_type = typ;
nlmsg->pos += sizeof(*attr);
nlmsg->nested[nlmsg->nesting++] = attr;
}
static void netlink_done(struct nlmsg* nlmsg)
{
struct nlattr* attr = nlmsg->nested[--nlmsg->nesting];
attr->nla_len = nlmsg->pos - (char*)attr;
}
#if SYZ_EXECUTOR || SYZ_NIC_VF
#include <ifaddrs.h>
#include <linux/ethtool.h>
#include <linux/sockios.h>
#include <sys/ioctl.h>
struct vf_intf {
char pass_thru_intf[IFNAMSIZ];
int ppid; // used by Child
};
static struct vf_intf vf_intf;
static void find_vf_interface(void)
{
#if SYZ_EXECUTOR
if (!flag_nic_vf)
return;
#endif
struct ifaddrs* addresses = NULL;
int pid = getpid();
int ret = 0;
memset(&vf_intf, 0, sizeof(struct vf_intf));
debug("Checking for VF pass-thru interface.\n");
if (getifaddrs(&addresses) == -1) {
debug("%s: getifaddrs() failed.\n", __func__);
return;
}
int fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_IP);
if (fd < 0) {
debug("%s: socket() failed.\n", __func__);
return;
}
struct ifreq ifr;
struct ethtool_drvinfo drvinfo;
struct ifaddrs* address = addresses;
while (address) {
debug("ifa_name: %s\n", address->ifa_name);
memset(&ifr, 0, sizeof(struct ifreq));
strcpy(ifr.ifr_name, address->ifa_name);
memset(&drvinfo, 0, sizeof(struct ethtool_drvinfo));
drvinfo.cmd = ETHTOOL_GDRVINFO;
ifr.ifr_data = (caddr_t)&drvinfo;
ret = ioctl(fd, SIOCETHTOOL, &ifr);
if (ret < 0) {
debug("%s: ioctl() failed.\n", __func__);
} else if (strlen(drvinfo.bus_info)) {
debug("bus_info: %s, strlen(drvinfo.bus_info)=%zu\n",
drvinfo.bus_info, strlen(drvinfo.bus_info));
if (strcmp(drvinfo.bus_info, "0000:00:11.0") == 0) {
if (strlen(address->ifa_name) < IFNAMSIZ) {
strncpy(vf_intf.pass_thru_intf,
address->ifa_name, IFNAMSIZ);
vf_intf.ppid = pid;
} else {
debug("%s: %d strlen(%s) >= IFNAMSIZ.\n",
__func__, pid, address->ifa_name);
}
break;
}
}
address = address->ifa_next;
}
freeifaddrs(addresses);
if (!vf_intf.ppid) {
memset(&vf_intf, 0, sizeof(struct vf_intf));
debug("%s: %d could not find VF pass-thru interface.\n", __func__, pid);
return;
}
debug("%s: %d found VF pass-thru interface %s\n",
__func__, pid, vf_intf.pass_thru_intf);
}
#endif // SYZ_NIC_VF
#endif
static int netlink_send_ext(struct nlmsg* nlmsg, int sock,
uint16 reply_type, int* reply_len, bool dofail)
{
#if SYZ_EXECUTOR
if (in_execute_one && dofail) {
// We can expect different sorts of breakages during fuzzing,
// we should not kill the whole process because of them.
failmsg("invalid netlink_send_ext arguments", "dofail is true during syscall execution");
}
#endif
if (nlmsg->pos > nlmsg->buf + sizeof(nlmsg->buf) || nlmsg->nesting)
fail("nlmsg overflow/bad nesting");
struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf;
hdr->nlmsg_len = nlmsg->pos - nlmsg->buf;
struct sockaddr_nl addr;
memset(&addr, 0, sizeof(addr));
addr.nl_family = AF_NETLINK;
ssize_t n = sendto(sock, nlmsg->buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr));
if (n != (ssize_t)hdr->nlmsg_len) {
if (dofail)
failmsg("netlink_send_ext: short netlink write", "wrote=%zd, want=%d", n, hdr->nlmsg_len);
debug("netlink_send_ext: short netlink write: %zd/%d errno=%d\n", n, hdr->nlmsg_len, errno);
return -1;
}
n = recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0);
if (reply_len)
*reply_len = 0;
if (n < 0) {
if (dofail)
fail("netlink_send_ext: netlink read failed");
debug("netlink_send_ext: netlink read failed: errno=%d\n", errno);
return -1;
}
if (n < (ssize_t)sizeof(struct nlmsghdr)) {
errno = EINVAL;
if (dofail)
failmsg("netlink_send_ext: short netlink read", "read=%zd", n);
debug("netlink_send_ext: short netlink read: %zd\n", n);
return -1;
}
if (hdr->nlmsg_type == NLMSG_DONE)
return 0;
if (reply_len && hdr->nlmsg_type == reply_type) {
*reply_len = n;
return 0;
}
if (n < (ssize_t)(sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr))) {
errno = EINVAL;
if (dofail)
failmsg("netlink_send_ext: short netlink read", "read=%zd", n);
debug("netlink_send_ext: short netlink read: %zd\n", n);
return -1;
}
if (hdr->nlmsg_type != NLMSG_ERROR) {
errno = EINVAL;
if (dofail)
failmsg("netlink_send_ext: bad netlink ack type", "type=%d", hdr->nlmsg_type);
debug("netlink_send_ext: short netlink ack: %d\n", hdr->nlmsg_type);
return -1;
}
errno = -((struct nlmsgerr*)(hdr + 1))->error;
return -errno;
}
#if SYZ_EXECUTOR || SYZ_NET_DEVICES || SYZ_NET_INJECTION || SYZ_DEVLINK_PCI || SYZ_WIFI || SYZ_802154
static int netlink_send(struct nlmsg* nlmsg, int sock)
{
return netlink_send_ext(nlmsg, sock, 0, NULL, true);
}
#endif
static int netlink_query_family_id(struct nlmsg* nlmsg, int sock, const char* family_name, bool dofail)
{
struct genlmsghdr genlhdr;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = CTRL_CMD_GETFAMILY;
netlink_init(nlmsg, GENL_ID_CTRL, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(nlmsg, CTRL_ATTR_FAMILY_NAME, family_name, strnlen(family_name, GENL_NAMSIZ - 1) + 1);
int n = 0;
int err = netlink_send_ext(nlmsg, sock, GENL_ID_CTRL, &n, dofail);
if (err < 0) {
debug("netlink: failed to get family id for %.*s: %s\n", GENL_NAMSIZ, family_name, strerror(errno));
return -1;
}
uint16 id = 0;
struct nlattr* attr = (struct nlattr*)(nlmsg->buf + NLMSG_HDRLEN + NLMSG_ALIGN(sizeof(genlhdr)));
for (; (char*)attr < nlmsg->buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) {
if (attr->nla_type == CTRL_ATTR_FAMILY_ID) {
id = *(uint16*)(attr + 1);
break;
}
}
if (!id) {
debug("netlink: failed to parse family id for %.*s\n", GENL_NAMSIZ, family_name);
errno = EINVAL;
return -1;
}
recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); // recv ack
return id;
}
#if SYZ_EXECUTOR || SYZ_NET_DEVICES || SYZ_DEVLINK_PCI
static int netlink_next_msg(struct nlmsg* nlmsg, unsigned int offset,
unsigned int total_len)
{
struct nlmsghdr* hdr = (struct nlmsghdr*)(nlmsg->buf + offset);
if (offset == total_len || offset + hdr->nlmsg_len > total_len)
return -1;
return hdr->nlmsg_len;
}
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES || SYZ_802154
static void netlink_add_device_impl(struct nlmsg* nlmsg, const char* type,
const char* name, bool up)
{
struct ifinfomsg hdr;
memset(&hdr, 0, sizeof(hdr));
if (up)
hdr.ifi_flags = hdr.ifi_change = IFF_UP;
netlink_init(nlmsg, RTM_NEWLINK, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr));
if (name)
netlink_attr(nlmsg, IFLA_IFNAME, name, strlen(name));
netlink_nest(nlmsg, IFLA_LINKINFO);
netlink_attr(nlmsg, IFLA_INFO_KIND, type, strlen(type));
}
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES
static void netlink_add_device(struct nlmsg* nlmsg, int sock, const char* type,
const char* name)
{
netlink_add_device_impl(nlmsg, type, name, false);
netlink_done(nlmsg);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: adding device %s type %s: %s\n", name, type, strerror(errno));
}
}
static void netlink_add_veth(struct nlmsg* nlmsg, int sock, const char* name,
const char* peer)
{
netlink_add_device_impl(nlmsg, "veth", name, false);
netlink_nest(nlmsg, IFLA_INFO_DATA);
netlink_nest(nlmsg, VETH_INFO_PEER);
nlmsg->pos += sizeof(struct ifinfomsg);
netlink_attr(nlmsg, IFLA_IFNAME, peer, strlen(peer));
netlink_done(nlmsg);
netlink_done(nlmsg);
netlink_done(nlmsg);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: adding device %s type veth peer %s: %s\n", name, peer, strerror(errno));
}
}
static void netlink_add_xfrm(struct nlmsg* nlmsg, int sock, const char* name)
{
netlink_add_device_impl(nlmsg, "xfrm", name, true);
netlink_nest(nlmsg, IFLA_INFO_DATA);
int if_id = 1;
// This is IFLA_XFRM_IF_ID attr which is not present in older kernel headers.
netlink_attr(nlmsg, 2, &if_id, sizeof(if_id));
netlink_done(nlmsg);
netlink_done(nlmsg);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: adding device %s type xfrm if_id %d: %s\n", name, if_id, strerror(errno));
}
}
static void netlink_add_hsr(struct nlmsg* nlmsg, int sock, const char* name,
const char* slave1, const char* slave2)
{
netlink_add_device_impl(nlmsg, "hsr", name, false);
netlink_nest(nlmsg, IFLA_INFO_DATA);
int ifindex1 = if_nametoindex(slave1);
netlink_attr(nlmsg, IFLA_HSR_SLAVE1, &ifindex1, sizeof(ifindex1));
int ifindex2 = if_nametoindex(slave2);
netlink_attr(nlmsg, IFLA_HSR_SLAVE2, &ifindex2, sizeof(ifindex2));
netlink_done(nlmsg);
netlink_done(nlmsg);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: adding device %s type hsr slave1 %s slave2 %s: %s\n", name, slave1, slave2, strerror(errno));
}
}
static void netlink_add_linked(struct nlmsg* nlmsg, int sock, const char* type, const char* name, const char* link)
{
netlink_add_device_impl(nlmsg, type, name, false);
netlink_done(nlmsg);
int ifindex = if_nametoindex(link);
netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex));
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: adding device %s type %s link %s: %s\n", name, type, link, strerror(errno));
}
}
static void netlink_add_vlan(struct nlmsg* nlmsg, int sock, const char* name, const char* link, uint16 id, uint16 proto)
{
netlink_add_device_impl(nlmsg, "vlan", name, false);
netlink_nest(nlmsg, IFLA_INFO_DATA);
netlink_attr(nlmsg, IFLA_VLAN_ID, &id, sizeof(id));
netlink_attr(nlmsg, IFLA_VLAN_PROTOCOL, &proto, sizeof(proto));
netlink_done(nlmsg);
netlink_done(nlmsg);
int ifindex = if_nametoindex(link);
netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex));
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: add %s type vlan link %s id %d: %s\n", name, link, id, strerror(errno));
}
}
static void netlink_add_macvlan(struct nlmsg* nlmsg, int sock, const char* name, const char* link)
{
netlink_add_device_impl(nlmsg, "macvlan", name, false);
netlink_nest(nlmsg, IFLA_INFO_DATA);
uint32 mode = MACVLAN_MODE_BRIDGE;
netlink_attr(nlmsg, IFLA_MACVLAN_MODE, &mode, sizeof(mode));
netlink_done(nlmsg);
netlink_done(nlmsg);
int ifindex = if_nametoindex(link);
netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex));
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: add %s type macvlan link %s mode %d: %s\n", name, link, mode, strerror(errno));
}
}
static void netlink_add_geneve(struct nlmsg* nlmsg, int sock, const char* name, uint32 vni, struct in_addr* addr4, struct in6_addr* addr6)
{
netlink_add_device_impl(nlmsg, "geneve", name, false);
netlink_nest(nlmsg, IFLA_INFO_DATA);
netlink_attr(nlmsg, IFLA_GENEVE_ID, &vni, sizeof(vni));
if (addr4)
netlink_attr(nlmsg, IFLA_GENEVE_REMOTE, addr4, sizeof(*addr4));
if (addr6)
netlink_attr(nlmsg, IFLA_GENEVE_REMOTE6, addr6, sizeof(*addr6));
netlink_done(nlmsg);
netlink_done(nlmsg);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: add %s type geneve vni %u: %s\n", name, vni, strerror(errno));
}
}
#define IFLA_IPVLAN_FLAGS 2
#define IPVLAN_MODE_L3S 2
#undef IPVLAN_F_VEPA
#define IPVLAN_F_VEPA 2
static void netlink_add_ipvlan(struct nlmsg* nlmsg, int sock, const char* name, const char* link, uint16 mode, uint16 flags)
{
netlink_add_device_impl(nlmsg, "ipvlan", name, false);
netlink_nest(nlmsg, IFLA_INFO_DATA);
netlink_attr(nlmsg, IFLA_IPVLAN_MODE, &mode, sizeof(mode));
netlink_attr(nlmsg, IFLA_IPVLAN_FLAGS, &flags, sizeof(flags));
netlink_done(nlmsg);
netlink_done(nlmsg);
int ifindex = if_nametoindex(link);
netlink_attr(nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex));
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: add %s type ipvlan link %s mode %d: %s\n", name, link, mode, strerror(errno));
}
}
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES || SYZ_NET_INJECTION || SYZ_DEVLINK_PCI || SYZ_802154
static void netlink_device_change(struct nlmsg* nlmsg, int sock, const char* name, bool up,
const char* master, const void* mac, int macsize,
const char* new_name)
{
struct ifinfomsg hdr;
memset(&hdr, 0, sizeof(hdr));
if (up)
hdr.ifi_flags = hdr.ifi_change = IFF_UP;
hdr.ifi_index = if_nametoindex(name);
netlink_init(nlmsg, RTM_NEWLINK, 0, &hdr, sizeof(hdr));
if (new_name)
netlink_attr(nlmsg, IFLA_IFNAME, new_name, strlen(new_name));
if (master) {
int ifindex = if_nametoindex(master);
netlink_attr(nlmsg, IFLA_MASTER, &ifindex, sizeof(ifindex));
}
if (macsize)
netlink_attr(nlmsg, IFLA_ADDRESS, mac, macsize);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: device %s up master %s: %s\n", name, master ? master : "NULL", strerror(errno));
}
}
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES || SYZ_NET_INJECTION
static int netlink_add_addr(struct nlmsg* nlmsg, int sock, const char* dev,
const void* addr, int addrsize)
{
struct ifaddrmsg hdr;
memset(&hdr, 0, sizeof(hdr));
hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6;
hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120;
hdr.ifa_scope = RT_SCOPE_UNIVERSE;
hdr.ifa_index = if_nametoindex(dev);
netlink_init(nlmsg, RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr));
netlink_attr(nlmsg, IFA_LOCAL, addr, addrsize);
netlink_attr(nlmsg, IFA_ADDRESS, addr, addrsize);
return netlink_send(nlmsg, sock);
}
static void netlink_add_addr4(struct nlmsg* nlmsg, int sock,
const char* dev, const char* addr)
{
struct in_addr in_addr;
inet_pton(AF_INET, addr, &in_addr);
int err = netlink_add_addr(nlmsg, sock, dev, &in_addr, sizeof(in_addr));
if (err < 0) {
debug("netlink: add addr %s dev %s: %s\n", addr, dev, strerror(errno));
}
}
static void netlink_add_addr6(struct nlmsg* nlmsg, int sock,
const char* dev, const char* addr)
{
struct in6_addr in6_addr;
inet_pton(AF_INET6, addr, &in6_addr);
int err = netlink_add_addr(nlmsg, sock, dev, &in6_addr, sizeof(in6_addr));
if (err < 0) {
debug("netlink: add addr %s dev %s: %s\n", addr, dev, strerror(errno));
}
}
#endif
#if SYZ_EXECUTOR || SYZ_NET_INJECTION
static void netlink_add_neigh(struct nlmsg* nlmsg, int sock, const char* name,
const void* addr, int addrsize, const void* mac, int macsize)
{
struct ndmsg hdr;
memset(&hdr, 0, sizeof(hdr));
hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6;
hdr.ndm_ifindex = if_nametoindex(name);
hdr.ndm_state = NUD_PERMANENT;
netlink_init(nlmsg, RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr));
netlink_attr(nlmsg, NDA_DST, addr, addrsize);
netlink_attr(nlmsg, NDA_LLADDR, mac, macsize);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("netlink: add neigh %s addr %d lladdr %d: %s\n", name, addrsize, macsize, strerror(errno));
}
}
#endif
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES || SYZ_NET_INJECTION || SYZ_DEVLINK_PCI || SYZ_WIFI || SYZ_802154
static struct nlmsg nlmsg;
#endif
#if SYZ_EXECUTOR || SYZ_NET_INJECTION
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <linux/if_ether.h>
#include <linux/if_tun.h>
#include <linux/ip.h>
#include <linux/tcp.h>
static int tunfd = -1;
#define TUN_IFACE "syz_tun"
#define LOCAL_MAC 0xaaaaaaaaaaaa
#define REMOTE_MAC 0xaaaaaaaaaabb
#define LOCAL_IPV4 "172.20.20.170"
#define REMOTE_IPV4 "172.20.20.187"
#define LOCAL_IPV6 "fe80::aa"
#define REMOTE_IPV6 "fe80::bb"
#ifndef IFF_NAPI
#define IFF_NAPI 0x0010
#endif
#if ENABLE_NAPI_FRAGS
static int tun_frags_enabled;
#ifndef IFF_NAPI_FRAGS
#define IFF_NAPI_FRAGS 0x0020
#endif
#endif
static void initialize_tun(void)
{
#if SYZ_EXECUTOR
if (!flag_net_injection)
return;
#endif
tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK);
if (tunfd == -1) {
#if SYZ_EXECUTOR
fail("tun: can't open /dev/net/tun");
#else
printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n");
printf("otherwise fuzzing or reproducing might not work as intended\n");
return;
#endif
}
// Remap tun onto higher fd number to hide it from fuzzer and to keep
// fd numbers stable regardless of whether tun is opened or not (also see kMaxFd).
const int kTunFd = 200;
if (dup2(tunfd, kTunFd) < 0)
fail("dup2(tunfd, kTunFd) failed");
close(tunfd);
tunfd = kTunFd;
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ);
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
// Note: SYZ_ENABLE_NAPI_FRAGS is never enabled. This is code is only for reference
// in case we figure out how IFF_NAPI_FRAGS works. With IFF_NAPI_FRAGS packets
// don't reach destinations and bail out in udp_gro_receive (see #1594).
// Also IFF_NAPI_FRAGS does not work with sandbox_namespace (see comment there).
#if ENABLE_NAPI_FRAGS
ifr.ifr_flags |= IFF_NAPI | IFF_NAPI_FRAGS;
#endif
if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) {
#if ENABLE_NAPI_FRAGS
// IFF_NAPI_FRAGS requires root, so try without it.
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0)
#endif
fail("tun: ioctl(TUNSETIFF) failed");
}
#if ENABLE_NAPI_FRAGS
// If IFF_NAPI_FRAGS is not supported it will be silently dropped,
// so query the effective flags.
if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0)
fail("tun: ioctl(TUNGETIFF) failed");
tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0;
debug("tun_frags_enabled=%d\n", tun_frags_enabled);
#endif
// Disable IPv6 DAD, otherwise the address remains unusable until DAD completes.
// Don't panic because this is an optional config.
char sysctl[64];
sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE);
write_file(sysctl, "0");
// Disable IPv6 router solicitation to prevent IPv6 spam.
// Don't panic because this is an optional config.
sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE);
write_file(sysctl, "0");
// There seems to be no way to disable IPv6 MTD to prevent more IPv6 spam.
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1)
fail("socket(AF_NETLINK) failed");
netlink_add_addr4(&nlmsg, sock, TUN_IFACE, LOCAL_IPV4);
netlink_add_addr6(&nlmsg, sock, TUN_IFACE, LOCAL_IPV6);
uint64 macaddr = REMOTE_MAC;
struct in_addr in_addr;
inet_pton(AF_INET, REMOTE_IPV4, &in_addr);
netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN);
struct in6_addr in6_addr;
inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr);
netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN);
macaddr = LOCAL_MAC;
netlink_device_change(&nlmsg, sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN, NULL);
close(sock);
}
#endif
#if SYZ_EXECUTOR || __NR_syz_init_net_socket || SYZ_DEVLINK_PCI || __NR_syz_socket_connect_nvme_tcp
const int kInitNetNsFd = 201; // see kMaxFd
#endif
#if SYZ_EXECUTOR || SYZ_DEVLINK_PCI || SYZ_NET_DEVICES
#include <linux/genetlink.h>
#include <stdbool.h>
#define DEVLINK_FAMILY_NAME "devlink"
#define DEVLINK_CMD_PORT_GET 5
#if SYZ_EXECUTOR || SYZ_DEVLINK_PCI
#define DEVLINK_CMD_RELOAD 37
#endif
#define DEVLINK_ATTR_BUS_NAME 1
#define DEVLINK_ATTR_DEV_NAME 2
#define DEVLINK_ATTR_NETDEV_NAME 7
#if SYZ_EXECUTOR || SYZ_DEVLINK_PCI
#define DEVLINK_ATTR_NETNS_FD 138
#endif
#if SYZ_EXECUTOR || SYZ_DEVLINK_PCI
static void netlink_devlink_netns_move(const char* bus_name, const char* dev_name, int netns_fd)
{
struct genlmsghdr genlhdr;
int sock;
int id, err;
sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (sock == -1)
fail("socket(AF_NETLINK) failed");
id = netlink_query_family_id(&nlmsg, sock, DEVLINK_FAMILY_NAME, true);
if (id == -1)
goto error;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = DEVLINK_CMD_RELOAD;
netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(&nlmsg, DEVLINK_ATTR_BUS_NAME, bus_name, strlen(bus_name) + 1);
netlink_attr(&nlmsg, DEVLINK_ATTR_DEV_NAME, dev_name, strlen(dev_name) + 1);
netlink_attr(&nlmsg, DEVLINK_ATTR_NETNS_FD, &netns_fd, sizeof(netns_fd));
err = netlink_send(&nlmsg, sock);
if (err < 0) {
debug("netlink: failed to move devlink instance %s/%s into network namespace: %s\n",
bus_name, dev_name, strerror(errno));
}
error:
close(sock);
}
#endif
static struct nlmsg nlmsg2;
static void initialize_devlink_ports(const char* bus_name, const char* dev_name,
const char* netdev_prefix)
{
struct genlmsghdr genlhdr;
int len, total_len, id, err, offset;
uint16 netdev_index;
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (sock == -1)
fail("socket(AF_NETLINK) failed");
int rtsock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (rtsock == -1)
fail("socket(AF_NETLINK) failed");
id = netlink_query_family_id(&nlmsg, sock, DEVLINK_FAMILY_NAME, true);
if (id == -1)
goto error;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = DEVLINK_CMD_PORT_GET;
netlink_init(&nlmsg, id, NLM_F_DUMP, &genlhdr, sizeof(genlhdr));
netlink_attr(&nlmsg, DEVLINK_ATTR_BUS_NAME, bus_name, strlen(bus_name) + 1);
netlink_attr(&nlmsg, DEVLINK_ATTR_DEV_NAME, dev_name, strlen(dev_name) + 1);
err = netlink_send_ext(&nlmsg, sock, id, &total_len, true);
if (err < 0) {
debug("netlink: failed to get port get reply: %s\n", strerror(errno));
goto error;
}
offset = 0;
netdev_index = 0;
while ((len = netlink_next_msg(&nlmsg, offset, total_len)) != -1) {
struct nlattr* attr = (struct nlattr*)(nlmsg.buf + offset + NLMSG_HDRLEN + NLMSG_ALIGN(sizeof(genlhdr)));
for (; (char*)attr < nlmsg.buf + offset + len; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) {
if (attr->nla_type == DEVLINK_ATTR_NETDEV_NAME) {
char* port_name;
char netdev_name[IFNAMSIZ];
port_name = (char*)(attr + 1);
snprintf(netdev_name, sizeof(netdev_name), "%s%d", netdev_prefix, netdev_index);
netlink_device_change(&nlmsg2, rtsock, port_name, true, 0, 0, 0, netdev_name);
break;
}
}
offset += len;
netdev_index++;
}
error:
close(rtsock);
close(sock);
}
#if SYZ_EXECUTOR || SYZ_DEVLINK_PCI
#include <fcntl.h>
#include <sched.h>
static void initialize_devlink_pci(void)
{
#if SYZ_EXECUTOR
if (!flag_devlink_pci)
return;
#endif
int netns = open("/proc/self/ns/net", O_RDONLY);
if (netns == -1)
fail("open(/proc/self/ns/net) failed");
int ret = setns(kInitNetNsFd, 0);
if (ret == -1)
fail("set_ns(init_netns_fd) failed");
netlink_devlink_netns_move("pci", "0000:00:10.0", netns);
ret = setns(netns, 0);
if (ret == -1)
fail("set_ns(this_netns_fd) failed");
close(netns);
initialize_devlink_ports("pci", "0000:00:10.0", "netpci");
}
#endif
#endif
#if SYZ_EXECUTOR || SYZ_WIFI || __NR_syz_80211_inject_frame || __NR_syz_80211_join_ibss
#define WIFI_INITIAL_DEVICE_COUNT 2
#define WIFI_MAC_BASE \
{ \
0x08, 0x02, 0x11, 0x00, 0x00, 0x00 \
}
#define WIFI_IBSS_BSSID \
{ \
0x50, 0x50, 0x50, 0x50, 0x50, 0x50 \
}
#define WIFI_IBSS_SSID \
{ \
0x10, 0x10, 0x10, 0x10, 0x10, 0x10 \
}
#define WIFI_DEFAULT_FREQUENCY 2412
#define WIFI_DEFAULT_SIGNAL 0
#define WIFI_DEFAULT_RX_RATE 1
// consts from drivers/net/wireless/mac80211_hwsim.h
#define HWSIM_CMD_REGISTER 1
#define HWSIM_CMD_FRAME 2
#define HWSIM_CMD_NEW_RADIO 4
#define HWSIM_ATTR_SUPPORT_P2P_DEVICE 14
#define HWSIM_ATTR_PERM_ADDR 22
#endif
#if SYZ_EXECUTOR || SYZ_WIFI || __NR_syz_80211_join_ibss
#include <linux/genetlink.h>
#include <linux/if_ether.h>
#include <linux/nl80211.h>
#include <linux/rtnetlink.h>
#include <net/if.h>
#include <stdbool.h>
#include <sys/ioctl.h>
// From linux/if.h, but we cannot include the file as it conflicts with net/if.h
#define IF_OPER_UP 6
// IBSS parameters for nl80211_join_ibss
struct join_ibss_props {
int wiphy_freq;
bool wiphy_freq_fixed;
uint8* mac;
uint8* ssid;
int ssid_len;
};
static int set_interface_state(const char* interface_name, int on)
{
struct ifreq ifr;
int sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0) {
debug("set_interface_state: failed to open socket, errno %d\n", errno);
return -1;
}
memset(&ifr, 0, sizeof(ifr));
strcpy(ifr.ifr_name, interface_name);
int ret = ioctl(sock, SIOCGIFFLAGS, &ifr);
if (ret < 0) {
debug("set_interface_state: failed to execute SIOCGIFFLAGS, ret %d\n", ret);
close(sock);
return -1;
}
if (on)
ifr.ifr_flags |= IFF_UP;
else
ifr.ifr_flags &= ~IFF_UP;
ret = ioctl(sock, SIOCSIFFLAGS, &ifr);
close(sock);
if (ret < 0) {
debug("set_interface_state: failed to execute SIOCSIFFLAGS, ret %d\n", ret);
return -1;
}
return 0;
}
static int nl80211_set_interface(struct nlmsg* nlmsg, int sock, int nl80211_family, uint32 ifindex,
uint32 iftype, bool dofail)
{
struct genlmsghdr genlhdr;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = NL80211_CMD_SET_INTERFACE;
netlink_init(nlmsg, nl80211_family, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(nlmsg, NL80211_ATTR_IFINDEX, &ifindex, sizeof(ifindex));
netlink_attr(nlmsg, NL80211_ATTR_IFTYPE, &iftype, sizeof(iftype));
int err = netlink_send_ext(nlmsg, sock, 0, NULL, dofail);
if (err < 0) {
debug("nl80211_set_interface failed: %s\n", strerror(errno));
}
return err;
}
static int nl80211_join_ibss(struct nlmsg* nlmsg, int sock, int nl80211_family, uint32 ifindex,
struct join_ibss_props* props, bool dofail)
{
struct genlmsghdr genlhdr;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = NL80211_CMD_JOIN_IBSS;
netlink_init(nlmsg, nl80211_family, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(nlmsg, NL80211_ATTR_IFINDEX, &ifindex, sizeof(ifindex));
netlink_attr(nlmsg, NL80211_ATTR_SSID, props->ssid, props->ssid_len);
netlink_attr(nlmsg, NL80211_ATTR_WIPHY_FREQ, &(props->wiphy_freq), sizeof(props->wiphy_freq));
if (props->mac)
netlink_attr(nlmsg, NL80211_ATTR_MAC, props->mac, ETH_ALEN);
if (props->wiphy_freq_fixed)
netlink_attr(nlmsg, NL80211_ATTR_FREQ_FIXED, NULL, 0);
int err = netlink_send_ext(nlmsg, sock, 0, NULL, dofail);
if (err < 0) {
debug("nl80211_join_ibss failed: %s\n", strerror(errno));
}
return err;
}
static int get_ifla_operstate(struct nlmsg* nlmsg, int ifindex, bool dofail)
{
struct ifinfomsg info;
memset(&info, 0, sizeof(info));
info.ifi_family = AF_UNSPEC;
info.ifi_index = ifindex;
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1) {
debug("get_ifla_operstate: socket failed: %d\n", errno);
return -1;
}
netlink_init(nlmsg, RTM_GETLINK, 0, &info, sizeof(info));
int n;
int err = netlink_send_ext(nlmsg, sock, RTM_NEWLINK, &n, dofail);
close(sock);
if (err) {
debug("get_ifla_operstate: failed to query: %s\n", strerror(errno));
return -1;
}
struct rtattr* attr = IFLA_RTA(NLMSG_DATA(nlmsg->buf));
for (; RTA_OK(attr, n); attr = RTA_NEXT(attr, n)) {
if (attr->rta_type == IFLA_OPERSTATE)
return *((int32_t*)RTA_DATA(attr));
}
return -1;
}
static int await_ifla_operstate(struct nlmsg* nlmsg, char* interface, int operstate, bool dofail)
{
int ifindex = if_nametoindex(interface);
while (true) {
usleep(1000); // 1 ms
int ret = get_ifla_operstate(nlmsg, ifindex, dofail);
if (ret < 0)
return ret;
if (ret == operstate)
return 0;
}
return 0;
}
static int nl80211_setup_ibss_interface(struct nlmsg* nlmsg, int sock, int nl80211_family_id, char* interface,
struct join_ibss_props* ibss_props, bool dofail)
{
int ifindex = if_nametoindex(interface);
if (ifindex == 0) {
debug("nl80211_setup_ibss_interface: if_nametoindex failed for %.32s, ret 0\n", interface);
return -1;
}
int ret = nl80211_set_interface(nlmsg, sock, nl80211_family_id, ifindex, NL80211_IFTYPE_ADHOC, dofail);
if (ret < 0) {
debug("nl80211_setup_ibss_interface: nl80211_set_interface failed for %.32s, ret %d\n", interface, ret);
return -1;
}
ret = set_interface_state(interface, 1);
if (ret < 0) {
debug("nl80211_setup_ibss_interface: set_interface_state failed for %.32s, ret %d\n", interface, ret);
return -1;
}
ret = nl80211_join_ibss(nlmsg, sock, nl80211_family_id, ifindex, ibss_props, dofail);
if (ret < 0) {
debug("nl80211_setup_ibss_interface: nl80211_join_ibss failed for %.32s, ret %d\n", interface, ret);
return -1;
}
return 0;
}
#endif
#if SYZ_EXECUTOR || SYZ_WIFI
#include <fcntl.h>
#include <linux/rfkill.h>
#include <sys/stat.h>
#include <sys/types.h>
static int hwsim80211_create_device(struct nlmsg* nlmsg, int sock, int hwsim_family, uint8 mac_addr[ETH_ALEN])
{
struct genlmsghdr genlhdr;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = HWSIM_CMD_NEW_RADIO;
netlink_init(nlmsg, hwsim_family, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(nlmsg, HWSIM_ATTR_SUPPORT_P2P_DEVICE, NULL, 0);
netlink_attr(nlmsg, HWSIM_ATTR_PERM_ADDR, mac_addr, ETH_ALEN);
int err = netlink_send(nlmsg, sock);
if (err < 0) {
debug("hwsim80211_create_device failed: %s\n", strerror(errno));
}
return err;
}
static void initialize_wifi_devices(void)
{
// Set up virtual wifi devices and join them into an IBSS network.
// An IBSS network is created here in order to put these devices in an operable state right from
// the beginning. It has the following positive effects.
// 1. Frame injection becomes possible from the very start.
// 2. A number of nl80211 commands expect their target wireless interface to be in an operable state.
// 3. Simplification of reproducer generation - in many cases the reproducer will not have to spend time
// selecting system calls that set up the environment.
//
// IBSS network was chosen as the simplest network type to begin with.
#if SYZ_EXECUTOR
if (!flag_wifi)
return;
#endif
int rfkill = open("/dev/rfkill", O_RDWR);
if (rfkill == -1) {
if (errno != ENOENT && errno != EACCES)
fail("open(/dev/rfkill) failed");
} else {
struct rfkill_event event = {0};
event.type = RFKILL_TYPE_ALL;
event.op = RFKILL_OP_CHANGE_ALL;
if (write(rfkill, &event, sizeof(event)) != (ssize_t)(sizeof(event)))
fail("write(/dev/rfkill) failed");
close(rfkill);
}
uint8 mac_addr[6] = WIFI_MAC_BASE;
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (sock < 0) {
debug("initialize_wifi_devices: failed to create socket (%d)\n", errno);
return;
}
int hwsim_family_id = netlink_query_family_id(&nlmsg, sock, "MAC80211_HWSIM", true);
int nl80211_family_id = netlink_query_family_id(&nlmsg, sock, "nl80211", true);
uint8 ssid[] = WIFI_IBSS_SSID;
uint8 bssid[] = WIFI_IBSS_BSSID;
struct join_ibss_props ibss_props = {
.wiphy_freq = WIFI_DEFAULT_FREQUENCY, .wiphy_freq_fixed = true, .mac = bssid, .ssid = ssid, .ssid_len = sizeof(ssid)};
for (int device_id = 0; device_id < WIFI_INITIAL_DEVICE_COUNT; device_id++) {
// Virtual wifi devices will have consequtive mac addresses
mac_addr[5] = device_id;
int ret = hwsim80211_create_device(&nlmsg, sock, hwsim_family_id, mac_addr);
if (ret < 0)
failmsg("initialize_wifi_devices: failed to create device", "device=%d", device_id);
// For each device, unless HWSIM_ATTR_NO_VIF is passed, a network interface is created
// automatically. Such interfaces are named "wlan0", "wlan1" and so on.
char interface[6] = "wlan0";
interface[4] += device_id;
if (nl80211_setup_ibss_interface(&nlmsg, sock, nl80211_family_id, interface, &ibss_props, true) < 0)
failmsg("initialize_wifi_devices: failed set up IBSS network", "device=%d", device_id);
}
// Wait for all devices to join the IBSS network
for (int device_id = 0; device_id < WIFI_INITIAL_DEVICE_COUNT; device_id++) {
char interface[6] = "wlan0";
interface[4] += device_id;
int ret = await_ifla_operstate(&nlmsg, interface, IF_OPER_UP, true);
if (ret < 0)
failmsg("initialize_wifi_devices: get_ifla_operstate failed",
"device=%d, ret=%d", device_id, ret);
}
close(sock);
}
#endif
#if SYZ_EXECUTOR || (SYZ_NET_DEVICES && SYZ_NIC_VF) || SYZ_SWAP
static int runcmdline(char* cmdline)
{
debug("%s\n", cmdline);
int ret = system(cmdline);
if (ret) {
debug("FAIL: %s\n", cmdline);
}
return ret;
}
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include <linux/if_ether.h>
#include <linux/if_tun.h>
#include <linux/ip.h>
#include <linux/tcp.h>
// Addresses are chosen to be in the same subnet as tun addresses.
#define DEV_IPV4 "172.20.20.%d"
#define DEV_IPV6 "fe80::%02x"
#define DEV_MAC 0x00aaaaaaaaaa
static void netdevsim_add(unsigned int addr, unsigned int port_count)
{
// These devices are sticky and are not deleted on net namespace destruction.
// So try to delete the previous version of the device.
write_file("/sys/bus/netdevsim/del_device", "%u", addr);
if (write_file("/sys/bus/netdevsim/new_device", "%u %u", addr, port_count)) {
char buf[32];
snprintf(buf, sizeof(buf), "netdevsim%d", addr);
initialize_devlink_ports("netdevsim", buf, "netdevsim");
}
}
#define WG_GENL_NAME "wireguard"
enum wg_cmd {
WG_CMD_GET_DEVICE,
WG_CMD_SET_DEVICE,
};
enum wgdevice_attribute {
WGDEVICE_A_UNSPEC,
WGDEVICE_A_IFINDEX,
WGDEVICE_A_IFNAME,
WGDEVICE_A_PRIVATE_KEY,
WGDEVICE_A_PUBLIC_KEY,
WGDEVICE_A_FLAGS,
WGDEVICE_A_LISTEN_PORT,
WGDEVICE_A_FWMARK,
WGDEVICE_A_PEERS,
};
enum wgpeer_attribute {
WGPEER_A_UNSPEC,
WGPEER_A_PUBLIC_KEY,
WGPEER_A_PRESHARED_KEY,
WGPEER_A_FLAGS,
WGPEER_A_ENDPOINT,
WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL,
WGPEER_A_LAST_HANDSHAKE_TIME,
WGPEER_A_RX_BYTES,
WGPEER_A_TX_BYTES,
WGPEER_A_ALLOWEDIPS,
WGPEER_A_PROTOCOL_VERSION,
};
enum wgallowedip_attribute {
WGALLOWEDIP_A_UNSPEC,
WGALLOWEDIP_A_FAMILY,
WGALLOWEDIP_A_IPADDR,
WGALLOWEDIP_A_CIDR_MASK,
};
static void netlink_wireguard_setup(void)
{
const char ifname_a[] = "wg0";
const char ifname_b[] = "wg1";
const char ifname_c[] = "wg2";
const char private_a[] = "\xa0\x5c\xa8\x4f\x6c\x9c\x8e\x38\x53\xe2\xfd\x7a\x70\xae\x0f\xb2\x0f\xa1\x52\x60\x0c\xb0\x08\x45\x17\x4f\x08\x07\x6f\x8d\x78\x43";
const char private_b[] = "\xb0\x80\x73\xe8\xd4\x4e\x91\xe3\xda\x92\x2c\x22\x43\x82\x44\xbb\x88\x5c\x69\xe2\x69\xc8\xe9\xd8\x35\xb1\x14\x29\x3a\x4d\xdc\x6e";
const char private_c[] = "\xa0\xcb\x87\x9a\x47\xf5\xbc\x64\x4c\x0e\x69\x3f\xa6\xd0\x31\xc7\x4a\x15\x53\xb6\xe9\x01\xb9\xff\x2f\x51\x8c\x78\x04\x2f\xb5\x42";
const char public_a[] = "\x97\x5c\x9d\x81\xc9\x83\xc8\x20\x9e\xe7\x81\x25\x4b\x89\x9f\x8e\xd9\x25\xae\x9f\x09\x23\xc2\x3c\x62\xf5\x3c\x57\xcd\xbf\x69\x1c";
const char public_b[] = "\xd1\x73\x28\x99\xf6\x11\xcd\x89\x94\x03\x4d\x7f\x41\x3d\xc9\x57\x63\x0e\x54\x93\xc2\x85\xac\xa4\x00\x65\xcb\x63\x11\xbe\x69\x6b";
const char public_c[] = "\xf4\x4d\xa3\x67\xa8\x8e\xe6\x56\x4f\x02\x02\x11\x45\x67\x27\x08\x2f\x5c\xeb\xee\x8b\x1b\xf5\xeb\x73\x37\x34\x1b\x45\x9b\x39\x22";
const uint16 listen_a = 20001;
const uint16 listen_b = 20002;
const uint16 listen_c = 20003;
const uint16 af_inet = AF_INET;
const uint16 af_inet6 = AF_INET6;
// Unused, but useful in case we change this:
// const struct sockaddr_in endpoint_a_v4 = {
// .sin_family = AF_INET,
// .sin_port = htons(listen_a),
// .sin_addr = {htonl(INADDR_LOOPBACK)}};
const struct sockaddr_in endpoint_b_v4 = {
.sin_family = AF_INET,
.sin_port = htons(listen_b),
.sin_addr = {htonl(INADDR_LOOPBACK)}};
const struct sockaddr_in endpoint_c_v4 = {
.sin_family = AF_INET,
.sin_port = htons(listen_c),
.sin_addr = {htonl(INADDR_LOOPBACK)}};
struct sockaddr_in6 endpoint_a_v6 = {
.sin6_family = AF_INET6,
.sin6_port = htons(listen_a)};
endpoint_a_v6.sin6_addr = in6addr_loopback;
// Unused, but useful in case we change this:
// const struct sockaddr_in6 endpoint_b_v6 = {
// .sin6_family = AF_INET6,
// .sin6_port = htons(listen_b)};
// endpoint_b_v6.sin6_addr = in6addr_loopback;
struct sockaddr_in6 endpoint_c_v6 = {
.sin6_family = AF_INET6,
.sin6_port = htons(listen_c)};
endpoint_c_v6.sin6_addr = in6addr_loopback;
const struct in_addr first_half_v4 = {0};
const struct in_addr second_half_v4 = {(uint32)htonl(128 << 24)};
const struct in6_addr first_half_v6 = {{{0}}};
const struct in6_addr second_half_v6 = {{{0x80}}};
const uint8 half_cidr = 1;
const uint16 persistent_keepalives[] = {1, 3, 7, 9, 14, 19};
struct genlmsghdr genlhdr = {
.cmd = WG_CMD_SET_DEVICE,
.version = 1};
int sock;
int id, err;
sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (sock == -1) {
debug("socket(AF_NETLINK) failed: %s\n", strerror(errno));
return;
}
id = netlink_query_family_id(&nlmsg, sock, WG_GENL_NAME, true);
if (id == -1)
goto error;
netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(&nlmsg, WGDEVICE_A_IFNAME, ifname_a, strlen(ifname_a) + 1);
netlink_attr(&nlmsg, WGDEVICE_A_PRIVATE_KEY, private_a, 32);
netlink_attr(&nlmsg, WGDEVICE_A_LISTEN_PORT, &listen_a, 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGDEVICE_A_PEERS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_b, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_b_v4, sizeof(endpoint_b_v4));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[0], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v4, sizeof(first_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v6, sizeof(first_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_c, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_c_v6, sizeof(endpoint_c_v6));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[1], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v4, sizeof(second_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v6, sizeof(second_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
err = netlink_send(&nlmsg, sock);
if (err < 0) {
debug("netlink: failed to setup wireguard instance: %s\n", strerror(errno));
}
netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(&nlmsg, WGDEVICE_A_IFNAME, ifname_b, strlen(ifname_b) + 1);
netlink_attr(&nlmsg, WGDEVICE_A_PRIVATE_KEY, private_b, 32);
netlink_attr(&nlmsg, WGDEVICE_A_LISTEN_PORT, &listen_b, 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGDEVICE_A_PEERS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_a, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_a_v6, sizeof(endpoint_a_v6));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[2], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v4, sizeof(first_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v6, sizeof(first_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_c, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_c_v4, sizeof(endpoint_c_v4));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[3], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v4, sizeof(second_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v6, sizeof(second_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
err = netlink_send(&nlmsg, sock);
if (err < 0) {
debug("netlink: failed to setup wireguard instance: %s\n", strerror(errno));
}
netlink_init(&nlmsg, id, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(&nlmsg, WGDEVICE_A_IFNAME, ifname_c, strlen(ifname_c) + 1);
netlink_attr(&nlmsg, WGDEVICE_A_PRIVATE_KEY, private_c, 32);
netlink_attr(&nlmsg, WGDEVICE_A_LISTEN_PORT, &listen_c, 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGDEVICE_A_PEERS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_a, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_a_v6, sizeof(endpoint_a_v6));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[4], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v4, sizeof(first_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &first_half_v6, sizeof(first_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGPEER_A_PUBLIC_KEY, public_b, 32);
netlink_attr(&nlmsg, WGPEER_A_ENDPOINT, &endpoint_b_v4, sizeof(endpoint_b_v4));
netlink_attr(&nlmsg, WGPEER_A_PERSISTENT_KEEPALIVE_INTERVAL, &persistent_keepalives[5], 2);
netlink_nest(&nlmsg, NLA_F_NESTED | WGPEER_A_ALLOWEDIPS);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v4, sizeof(second_half_v4));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_nest(&nlmsg, NLA_F_NESTED | 0);
netlink_attr(&nlmsg, WGALLOWEDIP_A_FAMILY, &af_inet6, 2);
netlink_attr(&nlmsg, WGALLOWEDIP_A_IPADDR, &second_half_v6, sizeof(second_half_v6));
netlink_attr(&nlmsg, WGALLOWEDIP_A_CIDR_MASK, &half_cidr, 1);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
netlink_done(&nlmsg);
err = netlink_send(&nlmsg, sock);
if (err < 0) {
debug("netlink: failed to setup wireguard instance: %s\n", strerror(errno));
}
error:
close(sock);
}
#if SYZ_EXECUTOR || SYZ_NIC_VF
static void netlink_nicvf_setup(void)
{
char cmdline[256];
#if SYZ_EXECUTOR
if (!flag_nic_vf)
return;
#endif
if (!vf_intf.ppid)
return;
debug("ppid = %d, vf_intf.pass_thru_intf: %s\n",
vf_intf.ppid, vf_intf.pass_thru_intf);
sprintf(cmdline, "nsenter -t 1 -n ip link set %s netns %d",
vf_intf.pass_thru_intf, getpid());
if (runcmdline(cmdline))
return;
sprintf(cmdline, "ip a s %s", vf_intf.pass_thru_intf);
if (runcmdline(cmdline))
return;
sprintf(cmdline, "ip link set %s down", vf_intf.pass_thru_intf);
if (runcmdline(cmdline))
return;
sprintf(cmdline, "ip link set %s name nicvf0", vf_intf.pass_thru_intf);
if (runcmdline(cmdline))
return;
debug("nicvf0 VF pass-through setup complete.\n");
}
#endif // SYZ_NIC_VF
// We test in a separate namespace, which does not have any network devices initially (even lo).
// Create/up as many as we can.
static void initialize_netdevices(void)
{
#if SYZ_EXECUTOR
if (!flag_net_devices)
return;
#endif
// TODO: add the following devices:
// - vxlan
// - ipip
// - lowpan (requires link to device of type IEEE802154, e.g. wpan0)
// - ipoib (requires link to device of type ARPHRD_INFINIBAND)
// - vrf
// - rmnet
// - openvswitch
// Naive attempts to add devices of these types fail with various errors.
// Also init namespace contains the following devices (which presumably can't be
// created in non-init namespace), can we use them somehow?
// - ifb0/1
// - teql0
// - eql
// Note: netdevsim devices can't have the same name even in different namespaces.
char netdevsim[16];
sprintf(netdevsim, "netdevsim%d", (int)procid);
struct {
const char* type;
const char* dev;
} devtypes[] = {
// Note: ip6erspan device can't be added if ip6gretap exists in the same namespace.
{"ip6gretap", "ip6gretap0"},
{"bridge", "bridge0"},
{"vcan", "vcan0"},
{"bond", "bond0"},
{"team", "team0"},
{"dummy", "dummy0"},
#if SYZ_EXECUTOR || SYZ_NIC_VF
{"nicvf", "nicvf0"},
#endif
{"nlmon", "nlmon0"},
{"caif", "caif0"},
{"batadv", "batadv0"},
// Note: this adds vxcan0/vxcan1 pair, similar to veth (creating vxcan0 would fail).
{"vxcan", "vxcan1"},
// This adds connected veth0 and veth1 devices.
{"veth", 0},
{"wireguard", "wg0"},
{"wireguard", "wg1"},
{"wireguard", "wg2"},
};
const char* devmasters[] = {"bridge", "bond", "team", "batadv"};
// If you extend this array, also update netdev_addr_id in vnet.txt
// and devnames in socket.txt.
struct {
const char* name;
int macsize;
bool noipv6;
} devices[] = {
{"lo", ETH_ALEN},
{"sit0", 0},
{"bridge0", ETH_ALEN},
{"vcan0", 0, true},
{"tunl0", 0},
{"gre0", 0},
{"gretap0", ETH_ALEN},
{"ip_vti0", 0},
{"ip6_vti0", 0},
{"ip6tnl0", 0},
{"ip6gre0", 0},
{"ip6gretap0", ETH_ALEN},
{"erspan0", ETH_ALEN},
{"bond0", ETH_ALEN},
{"veth0", ETH_ALEN},
{"veth1", ETH_ALEN},
{"team0", ETH_ALEN},
{"veth0_to_bridge", ETH_ALEN},
{"veth1_to_bridge", ETH_ALEN},
{"veth0_to_bond", ETH_ALEN},
{"veth1_to_bond", ETH_ALEN},
{"veth0_to_team", ETH_ALEN},
{"veth1_to_team", ETH_ALEN},
{"veth0_to_hsr", ETH_ALEN},
{"veth1_to_hsr", ETH_ALEN},
{"hsr0", 0},
{"dummy0", ETH_ALEN},
#if SYZ_EXECUTOR || SYZ_NIC_VF
{"nicvf0", 0, true},
#endif
{"nlmon0", 0},
{"vxcan0", 0, true},
{"vxcan1", 0, true},
{"caif0", ETH_ALEN}, // TODO: up'ing caif fails with ENODEV
{"batadv0", ETH_ALEN},
{netdevsim, ETH_ALEN},
{"xfrm0", ETH_ALEN},
{"veth0_virt_wifi", ETH_ALEN},
{"veth1_virt_wifi", ETH_ALEN},
{"virt_wifi0", ETH_ALEN},
{"veth0_vlan", ETH_ALEN},
{"veth1_vlan", ETH_ALEN},
{"vlan0", ETH_ALEN},
{"vlan1", ETH_ALEN},
{"macvlan0", ETH_ALEN},
{"macvlan1", ETH_ALEN},
{"ipvlan0", ETH_ALEN},
{"ipvlan1", ETH_ALEN},
{"veth0_macvtap", ETH_ALEN},
{"veth1_macvtap", ETH_ALEN},
{"macvtap0", ETH_ALEN},
{"macsec0", ETH_ALEN},
{"veth0_to_batadv", ETH_ALEN},
{"veth1_to_batadv", ETH_ALEN},
{"batadv_slave_0", ETH_ALEN},
{"batadv_slave_1", ETH_ALEN},
{"geneve0", ETH_ALEN},
{"geneve1", ETH_ALEN},
{"wg0", 0},
{"wg1", 0},
{"wg2", 0},
};
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1)
fail("socket(AF_NETLINK) failed");
unsigned i;
for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++)
netlink_add_device(&nlmsg, sock, devtypes[i].type, devtypes[i].dev);
// This creates connected bridge/bond/team_slave devices of type veth,
// and makes them slaves of bridge/bond/team devices, respectively.
// Note: slave devices don't need MAC/IP addresses, only master devices.
// veth0_to_* is not slave devices, which still need ip addresses.
for (i = 0; i < sizeof(devmasters) / (sizeof(devmasters[0])); i++) {
char master[32], slave0[32], veth0[32], slave1[32], veth1[32];
sprintf(slave0, "%s_slave_0", devmasters[i]);
sprintf(veth0, "veth0_to_%s", devmasters[i]);
netlink_add_veth(&nlmsg, sock, slave0, veth0);
sprintf(slave1, "%s_slave_1", devmasters[i]);
sprintf(veth1, "veth1_to_%s", devmasters[i]);
netlink_add_veth(&nlmsg, sock, slave1, veth1);
sprintf(master, "%s0", devmasters[i]);
netlink_device_change(&nlmsg, sock, slave0, false, master, 0, 0, NULL);
netlink_device_change(&nlmsg, sock, slave1, false, master, 0, 0, NULL);
}
netlink_add_xfrm(&nlmsg, sock, "xfrm0");
// bond/team_slave_* will set up automatically when set their master.
// But bridge_slave_* need to set up manually.
netlink_device_change(&nlmsg, sock, "bridge_slave_0", true, 0, 0, 0, NULL);
netlink_device_change(&nlmsg, sock, "bridge_slave_1", true, 0, 0, 0, NULL);
// Setup hsr device (slightly different from what we do for devmasters).
netlink_add_veth(&nlmsg, sock, "hsr_slave_0", "veth0_to_hsr");
netlink_add_veth(&nlmsg, sock, "hsr_slave_1", "veth1_to_hsr");
netlink_add_hsr(&nlmsg, sock, "hsr0", "hsr_slave_0", "hsr_slave_1");
netlink_device_change(&nlmsg, sock, "hsr_slave_0", true, 0, 0, 0, NULL);
netlink_device_change(&nlmsg, sock, "hsr_slave_1", true, 0, 0, 0, NULL);
netlink_add_veth(&nlmsg, sock, "veth0_virt_wifi", "veth1_virt_wifi");
netlink_add_linked(&nlmsg, sock, "virt_wifi", "virt_wifi0", "veth1_virt_wifi");
netlink_add_veth(&nlmsg, sock, "veth0_vlan", "veth1_vlan");
netlink_add_vlan(&nlmsg, sock, "vlan0", "veth0_vlan", 0, htons(ETH_P_8021Q));
netlink_add_vlan(&nlmsg, sock, "vlan1", "veth0_vlan", 1, htons(ETH_P_8021AD));
netlink_add_macvlan(&nlmsg, sock, "macvlan0", "veth1_vlan");
netlink_add_macvlan(&nlmsg, sock, "macvlan1", "veth1_vlan");
netlink_add_ipvlan(&nlmsg, sock, "ipvlan0", "veth0_vlan", IPVLAN_MODE_L2, 0);
netlink_add_ipvlan(&nlmsg, sock, "ipvlan1", "veth0_vlan", IPVLAN_MODE_L3S, IPVLAN_F_VEPA);
netlink_add_veth(&nlmsg, sock, "veth0_macvtap", "veth1_macvtap");
netlink_add_linked(&nlmsg, sock, "macvtap", "macvtap0", "veth0_macvtap");
netlink_add_linked(&nlmsg, sock, "macsec", "macsec0", "veth1_macvtap");
char addr[32];
sprintf(addr, DEV_IPV4, 14 + 10); // should point to veth0
struct in_addr geneve_addr4;
if (inet_pton(AF_INET, addr, &geneve_addr4) <= 0)
fail("geneve0 inet_pton failed");
struct in6_addr geneve_addr6;
// Must not be link local (our device addresses are link local).
if (inet_pton(AF_INET6, "fc00::01", &geneve_addr6) <= 0)
fail("geneve1 inet_pton failed");
netlink_add_geneve(&nlmsg, sock, "geneve0", 0, &geneve_addr4, 0);
netlink_add_geneve(&nlmsg, sock, "geneve1", 1, 0, &geneve_addr6);
netdevsim_add((int)procid, 4); // Number of port is in sync with value in sys/linux/socket_netlink_generic_devlink.txt
netlink_wireguard_setup();
#if SYZ_EXECUTOR || SYZ_NIC_VF
netlink_nicvf_setup();
#endif
for (i = 0; i < sizeof(devices) / (sizeof(devices[0])); i++) {
// Assign some unique address to devices. Some devices won't up without this.
// Shift addresses by 10 because 0 subnet address can mean special things.
char addr[32];
sprintf(addr, DEV_IPV4, i + 10);
netlink_add_addr4(&nlmsg, sock, devices[i].name, addr);
if (!devices[i].noipv6) {
sprintf(addr, DEV_IPV6, i + 10);
netlink_add_addr6(&nlmsg, sock, devices[i].name, addr);
}
uint64 macaddr = DEV_MAC + ((i + 10ull) << 40);
netlink_device_change(&nlmsg, sock, devices[i].name, true, 0, &macaddr, devices[i].macsize, NULL);
}
close(sock);
}
// Same as initialize_netdevices, but called in init net namespace.
static void initialize_netdevices_init(void)
{
#if SYZ_EXECUTOR
if (!flag_net_devices)
return;
#endif
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock == -1)
fail("socket(AF_NETLINK) failed");
struct {
const char* type;
int macsize;
bool noipv6;
bool noup;
} devtypes[] = {
// NETROM device, see net/netrom/{af_netrom,nr_dev}.c
{"nr", 7, true},
// ROSE device, see net/rose/{af_rose,rose_dev}.c
// We don't up it yet because it crashes kernel right away:
// https://groups.google.com/d/msg/syzkaller/v-4B3zoBC-4/02SCKEzJBwAJ
{"rose", 5, true, true},
};
unsigned i;
for (i = 0; i < sizeof(devtypes) / sizeof(devtypes[0]); i++) {
char dev[32], addr[32];
sprintf(dev, "%s%d", devtypes[i].type, (int)procid);
// Note: syscall descriptions know these addresses.
sprintf(addr, "172.30.%d.%d", i, (int)procid + 1);
netlink_add_addr4(&nlmsg, sock, dev, addr);
if (!devtypes[i].noipv6) {
sprintf(addr, "fe88::%02x:%02x", i, (int)procid + 1);
netlink_add_addr6(&nlmsg, sock, dev, addr);
}
int macsize = devtypes[i].macsize;
uint64 macaddr = 0xbbbbbb + ((unsigned long long)i << (8 * (macsize - 2))) +
(procid << (8 * (macsize - 1)));
netlink_device_change(&nlmsg, sock, dev, !devtypes[i].noup, 0, &macaddr, macsize, NULL);
}
close(sock);
#if SYZ_EXECUTOR || SYZ_NIC_VF
find_vf_interface();
#endif
}
#endif
#if SYZ_EXECUTOR || SYZ_NET_INJECTION && (__NR_syz_extract_tcp_res || SYZ_REPEAT)
#include <errno.h>
static int read_tun(char* data, int size)
{
if (tunfd < 0)
return -1;
int rv = read(tunfd, data, size);
if (rv < 0) {
// Tun sometimes returns EBADFD, unclear if it's a kernel bug or not.
if (errno == EAGAIN || errno == EBADFD)
return -1;
fail("tun read failed");
}
return rv;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_emit_ethernet && SYZ_NET_INJECTION
#include <stdbool.h>
#include <sys/uio.h>
#if ENABLE_NAPI_FRAGS
#define MAX_FRAGS 4
struct vnet_fragmentation {
uint32 full;
uint32 count;
uint32 frags[MAX_FRAGS];
};
#endif
static long syz_emit_ethernet(volatile long a0, volatile long a1, volatile long a2)
{
// syz_emit_ethernet(len len[packet], packet ptr[in, eth_packet], frags ptr[in, vnet_fragmentation, opt])
// vnet_fragmentation {
// full int32[0:1]
// count int32[1:4]
// frags array[int32[0:4096], 4]
// }
if (tunfd < 0)
return (uintptr_t)-1;
uint32 length = a0;
char* data = (char*)a1;
debug_dump_data(data, length);
#if ENABLE_NAPI_FRAGS
struct vnet_fragmentation* frags = (struct vnet_fragmentation*)a2;
struct iovec vecs[MAX_FRAGS + 1];
uint32 nfrags = 0;
if (!tun_frags_enabled || frags == NULL) {
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = length;
nfrags++;
} else {
bool full = frags->full;
uint32 count = frags->count;
if (count > MAX_FRAGS)
count = MAX_FRAGS;
uint32 i;
for (i = 0; i < count && length != 0; i++) {
uint32 size = frags->frags[i];
if (size > length)
size = length;
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = size;
nfrags++;
data += size;
length -= size;
}
if (length != 0 && (full || nfrags == 0)) {
vecs[nfrags].iov_base = data;
vecs[nfrags].iov_len = length;
nfrags++;
}
}
return writev(tunfd, vecs, nfrags);
#else
return write(tunfd, data, length);
#endif
}
#endif
#if SYZ_EXECUTOR || __NR_syz_io_uring_submit || __NR_syz_io_uring_complete || __NR_syz_io_uring_setup
#define SIZEOF_IO_URING_SQE 64
#define SIZEOF_IO_URING_CQE 16
// Once a io_uring is set up by calling io_uring_setup, the offsets to the member fields
// to be used on the mmap'ed area are set in structs io_sqring_offsets and io_cqring_offsets.
// Except io_sqring_offsets.array, the offsets are static while all depend on how struct io_rings
// is organized in code. The offsets can be marked as resources in syzkaller descriptions but
// this makes it difficult to generate correct programs by the fuzzer. Thus, the offsets are
// hard-coded here (and in the descriptions), and array offset is later computed once the number
// of entries is available. Another way to obtain the offsets is to setup another io_uring here
// and use what it returns. It is slower but might be more maintainable.
#define SQ_HEAD_OFFSET 0
#define SQ_TAIL_OFFSET 64
#define SQ_RING_MASK_OFFSET 256
#define SQ_RING_ENTRIES_OFFSET 264
#define SQ_FLAGS_OFFSET 276
#define SQ_DROPPED_OFFSET 272
#define CQ_HEAD_OFFSET 128
#define CQ_TAIL_OFFSET 192
#define CQ_RING_MASK_OFFSET 260
#define CQ_RING_ENTRIES_OFFSET 268
#define CQ_RING_OVERFLOW_OFFSET 284
#define CQ_FLAGS_OFFSET 280
#define CQ_CQES_OFFSET 320
#if SYZ_EXECUTOR || __NR_syz_io_uring_complete
// From linux/io_uring.h
struct io_uring_cqe {
uint64 user_data;
uint32 res;
uint32 flags;
};
static long syz_io_uring_complete(volatile long a0)
{
// syzlang: syz_io_uring_complete(ring_ptr ring_ptr)
// C: syz_io_uring_complete(char* ring_ptr)
// It is not checked if the ring is empty
// Cast to original
char* ring_ptr = (char*)a0;
// Compute the head index and the next head value
uint32 cq_ring_mask = *(uint32*)(ring_ptr + CQ_RING_MASK_OFFSET);
uint32* cq_head_ptr = (uint32*)(ring_ptr + CQ_HEAD_OFFSET);
uint32 cq_head = *cq_head_ptr & cq_ring_mask;
uint32 cq_head_next = *cq_head_ptr + 1;
// Compute the ptr to the src cq entry on the ring
char* cqe_src = ring_ptr + CQ_CQES_OFFSET + cq_head * SIZEOF_IO_URING_CQE;
// Get the cq entry from the ring
struct io_uring_cqe cqe;
memcpy(&cqe, cqe_src, sizeof(cqe));
// Advance the head. Head is a free-flowing integer and relies on natural wrapping.
// Ensure that the kernel will never see a head update without the preceeding CQE
// stores being done.
__atomic_store_n(cq_head_ptr, cq_head_next, __ATOMIC_RELEASE);
// In the descriptions (sys/linux/io_uring.txt), openat and openat2 are passed
// with a unique range of sqe.user_data (0x12345 and 0x23456) to identify the operations
// which produces an fd instance. Check cqe.user_data, which should be the same
// as sqe.user_data for that operation. If it falls in that unique range, return
// cqe.res as fd. Otherwise, just return an invalid fd.
return (cqe.user_data == 0x12345 || cqe.user_data == 0x23456) ? (long)cqe.res : (long)-1;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_io_uring_setup
struct io_sqring_offsets {
uint32 head;
uint32 tail;
uint32 ring_mask;
uint32 ring_entries;
uint32 flags;
uint32 dropped;
uint32 array;
uint32 resv1;
uint64 resv2;
};
struct io_cqring_offsets {
uint32 head;
uint32 tail;
uint32 ring_mask;
uint32 ring_entries;
uint32 overflow;
uint32 cqes;
uint64 resv[2];
};
struct io_uring_params {
uint32 sq_entries;
uint32 cq_entries;
uint32 flags;
uint32 sq_thread_cpu;
uint32 sq_thread_idle;
uint32 features;
uint32 resv[4];
struct io_sqring_offsets sq_off;
struct io_cqring_offsets cq_off;
};
#define IORING_OFF_SQ_RING 0
#define IORING_OFF_SQES 0x10000000ULL
#include <sys/mman.h>
#include <unistd.h>
// Wrapper for io_uring_setup and the subsequent mmap calls that map the ring and the sqes
static long syz_io_uring_setup(volatile long a0, volatile long a1, volatile long a2, volatile long a3)
{
// syzlang: syz_io_uring_setup(entries int32[1:IORING_MAX_ENTRIES], params ptr[inout, io_uring_params], ring_ptr ptr[out, ring_ptr], sqes_ptr ptr[out, sqes_ptr]) fd_io_uring
// C: syz_io_uring_setup(uint32 entries, struct io_uring_params* params, void** ring_ptr_out, void** sqes_ptr_out) // returns uint32 fd_io_uring
// Cast to original
uint32 entries = (uint32)a0;
struct io_uring_params* setup_params = (struct io_uring_params*)a1;
void** ring_ptr_out = (void**)a2;
void** sqes_ptr_out = (void**)a3;
uint32 fd_io_uring = syscall(__NR_io_uring_setup, entries, setup_params);
// Compute the ring sizes
uint32 sq_ring_sz = setup_params->sq_off.array + setup_params->sq_entries * sizeof(uint32);
uint32 cq_ring_sz = setup_params->cq_off.cqes + setup_params->cq_entries * SIZEOF_IO_URING_CQE;
// Asssumed IORING_FEAT_SINGLE_MMAP, which is always the case with the current implementation
// The implication is that the sq_ring_ptr and the cq_ring_ptr are the same but the
// difference is in the offsets to access the fields of these rings.
uint32 ring_sz = sq_ring_sz > cq_ring_sz ? sq_ring_sz : cq_ring_sz;
*ring_ptr_out = mmap(0, ring_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd_io_uring, IORING_OFF_SQ_RING);
uint32 sqes_sz = setup_params->sq_entries * SIZEOF_IO_URING_SQE;
*sqes_ptr_out = mmap(0, sqes_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd_io_uring, IORING_OFF_SQES);
uint32* array = (uint32*)((uintptr_t)*ring_ptr_out + setup_params->sq_off.array);
for (uint32 index = 0; index < entries; index++)
array[index] = index;
return fd_io_uring;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_io_uring_submit
static long syz_io_uring_submit(volatile long a0, volatile long a1, volatile long a2)
{
// syzlang: syz_io_uring_submit(ring_ptr ring_ptr, sqes_ptr sqes_ptr, sqe ptr[in, io_uring_sqe])
// C: syz_io_uring_submit(char* ring_ptr, io_uring_sqe* sqes_ptr, io_uring_sqe* sqe)
// It is not checked if the ring is full
// Cast to original
char* ring_ptr = (char*)a0; // This will be exposed to offsets in bytes
char* sqes_ptr = (char*)a1;
char* sqe = (char*)a2;
uint32 sq_ring_mask = *(uint32*)(ring_ptr + SQ_RING_MASK_OFFSET);
uint32* sq_tail_ptr = (uint32*)(ring_ptr + SQ_TAIL_OFFSET);
uint32 sq_tail = *sq_tail_ptr & sq_ring_mask;
// Get the ptr to the destination for the sqe
char* sqe_dest = sqes_ptr + sq_tail * SIZEOF_IO_URING_SQE;
// Write the sqe entry to its destination in sqes
memcpy(sqe_dest, sqe, SIZEOF_IO_URING_SQE);
// Write the index to the sqe array
uint32 sq_tail_next = *sq_tail_ptr + 1;
// Advance the tail. Tail is a free-flowing integer and relies on natural wrapping.
// Ensure that the kernel will never see a tail update without the preceeding SQE
// stores being done.
__atomic_store_n(sq_tail_ptr, sq_tail_next, __ATOMIC_RELEASE);
// Now the application is free to call io_uring_enter() to submit the sqe
return 0;
}
#endif
#endif
#if SYZ_EXECUTOR || __NR_syz_usbip_server_init
#include <errno.h>
#include <fcntl.h>
#include <linux/usb/ch9.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
// This should be coherent with CONFIG_USBIP_VHCI_HC_PORTS.
#define VHCI_HC_PORTS 8
#define VHCI_PORTS (VHCI_HC_PORTS * 2)
static long syz_usbip_server_init(volatile long a0)
{
// port_alloc[0] corresponds to ports which can be used by usb2 and
// port_alloc[1] corresponds to ports which can be used by usb3.
static int port_alloc[2];
int speed = (int)a0;
bool usb3 = (speed == USB_SPEED_SUPER);
int socket_pair[2];
if (socketpair(AF_UNIX, SOCK_STREAM, 0, socket_pair))
fail("syz_usbip_server_init: socketpair failed");
int client_fd = socket_pair[0];
int server_fd = socket_pair[1];
int available_port_num = __atomic_fetch_add(&port_alloc[usb3], 1, __ATOMIC_RELAXED);
if (available_port_num > VHCI_HC_PORTS) {
debug("syz_usbip_server_init : no more available port for : %d\n", available_port_num);
return -1;
}
// Each port number corresponds to a particular vhci_hcd (USB/IP Virtual Host Controller) and it is used by either
// an usb2 device or usb3 device. There are 16 ports available in each vhci_hcd.
// (VHCI_PORTS = 16 in our case.) When they are occupied, the following vhci_hcd's ports are used.
// First 16 ports correspond to vhci_hcd0, next 16 ports correspond to
// vhci_hcd1 etc. In a vhci_hcd, first 8 ports are used by usb2 devices and last 8 are used by usb3 devices.
int port_num = procid * VHCI_PORTS + usb3 * VHCI_HC_PORTS + available_port_num;
// Under normal USB/IP usage, devid represents the device ID on the server.
// When fuzzing with syzkaller we don't have an actual server or an actual device, so use 0 for devid.
char buffer[100];
sprintf(buffer, "%d %d %s %d", port_num, client_fd, "0", speed);
write_file("/sys/devices/platform/vhci_hcd.0/attach", buffer);
return server_fd;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_btf_id_by_name
#include <errno.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
// Some items in linux/btf.h are relatively new, so we copy them here for
// backward compatibility.
#define BTF_MAGIC 0xeB9F
struct btf_header {
__u16 magic;
__u8 version;
__u8 flags;
__u32 hdr_len;
__u32 type_off;
__u32 type_len;
__u32 str_off;
__u32 str_len;
};
#define BTF_INFO_KIND(info) (((info) >> 24) & 0x0f)
#define BTF_INFO_VLEN(info) ((info)&0xffff)
#define BTF_KIND_INT 1
#define BTF_KIND_ARRAY 3
#define BTF_KIND_STRUCT 4
#define BTF_KIND_UNION 5
#define BTF_KIND_ENUM 6
#define BTF_KIND_FUNC_PROTO 13
#define BTF_KIND_VAR 14
#define BTF_KIND_DATASEC 15
struct btf_type {
__u32 name_off;
__u32 info;
union {
__u32 size;
__u32 type;
};
};
struct btf_enum {
__u32 name_off;
__s32 val;
};
struct btf_array {
__u32 type;
__u32 index_type;
__u32 nelems;
};
struct btf_member {
__u32 name_off;
__u32 type;
__u32 offset;
};
struct btf_param {
__u32 name_off;
__u32 type;
};
struct btf_var {
__u32 linkage;
};
struct btf_var_secinfo {
__u32 type;
__u32 offset;
__u32 size;
};
// Set the limit on the maximum size of btf/vmlinux to be 10 MiB.
#define VMLINUX_MAX_SUPPORT_SIZE (10 * 1024 * 1024)
// Read out all the content of /sys/kernel/btf/vmlinux to the fixed address
// buffer and return it. Return NULL if failed.
static char* read_btf_vmlinux()
{
static bool is_read = false;
static char buf[VMLINUX_MAX_SUPPORT_SIZE];
// There could be a race condition here, but it should not be harmful.
if (is_read)
return buf;
int fd = open("/sys/kernel/btf/vmlinux", O_RDONLY);
if (fd < 0)
return NULL;
unsigned long bytes_read = 0;
for (;;) {
ssize_t ret = read(fd, buf + bytes_read,
VMLINUX_MAX_SUPPORT_SIZE - bytes_read);
if (ret < 0 || bytes_read + ret == VMLINUX_MAX_SUPPORT_SIZE)
return NULL;
if (ret == 0)
break;
bytes_read += ret;
}
is_read = true;
return buf;
}
// Given a pointer to a C-string as the only argument a0, return the
// corresponding btf ID for this name. Return -1 if there is an error when
// opening the vmlinux file or the name is not found in vmlinux.
static long syz_btf_id_by_name(volatile long a0)
{
// syzlang: syz_btf_id_by_name(name ptr[in, string]) btf_id
// C: syz_btf_id_by_name(char* name)
char* target = (char*)a0;
char* vmlinux = read_btf_vmlinux();
if (vmlinux == NULL)
return -1;
struct btf_header* btf_header = (struct btf_header*)vmlinux;
if (btf_header->magic != BTF_MAGIC)
return -1;
// These offsets are bytes relative to the end of the header.
char* btf_type_sec = vmlinux + btf_header->hdr_len + btf_header->type_off;
char* btf_str_sec = vmlinux + btf_header->hdr_len + btf_header->str_off;
// Scan through the btf type section, and find a type description that
// matches the provided name.
unsigned int bytes_parsed = 0;
// BTF index starts at 1.
long idx = 1;
while (bytes_parsed < btf_header->type_len) {
struct btf_type* btf_type = (struct btf_type*)(btf_type_sec + bytes_parsed);
uint32 kind = BTF_INFO_KIND(btf_type->info);
uint32 vlen = BTF_INFO_VLEN(btf_type->info);
char* name = btf_str_sec + btf_type->name_off;
if (strcmp(name, target) == 0)
return idx;
// From /include/uapi/linux/btf.h, some kinds of types are
// followed by extra data.
size_t skip;
switch (kind) {
case BTF_KIND_INT:
skip = sizeof(uint32);
break;
case BTF_KIND_ENUM:
skip = sizeof(struct btf_enum) * vlen;
break;
case BTF_KIND_ARRAY:
skip = sizeof(struct btf_array);
break;
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
skip = sizeof(struct btf_member) * vlen;
break;
case BTF_KIND_FUNC_PROTO:
skip = sizeof(struct btf_param) * vlen;
break;
case BTF_KIND_VAR:
skip = sizeof(struct btf_var);
break;
case BTF_KIND_DATASEC:
skip = sizeof(struct btf_var_secinfo) * vlen;
break;
default:
skip = 0;
}
bytes_parsed += sizeof(struct btf_type) + skip;
idx++;
}
return -1;
}
#endif // SYZ_EXECUTOR || __NR_syz_btf_id_by_name
// Same as memcpy except that it accepts offset to dest and src.
#if SYZ_EXECUTOR || __NR_syz_memcpy_off
static long syz_memcpy_off(volatile long a0, volatile long a1, volatile long a2, volatile long a3, volatile long a4)
{
// C: syz_memcpy_off(void* dest, uint32 dest_off, void* src, uint32 src_off, size_t n)
// Cast to original
char* dest = (char*)a0;
uint32 dest_off = (uint32)a1;
char* src = (char*)a2;
uint32 src_off = (uint32)a3;
size_t n = (size_t)a4;
return (long)memcpy(dest + dest_off, src + src_off, n);
}
#endif
#if (SYZ_EXECUTOR || SYZ_REPEAT && SYZ_NET_INJECTION) && SYZ_EXECUTOR_USES_FORK_SERVER
static void flush_tun()
{
#if SYZ_EXECUTOR
if (!flag_net_injection)
return;
#endif
char data[1000];
while (read_tun(&data[0], sizeof(data)) != -1) {
}
}
#endif
#if SYZ_EXECUTOR || __NR_syz_extract_tcp_res && SYZ_NET_INJECTION
#ifndef __ANDROID__
// Can't include <linux/ipv6.h>, since it causes
// conflicts due to some structs redefinition.
struct ipv6hdr {
__u8 priority : 4,
version : 4;
__u8 flow_lbl[3];
__be16 payload_len;
__u8 nexthdr;
__u8 hop_limit;
struct in6_addr saddr;
struct in6_addr daddr;
};
#endif
struct tcp_resources {
uint32 seq;
uint32 ack;
};
static long syz_extract_tcp_res(volatile long a0, volatile long a1, volatile long a2)
{
// syz_extract_tcp_res(res ptr[out, tcp_resources], seq_inc int32, ack_inc int32)
if (tunfd < 0)
return (uintptr_t)-1;
// We just need this to be large enough to hold headers that we parse (ethernet/ip/tcp).
// Rest of the packet (if any) will be silently truncated which is fine.
char data[1000];
int rv = read_tun(&data[0], sizeof(data));
if (rv == -1)
return (uintptr_t)-1;
size_t length = rv;
debug_dump_data(data, length);
if (length < sizeof(struct ethhdr))
return (uintptr_t)-1;
struct ethhdr* ethhdr = (struct ethhdr*)&data[0];
struct tcphdr* tcphdr = 0;
if (ethhdr->h_proto == htons(ETH_P_IP)) {
if (length < sizeof(struct ethhdr) + sizeof(struct iphdr))
return (uintptr_t)-1;
struct iphdr* iphdr = (struct iphdr*)&data[sizeof(struct ethhdr)];
if (iphdr->protocol != IPPROTO_TCP)
return (uintptr_t)-1;
if (length < sizeof(struct ethhdr) + iphdr->ihl * 4 + sizeof(struct tcphdr))
return (uintptr_t)-1;
tcphdr = (struct tcphdr*)&data[sizeof(struct ethhdr) + iphdr->ihl * 4];
} else {
if (length < sizeof(struct ethhdr) + sizeof(struct ipv6hdr))
return (uintptr_t)-1;
struct ipv6hdr* ipv6hdr = (struct ipv6hdr*)&data[sizeof(struct ethhdr)];
// TODO: parse and skip extension headers.
if (ipv6hdr->nexthdr != IPPROTO_TCP)
return (uintptr_t)-1;
if (length < sizeof(struct ethhdr) + sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
return (uintptr_t)-1;
tcphdr = (struct tcphdr*)&data[sizeof(struct ethhdr) + sizeof(struct ipv6hdr)];
}
struct tcp_resources* res = (struct tcp_resources*)a0;
res->seq = htonl((ntohl(tcphdr->seq) + (uint32)a1));
res->ack = htonl((ntohl(tcphdr->ack_seq) + (uint32)a2));
debug("extracted seq: %08x\n", res->seq);
debug("extracted ack: %08x\n", res->ack);
return 0;
}
#endif
#if SYZ_EXECUTOR || SYZ_CLOSE_FDS || __NR_syz_usb_connect || __NR_syz_usb_connect_ath9k
#define MAX_FDS 30
#endif
#if SYZ_EXECUTOR || __NR_syz_usb_connect || __NR_syz_usb_connect_ath9k || \
__NR_syz_usb_ep_write || __NR_syz_usb_ep_read || __NR_syz_usb_control_io || \
__NR_syz_usb_disconnect
#include <errno.h>
#include <fcntl.h>
#include <linux/usb/ch9.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "common_usb_linux.h"
#endif
#if SYZ_EXECUTOR || __NR_syz_open_dev
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
static long syz_open_dev(volatile long a0, volatile long a1, volatile long a2)
{
if (a0 == 0xc || a0 == 0xb) {
// syz_open_dev$char(dev const[0xc], major intptr, minor intptr) fd
// syz_open_dev$block(dev const[0xb], major intptr, minor intptr) fd
char buf[128];
sprintf(buf, "/dev/%s/%d:%d", a0 == 0xc ? "char" : "block", (uint8)a1, (uint8)a2);
return open(buf, O_RDWR, 0);
} else {
// syz_open_dev(dev strconst, id intptr, flags flags[open_flags]) fd
char buf[1024];
char* hash;
strncpy(buf, (char*)a0, sizeof(buf) - 1);
buf[sizeof(buf) - 1] = 0;
while ((hash = strchr(buf, '#'))) {
*hash = '0' + (char)(a1 % 10); // 10 devices should be enough for everyone.
a1 /= 10;
}
return open(buf, a2, 0);
}
}
#endif
#if SYZ_EXECUTOR || __NR_syz_open_procfs
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
static long syz_open_procfs(volatile long a0, volatile long a1)
{
// syz_open_procfs(pid pid, file ptr[in, string[procfs_file]]) fd
char buf[128];
memset(buf, 0, sizeof(buf));
if (a0 == 0) {
snprintf(buf, sizeof(buf), "/proc/self/%s", (char*)a1);
} else if (a0 == -1) {
snprintf(buf, sizeof(buf), "/proc/thread-self/%s", (char*)a1);
} else {
snprintf(buf, sizeof(buf), "/proc/self/task/%d/%s", (int)a0, (char*)a1);
}
int fd = open(buf, O_RDWR);
if (fd == -1)
fd = open(buf, O_RDONLY);
return fd;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_open_pts
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
static long syz_open_pts(volatile long a0, volatile long a1)
{
// syz_openpts(fd fd[tty], flags flags[open_flags]) fd[tty]
int ptyno = 0;
if (ioctl(a0, TIOCGPTN, &ptyno))
return -1;
char buf[128];
sprintf(buf, "/dev/pts/%d", ptyno);
return open(buf, a1, 0);
}
#endif
#if SYZ_EXECUTOR || __NR_syz_init_net_socket
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID
#include <fcntl.h>
#include <sched.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
// syz_init_net_socket opens a socket in init net namespace.
// Used for families that can only be created in init net namespace.
static long syz_init_net_socket(volatile long domain, volatile long type, volatile long proto)
{
int netns = open("/proc/self/ns/net", O_RDONLY);
if (netns == -1)
return netns;
if (setns(kInitNetNsFd, 0))
return -1;
int sock = syscall(__NR_socket, domain, type, proto);
int err = errno;
if (setns(netns, 0))
fail("setns(netns) failed");
close(netns);
errno = err;
return sock;
}
#else
static long syz_init_net_socket(volatile long domain, volatile long type, volatile long proto)
{
return syscall(__NR_socket, domain, type, proto);
}
#endif
#endif
#if SYZ_EXECUTOR || __NR_syz_socket_connect_nvme_tcp
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE
#include <arpa/inet.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <sched.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
static long syz_socket_connect_nvme_tcp()
{
struct sockaddr_in nvme_local_address;
int netns = open("/proc/self/ns/net", O_RDONLY);
if (netns == -1)
return netns;
if (setns(kInitNetNsFd, 0))
return -1;
int sock = syscall(__NR_socket, AF_INET, SOCK_STREAM, 0x0);
int err = errno;
if (setns(netns, 0))
fail("setns(netns) failed");
close(netns);
errno = err;
// We only connect to an NVMe-oF/TCP server on 127.0.0.1:4420
nvme_local_address.sin_family = AF_INET;
nvme_local_address.sin_port = htobe16(4420);
nvme_local_address.sin_addr.s_addr = htobe32(0x7f000001);
err = syscall(__NR_connect, sock, &nvme_local_address, sizeof(nvme_local_address));
if (err != 0) {
close(sock);
return -1;
}
return sock;
}
#else
static long syz_socket_connect_nvme_tcp()
{
return syscall(__NR_socket, -1, 0, 0);
}
#endif
#endif
#if SYZ_EXECUTOR || SYZ_VHCI_INJECTION
#include <errno.h>
#include <fcntl.h>
#include <linux/rfkill.h>
#include <pthread.h>
#include <sys/epoll.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/uio.h>
#define BTPROTO_HCI 1
#define ACL_LINK 1
#define SCAN_PAGE 2
typedef struct {
uint8 b[6];
} __attribute__((packed)) bdaddr_t;
#define HCI_COMMAND_PKT 1
#define HCI_EVENT_PKT 4
#define HCI_VENDOR_PKT 0xff
struct hci_command_hdr {
uint16 opcode;
uint8 plen;
} __attribute__((packed));
struct hci_event_hdr {
uint8 evt;
uint8 plen;
} __attribute__((packed));
#define HCI_EV_CONN_COMPLETE 0x03
struct hci_ev_conn_complete {
uint8 status;
uint16 handle;
bdaddr_t bdaddr;
uint8 link_type;
uint8 encr_mode;
} __attribute__((packed));
#define HCI_EV_CONN_REQUEST 0x04
struct hci_ev_conn_request {
bdaddr_t bdaddr;
uint8 dev_class[3];
uint8 link_type;
} __attribute__((packed));
#define HCI_EV_REMOTE_FEATURES 0x0b
struct hci_ev_remote_features {
uint8 status;
uint16 handle;
uint8 features[8];
} __attribute__((packed));
#define HCI_EV_CMD_COMPLETE 0x0e
struct hci_ev_cmd_complete {
uint8 ncmd;
uint16 opcode;
} __attribute__((packed));
#define HCI_OP_WRITE_SCAN_ENABLE 0x0c1a
#define HCI_OP_READ_BUFFER_SIZE 0x1005
struct hci_rp_read_buffer_size {
uint8 status;
uint16 acl_mtu;
uint8 sco_mtu;
uint16 acl_max_pkt;
uint16 sco_max_pkt;
} __attribute__((packed));
#define HCI_OP_READ_BD_ADDR 0x1009
struct hci_rp_read_bd_addr {
uint8 status;
bdaddr_t bdaddr;
} __attribute__((packed));
#define HCI_EV_LE_META 0x3e
struct hci_ev_le_meta {
uint8 subevent;
} __attribute__((packed));
#define HCI_EV_LE_CONN_COMPLETE 0x01
struct hci_ev_le_conn_complete {
uint8 status;
uint16 handle;
uint8 role;
uint8 bdaddr_type;
bdaddr_t bdaddr;
uint16 interval;
uint16 latency;
uint16 supervision_timeout;
uint8 clk_accurancy;
} __attribute__((packed));
struct hci_dev_req {
uint16 dev_id;
uint32 dev_opt;
};
struct vhci_vendor_pkt_request {
uint8 type;
uint8 opcode;
} __attribute__((packed));
struct vhci_pkt {
uint8 type;
union {
struct {
uint8 opcode;
uint16 id;
} __attribute__((packed)) vendor_pkt;
struct hci_command_hdr command_hdr;
};
} __attribute__((packed));
#define HCIDEVUP _IOW('H', 201, int)
#define HCISETSCAN _IOW('H', 221, int)
static int vhci_fd = -1;
static void rfkill_unblock_all()
{
int fd = open("/dev/rfkill", O_WRONLY);
if (fd < 0)
fail("open /dev/rfkill failed");
struct rfkill_event event = {0};
event.idx = 0;
event.type = RFKILL_TYPE_ALL;
event.op = RFKILL_OP_CHANGE_ALL;
event.soft = 0;
event.hard = 0;
if (write(fd, &event, sizeof(event)) < 0)
fail("write rfkill event failed");
close(fd);
}
static void hci_send_event_packet(int fd, uint8 evt, void* data, size_t data_len)
{
struct iovec iv[3];
struct hci_event_hdr hdr;
hdr.evt = evt;
hdr.plen = data_len;
uint8 type = HCI_EVENT_PKT;
iv[0].iov_base = &type;
iv[0].iov_len = sizeof(type);
iv[1].iov_base = &hdr;
iv[1].iov_len = sizeof(hdr);
iv[2].iov_base = data;
iv[2].iov_len = data_len;
if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0)
fail("writev failed");
}
static void hci_send_event_cmd_complete(int fd, uint16 opcode, void* data, size_t data_len)
{
struct iovec iv[4];
struct hci_event_hdr hdr;
hdr.evt = HCI_EV_CMD_COMPLETE;
hdr.plen = sizeof(struct hci_ev_cmd_complete) + data_len;
struct hci_ev_cmd_complete evt_hdr;
evt_hdr.ncmd = 1;
evt_hdr.opcode = opcode;
uint8 type = HCI_EVENT_PKT;
iv[0].iov_base = &type;
iv[0].iov_len = sizeof(type);
iv[1].iov_base = &hdr;
iv[1].iov_len = sizeof(hdr);
iv[2].iov_base = &evt_hdr;
iv[2].iov_len = sizeof(evt_hdr);
iv[3].iov_base = data;
iv[3].iov_len = data_len;
if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0)
fail("writev failed");
}
static bool process_command_pkt(int fd, char* buf, ssize_t buf_size)
{
struct hci_command_hdr* hdr = (struct hci_command_hdr*)buf;
if (buf_size < (ssize_t)sizeof(struct hci_command_hdr) ||
hdr->plen != buf_size - sizeof(struct hci_command_hdr))
failmsg("process_command_pkt: invalid size", "suze=%zx", buf_size);
switch (hdr->opcode) {
case HCI_OP_WRITE_SCAN_ENABLE: {
uint8 status = 0;
hci_send_event_cmd_complete(fd, hdr->opcode, &status, sizeof(status));
return true;
}
case HCI_OP_READ_BD_ADDR: {
struct hci_rp_read_bd_addr rp = {0};
rp.status = 0;
memset(&rp.bdaddr, 0xaa, 6);
hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp));
return false;
}
case HCI_OP_READ_BUFFER_SIZE: {
struct hci_rp_read_buffer_size rp = {0};
rp.status = 0;
rp.acl_mtu = 1021;
rp.sco_mtu = 96;
rp.acl_max_pkt = 4;
rp.sco_max_pkt = 6;
hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp));
return false;
}
}
char dummy[0xf9] = {0};
hci_send_event_cmd_complete(fd, hdr->opcode, dummy, sizeof(dummy));
return false;
}
static void* event_thread(void* arg)
{
while (1) {
char buf[1024] = {0};
ssize_t buf_size = read(vhci_fd, buf, sizeof(buf));
if (buf_size < 0)
fail("read failed");
debug_dump_data(buf, buf_size);
if (buf_size > 0 && buf[0] == HCI_COMMAND_PKT) {
if (process_command_pkt(vhci_fd, buf + 1, buf_size - 1))
break;
}
}
return NULL;
}
// Matches hci_handles in sys/linux/dev_vhci.txt.
#define HCI_HANDLE_1 200
#define HCI_HANDLE_2 201
#define HCI_PRIMARY 0
#define HCI_OP_RESET 0x0c03
static void initialize_vhci()
{
#if SYZ_EXECUTOR
if (!flag_vhci_injection)
return;
#endif
int hci_sock = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI);
if (hci_sock < 0)
fail("socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI) failed");
vhci_fd = open("/dev/vhci", O_RDWR);
if (vhci_fd == -1)
fail("open /dev/vhci failed");
// Remap vhci onto higher fd number to hide it from fuzzer and to keep
// fd numbers stable regardless of whether vhci is opened or not (also see kMaxFd).
const int kVhciFd = 202;
if (dup2(vhci_fd, kVhciFd) < 0)
fail("dup2(vhci_fd, kVhciFd) failed");
close(vhci_fd);
vhci_fd = kVhciFd;
struct vhci_vendor_pkt_request vendor_pkt_req = {HCI_VENDOR_PKT, HCI_PRIMARY};
if (write(vhci_fd, &vendor_pkt_req, sizeof(vendor_pkt_req)) != sizeof(vendor_pkt_req))
fail("vendor_pkt_req write failed");
struct vhci_pkt vhci_pkt;
if (read(vhci_fd, &vhci_pkt, sizeof(vhci_pkt)) != sizeof(vhci_pkt))
fail("vhci_pkt read failed");
if (vhci_pkt.type == HCI_COMMAND_PKT && vhci_pkt.command_hdr.opcode == HCI_OP_RESET) {
char response[1] = {0};
hci_send_event_cmd_complete(vhci_fd, HCI_OP_RESET, response, sizeof(response));
if (read(vhci_fd, &vhci_pkt, sizeof(vhci_pkt)) != sizeof(vhci_pkt))
fail("vhci_pkt read failed");
}
if (vhci_pkt.type != HCI_VENDOR_PKT)
fail("wrong response packet");
int dev_id = vhci_pkt.vendor_pkt.id;
debug("hci dev id: %x\n", dev_id);
pthread_t th;
if (pthread_create(&th, NULL, event_thread, NULL))
fail("pthread_create failed");
// Bring hci device up
int ret = ioctl(hci_sock, HCIDEVUP, dev_id);
if (ret) {
if (errno == ERFKILL) {
rfkill_unblock_all();
ret = ioctl(hci_sock, HCIDEVUP, dev_id);
}
if (ret && errno != EALREADY)
fail("ioctl(HCIDEVUP) failed");
}
// Activate page scanning mode which is required to fake a connection.
struct hci_dev_req dr = {0};
dr.dev_id = dev_id;
dr.dev_opt = SCAN_PAGE;
if (ioctl(hci_sock, HCISETSCAN, &dr))
fail("ioctl(HCISETSCAN) failed");
// Fake a connection with bd address 10:aa:aa:aa:aa:aa.
// This is a fixed address used in sys/linux/socket_bluetooth.txt.
struct hci_ev_conn_request request;
memset(&request, 0, sizeof(request));
memset(&request.bdaddr, 0xaa, 6);
*(uint8*)&request.bdaddr.b[5] = 0x10;
request.link_type = ACL_LINK;
hci_send_event_packet(vhci_fd, HCI_EV_CONN_REQUEST, &request, sizeof(request));
struct hci_ev_conn_complete complete;
memset(&complete, 0, sizeof(complete));
complete.status = 0;
complete.handle = HCI_HANDLE_1;
memset(&complete.bdaddr, 0xaa, 6);
*(uint8*)&complete.bdaddr.b[5] = 0x10;
complete.link_type = ACL_LINK;
complete.encr_mode = 0;
hci_send_event_packet(vhci_fd, HCI_EV_CONN_COMPLETE, &complete, sizeof(complete));
struct hci_ev_remote_features features;
memset(&features, 0, sizeof(features));
features.status = 0;
features.handle = HCI_HANDLE_1;
hci_send_event_packet(vhci_fd, HCI_EV_REMOTE_FEATURES, &features, sizeof(features));
// Fake a low-energy connection with bd address 11:aa:aa:aa:aa:aa.
// This is a fixed address used in sys/linux/socket_bluetooth.txt.
struct {
struct hci_ev_le_meta le_meta;
struct hci_ev_le_conn_complete le_conn;
} le_conn;
memset(&le_conn, 0, sizeof(le_conn));
le_conn.le_meta.subevent = HCI_EV_LE_CONN_COMPLETE;
memset(&le_conn.le_conn.bdaddr, 0xaa, 6);
*(uint8*)&le_conn.le_conn.bdaddr.b[5] = 0x11;
le_conn.le_conn.role = 1;
le_conn.le_conn.handle = HCI_HANDLE_2;
hci_send_event_packet(vhci_fd, HCI_EV_LE_META, &le_conn, sizeof(le_conn));
pthread_join(th, NULL);
close(hci_sock);
}
#endif
#if SYZ_EXECUTOR || __NR_syz_emit_vhci && SYZ_VHCI_INJECTION
static long syz_emit_vhci(volatile long a0, volatile long a1)
{
if (vhci_fd < 0)
return (uintptr_t)-1;
char* data = (char*)a0;
uint32 length = a1;
return write(vhci_fd, data, length);
}
#endif
#if SYZ_EXECUTOR || __NR_syz_genetlink_get_family_id
#include <errno.h>
#include <sys/socket.h>
static long syz_genetlink_get_family_id(volatile long name, volatile long sock_arg)
{
debug("syz_genetlink_get_family_id(%s, %d)\n", (char*)name, (int)sock_arg);
int fd = sock_arg;
if (fd < 0) {
fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (fd == -1) {
debug("syz_genetlink_get_family_id: socket failed: %d\n", errno);
return -1;
}
}
struct nlmsg nlmsg_tmp;
int ret = netlink_query_family_id(&nlmsg_tmp, fd, (char*)name, false);
if ((int)sock_arg < 0)
close(fd);
if (ret < 0) {
debug("syz_genetlink_get_family_id: netlink_query_family_id failed: %d\n", ret);
return -1;
}
return ret;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_mount_image || __NR_syz_read_part_table
#include "common_zlib.h"
#include <errno.h>
#include <fcntl.h>
#include <linux/loop.h>
#include <stdbool.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
// Setup the loop device needed for mounting a filesystem image. Takes care of
// creating and initializing the underlying file backing the loop device and
// returns the fds to the file and device.
// Returns 0 on success, -1 otherwise.
static int setup_loop_device(unsigned char* data, unsigned long size, const char* loopname, int* loopfd_p)
{
int err = 0, loopfd = -1;
int memfd = syscall(__NR_memfd_create, "syzkaller", 0);
if (memfd == -1) {
err = errno;
goto error;
}
if (puff_zlib_to_file(data, size, memfd)) {
err = errno;
debug("setup_loop_device: could not decompress data: %d\n", errno);
goto error_close_memfd;
}
loopfd = open(loopname, O_RDWR);
if (loopfd == -1) {
err = errno;
debug("setup_loop_device: open failed: %d\n", errno);
goto error_close_memfd;
}
if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
if (errno != EBUSY) {
err = errno;
goto error_close_loop;
}
ioctl(loopfd, LOOP_CLR_FD, 0);
usleep(1000);
if (ioctl(loopfd, LOOP_SET_FD, memfd)) {
err = errno;
goto error_close_loop;
}
}
close(memfd);
*loopfd_p = loopfd;
return 0;
error_close_loop:
close(loopfd);
error_close_memfd:
close(memfd);
error:
errno = err;
return -1;
}
#if SYZ_EXECUTOR || __NR_syz_mount_image
static void reset_loop_device(const char* loopname)
{
int loopfd = open(loopname, O_RDWR);
if (loopfd == -1) {
debug("reset_loop_device: open failed: %d\n", errno);
return;
}
if (ioctl(loopfd, LOOP_CLR_FD, 0)) {
debug("reset_loop_device: LOOP_CLR_FD failed: %d\n", errno);
}
close(loopfd);
}
#endif
#endif
#if SYZ_EXECUTOR || __NR_syz_read_part_table
// syz_read_part_table(size len[img], img ptr[in, compressed_image])
static long syz_read_part_table(volatile unsigned long size, volatile long image)
{
unsigned char* data = (unsigned char*)image;
int err = 0, res = -1, loopfd = -1;
char loopname[64];
snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid);
if (setup_loop_device(data, size, loopname, &loopfd) == -1)
return -1;
struct loop_info64 info;
if (ioctl(loopfd, LOOP_GET_STATUS64, &info)) {
err = errno;
goto error_clear_loop;
}
#if SYZ_EXECUTOR
cover_reset(0);
#endif
info.lo_flags |= LO_FLAGS_PARTSCAN;
if (ioctl(loopfd, LOOP_SET_STATUS64, &info)) {
err = errno;
goto error_clear_loop;
}
res = 0;
// If we managed to parse some partitions, symlink them into our work dir.
for (unsigned long i = 1, j = 0; i < 8; i++) {
snprintf(loopname, sizeof(loopname), "/dev/loop%llup%d", procid, (int)i);
struct stat statbuf;
if (stat(loopname, &statbuf) == 0) {
char linkname[64];
snprintf(linkname, sizeof(linkname), "./file%d", (int)j++);
if (symlink(loopname, linkname)) {
debug("syz_read_part_table: symlink(%s, %s) failed: %d\n", loopname, linkname, errno);
}
}
}
error_clear_loop:
if (res)
ioctl(loopfd, LOOP_CLR_FD, 0);
close(loopfd);
errno = err;
return res;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_mount_image
#include <stddef.h>
#include <string.h>
#include <sys/mount.h>
// syz_mount_image(
// fs ptr[in, string[fs]],
// dir ptr[in, filename],
// flags flags[mount_flags],
// opts ptr[in, fs_options],
// chdir bool8,
// size len[img],
// img ptr[in, compressed_image]
// ) fd_dir
static long syz_mount_image(
volatile long fsarg,
volatile long dir,
volatile long flags,
volatile long optsarg,
volatile long change_dir,
volatile unsigned long size,
volatile long image)
{
unsigned char* data = (unsigned char*)image;
int res = -1, err = 0, need_loop_device = !!size;
char* mount_opts = (char*)optsarg;
char* target = (char*)dir;
char* fs = (char*)fsarg;
char* source = NULL;
char loopname[64];
if (need_loop_device) {
int loopfd;
// Some filesystems (e.g. FUSE) do not need a backing device or
// filesystem image.
memset(loopname, 0, sizeof(loopname));
snprintf(loopname, sizeof(loopname), "/dev/loop%llu", procid);
if (setup_loop_device(data, size, loopname, &loopfd) == -1)
return -1;
// If BLK_DEV_WRITE_MOUNTED is set, we won't be able to mount()
// while holding the loop device fd.
close(loopfd);
source = loopname;
}
mkdir(target, 0777);
char opts[256];
memset(opts, 0, sizeof(opts));
// Leave some space for the additional options we append below.
if (strlen(mount_opts) > (sizeof(opts) - 32)) {
debug("ERROR: syz_mount_image parameter optsarg bigger than internal opts\n");
}
strncpy(opts, mount_opts, sizeof(opts) - 32);
if (strcmp(fs, "iso9660") == 0) {
flags |= MS_RDONLY;
} else if (strncmp(fs, "ext", 3) == 0) {
// For ext2/3/4 we have to have errors=continue because the image
// can contain errors=panic flag and can legally crash kernel.
bool has_remount_ro = false;
char* remount_ro_start = strstr(opts, "errors=remount-ro");
if (remount_ro_start != NULL) {
// syzkaller can sometimes break the options format, so we have to make sure this option can really be parsed.
char after = *(remount_ro_start + strlen("errors=remount-ro"));
char before = remount_ro_start == opts ? '\0' : *(remount_ro_start - 1);
has_remount_ro = ((before == '\0' || before == ',') && (after == '\0' || after == ','));
}
if (strstr(opts, "errors=panic") || !has_remount_ro)
strcat(opts, ",errors=continue");
} else if (strcmp(fs, "xfs") == 0) {
// For xfs we need nouuid because xfs has a global uuids table
// and if two parallel executors mounts fs with the same uuid, second mount fails.
strcat(opts, ",nouuid");
}
debug("syz_mount_image: size=%llu loop='%s' dir='%s' fs='%s' flags=%llu opts='%s'\n", (uint64)size, loopname, target, fs, (uint64)flags, opts);
#if SYZ_EXECUTOR
cover_reset(0);
#endif
res = mount(source, target, fs, flags, opts);
if (res == -1) {
debug("syz_mount_image > mount error: %d\n", errno);
err = errno;
goto error_clear_loop;
}
res = open(target, O_RDONLY | O_DIRECTORY);
if (res == -1) {
debug("syz_mount_image > open error: %d\n", errno);
err = errno;
goto error_clear_loop;
}
if (change_dir) {
res = chdir(target);
if (res == -1) {
debug("syz_mount_image > chdir error: %d\n", errno);
err = errno;
}
}
error_clear_loop:
if (need_loop_device)
reset_loop_device(loopname);
errno = err;
return res;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_kvm_setup_cpu
// KVM is not yet supported on RISC-V
#if !GOARCH_riscv64 && !GOARCH_arm
#include <errno.h>
#include <fcntl.h>
#include <linux/kvm.h>
#include <stdarg.h>
#include <stddef.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#if GOARCH_amd64
#include "common_kvm_amd64.h"
#elif GOARCH_arm64
#include "common_kvm_arm64.h"
#elif GOARCH_ppc64 || GOARCH_ppc64le
#include "common_kvm_ppc64.h"
#elif !GOARCH_arm
static volatile long syz_kvm_setup_cpu(volatile long a0, volatile long a1, volatile long a2, volatile long a3, volatile long a4, volatile long a5, volatile long a6, volatile long a7)
{
return 0;
}
#endif
#endif
#endif
#if (SYZ_EXECUTOR || SYZ_NET_RESET) && SYZ_EXECUTOR_USES_FORK_SERVER
#include <errno.h>
#include <net/if.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/socket.h>
#include <linux/net.h>
// checkpoint/reset_net_namespace partially resets net namespace to initial state
// after each test. Currently it resets only ipv4 netfilter state.
// Ideally, we just create a new net namespace for each test,
// however it's too slow (1-1.5 seconds per namespace, not parallelizable).
// Linux headers do not compile for C++, so we have to define the structs manualy.
#define XT_TABLE_SIZE 1536
#define XT_MAX_ENTRIES 10
struct xt_counters {
uint64 pcnt, bcnt;
};
struct ipt_getinfo {
char name[32];
unsigned int valid_hooks;
unsigned int hook_entry[5];
unsigned int underflow[5];
unsigned int num_entries;
unsigned int size;
};
struct ipt_get_entries {
char name[32];
unsigned int size;
uint64 entrytable[XT_TABLE_SIZE / sizeof(uint64)];
};
struct ipt_replace {
char name[32];
unsigned int valid_hooks;
unsigned int num_entries;
unsigned int size;
unsigned int hook_entry[5];
unsigned int underflow[5];
unsigned int num_counters;
struct xt_counters* counters;
uint64 entrytable[XT_TABLE_SIZE / sizeof(uint64)];
};
struct ipt_table_desc {
const char* name;
struct ipt_getinfo info;
struct ipt_replace replace;
};
static struct ipt_table_desc ipv4_tables[] = {
{.name = "filter"},
{.name = "nat"},
{.name = "mangle"},
{.name = "raw"},
{.name = "security"},
};
static struct ipt_table_desc ipv6_tables[] = {
{.name = "filter"},
{.name = "nat"},
{.name = "mangle"},
{.name = "raw"},
{.name = "security"},
};
#define IPT_BASE_CTL 64
#define IPT_SO_SET_REPLACE (IPT_BASE_CTL)
#define IPT_SO_GET_INFO (IPT_BASE_CTL)
#define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1)
struct arpt_getinfo {
char name[32];
unsigned int valid_hooks;
unsigned int hook_entry[3];
unsigned int underflow[3];
unsigned int num_entries;
unsigned int size;
};
struct arpt_get_entries {
char name[32];
unsigned int size;
uint64 entrytable[XT_TABLE_SIZE / sizeof(uint64)];
};
struct arpt_replace {
char name[32];
unsigned int valid_hooks;
unsigned int num_entries;
unsigned int size;
unsigned int hook_entry[3];
unsigned int underflow[3];
unsigned int num_counters;
struct xt_counters* counters;
uint64 entrytable[XT_TABLE_SIZE / sizeof(uint64)];
};
struct arpt_table_desc {
const char* name;
struct arpt_getinfo info;
struct arpt_replace replace;
};
static struct arpt_table_desc arpt_tables[] = {
{.name = "filter"},
};
#define ARPT_BASE_CTL 96
#define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL)
#define ARPT_SO_GET_INFO (ARPT_BASE_CTL)
#define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1)
static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level)
{
int fd = socket(family, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
failmsg("iptable checkpoint: socket(SOCK_STREAM, IPPROTO_TCP) failed", "family=%d", family);
}
for (int i = 0; i < num_tables; i++) {
struct ipt_table_desc* table = &tables[i];
strcpy(table->info.name, table->name);
strcpy(table->replace.name, table->name);
socklen_t optlen = sizeof(table->info);
if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) {
switch (errno) {
case EPERM:
case ENOENT:
case ENOPROTOOPT:
continue;
}
failmsg("iptable checkpoint: getsockopt(IPT_SO_GET_INFO) failed",
"table=%s, family=%d", table->name, family);
}
debug("iptable checkpoint %s/%d: checkpoint entries=%d hooks=%x size=%d\n",
table->name, family, table->info.num_entries,
table->info.valid_hooks, table->info.size);
if (table->info.size > sizeof(table->replace.entrytable))
failmsg("iptable checkpoint: table size is too large", "table=%s, family=%d, size=%u",
table->name, family, table->info.size);
if (table->info.num_entries > XT_MAX_ENTRIES)
failmsg("iptable checkpoint: too many counters", "table=%s, family=%d, counters=%d",
table->name, family, table->info.num_entries);
struct ipt_get_entries entries;
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size;
if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen))
failmsg("iptable checkpoint: getsockopt(IPT_SO_GET_ENTRIES) failed",
"table=%s, family=%d", table->name, family);
table->replace.valid_hooks = table->info.valid_hooks;
table->replace.num_entries = table->info.num_entries;
table->replace.size = table->info.size;
memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry));
memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow));
memcpy(table->replace.entrytable, entries.entrytable, table->info.size);
}
close(fd);
}
static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level)
{
int fd = socket(family, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
failmsg("iptable: socket(SOCK_STREAM, IPPROTO_TCP) failed", "family=%d", family);
}
for (int i = 0; i < num_tables; i++) {
struct ipt_table_desc* table = &tables[i];
if (table->info.valid_hooks == 0)
continue;
struct ipt_getinfo info;
memset(&info, 0, sizeof(info));
strcpy(info.name, table->name);
socklen_t optlen = sizeof(info);
if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen))
failmsg("iptable: getsockopt(IPT_SO_GET_INFO) failed",
"table=%s, family=%d", table->name, family);
if (memcmp(&table->info, &info, sizeof(table->info)) == 0) {
struct ipt_get_entries entries;
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size;
if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen))
failmsg("iptable: getsockopt(IPT_SO_GET_ENTRIES) failed",
"table=%s, family=%d", table->name, family);
if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0)
continue;
}
debug("iptable %s/%d: resetting\n", table->name, family);
struct xt_counters counters[XT_MAX_ENTRIES];
table->replace.num_counters = info.num_entries;
table->replace.counters = counters;
optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size;
if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen))
failmsg("iptable: setsockopt(IPT_SO_SET_REPLACE) failed",
"table=%s, family=%d", table->name, family);
}
close(fd);
}
static void checkpoint_arptables(void)
{
int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
fail("arptable checkpoint: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) failed");
}
for (unsigned i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) {
struct arpt_table_desc* table = &arpt_tables[i];
strcpy(table->info.name, table->name);
strcpy(table->replace.name, table->name);
socklen_t optlen = sizeof(table->info);
if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) {
switch (errno) {
case EPERM:
case ENOENT:
case ENOPROTOOPT:
continue;
}
failmsg("arptable checkpoint: getsockopt(ARPT_SO_GET_INFO) failed", "table=%s", table->name);
}
debug("arptable checkpoint %s: entries=%d hooks=%x size=%d\n",
table->name, table->info.num_entries, table->info.valid_hooks, table->info.size);
if (table->info.size > sizeof(table->replace.entrytable))
failmsg("arptable checkpoint: table size is too large",
"table=%s, size=%u", table->name, table->info.size);
if (table->info.num_entries > XT_MAX_ENTRIES)
failmsg("arptable checkpoint: too many counters",
"table=%s, counters=%u", table->name, table->info.num_entries);
struct arpt_get_entries entries;
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size;
if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen))
failmsg("arptable checkpoint: getsockopt(ARPT_SO_GET_ENTRIES) failed", "table=%s", table->name);
table->replace.valid_hooks = table->info.valid_hooks;
table->replace.num_entries = table->info.num_entries;
table->replace.size = table->info.size;
memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry));
memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow));
memcpy(table->replace.entrytable, entries.entrytable, table->info.size);
}
close(fd);
}
static void reset_arptables()
{
int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
fail("arptable: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)");
}
for (unsigned i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) {
struct arpt_table_desc* table = &arpt_tables[i];
if (table->info.valid_hooks == 0)
continue;
struct arpt_getinfo info;
memset(&info, 0, sizeof(info));
strcpy(info.name, table->name);
socklen_t optlen = sizeof(info);
if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen))
failmsg("arptable: getsockopt(ARPT_SO_GET_INFO) failed", "table=%s", table->name);
if (memcmp(&table->info, &info, sizeof(table->info)) == 0) {
struct arpt_get_entries entries;
memset(&entries, 0, sizeof(entries));
strcpy(entries.name, table->name);
entries.size = table->info.size;
optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size;
if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen))
failmsg("arptable: getsockopt(ARPT_SO_GET_ENTRIES) failed", "table=%s", table->name);
if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0)
continue;
debug("arptable %s: data changed\n", table->name);
} else {
debug("arptable %s: header changed\n", table->name);
}
debug("arptable %s: resetting\n", table->name);
struct xt_counters counters[XT_MAX_ENTRIES];
table->replace.num_counters = info.num_entries;
table->replace.counters = counters;
optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size;
if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen))
failmsg("arptable: setsockopt(ARPT_SO_SET_REPLACE) failed",
"table=%s", table->name);
}
close(fd);
}
// ebtables.h is broken too:
// ebtables.h: In function ‘ebt_entry_target* ebt_get_target(ebt_entry*)’:
// ebtables.h:197:19: error: invalid conversion from ‘void*’ to ‘ebt_entry_target*’
#define NF_BR_NUMHOOKS 6
#define EBT_TABLE_MAXNAMELEN 32
#define EBT_CHAIN_MAXNAMELEN 32
#define EBT_BASE_CTL 128
#define EBT_SO_SET_ENTRIES (EBT_BASE_CTL)
#define EBT_SO_GET_INFO (EBT_BASE_CTL)
#define EBT_SO_GET_ENTRIES (EBT_SO_GET_INFO + 1)
#define EBT_SO_GET_INIT_INFO (EBT_SO_GET_ENTRIES + 1)
#define EBT_SO_GET_INIT_ENTRIES (EBT_SO_GET_INIT_INFO + 1)
struct ebt_replace {
char name[EBT_TABLE_MAXNAMELEN];
unsigned int valid_hooks;
unsigned int nentries;
unsigned int entries_size;
struct ebt_entries* hook_entry[NF_BR_NUMHOOKS];
unsigned int num_counters;
struct ebt_counter* counters;
char* entries;
};
struct ebt_entries {
unsigned int distinguisher;
char name[EBT_CHAIN_MAXNAMELEN];
unsigned int counter_offset;
int policy;
unsigned int nentries;
char data[0] __attribute__((aligned(__alignof__(struct ebt_replace))));
};
struct ebt_table_desc {
const char* name;
struct ebt_replace replace;
char entrytable[XT_TABLE_SIZE];
};
static struct ebt_table_desc ebt_tables[] = {
{.name = "filter"},
{.name = "nat"},
{.name = "broute"},
};
static void checkpoint_ebtables(void)
{
int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
fail("ebtable checkpoint: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)");
}
for (size_t i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) {
struct ebt_table_desc* table = &ebt_tables[i];
strcpy(table->replace.name, table->name);
socklen_t optlen = sizeof(table->replace);
if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace, &optlen)) {
switch (errno) {
case EPERM:
case ENOENT:
case ENOPROTOOPT:
continue;
}
failmsg("ebtable checkpoint: getsockopt(EBT_SO_GET_INIT_INFO) failed",
"table=%s", table->name);
}
debug("ebtable checkpoint %s: entries=%d hooks=%x size=%d\n",
table->name, table->replace.nentries, table->replace.valid_hooks,
table->replace.entries_size);
if (table->replace.entries_size > sizeof(table->entrytable))
failmsg("ebtable checkpoint: table size is too large", "table=%s, size=%u",
table->name, table->replace.entries_size);
table->replace.num_counters = 0;
table->replace.entries = table->entrytable;
optlen = sizeof(table->replace) + table->replace.entries_size;
if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace, &optlen))
failmsg("ebtable checkpoint: getsockopt(EBT_SO_GET_INIT_ENTRIES) failed",
"table=%s", table->name);
}
close(fd);
}
static void reset_ebtables()
{
int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
switch (errno) {
case EAFNOSUPPORT:
case ENOPROTOOPT:
return;
}
fail("ebtable: socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)");
}
for (unsigned i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) {
struct ebt_table_desc* table = &ebt_tables[i];
if (table->replace.valid_hooks == 0)
continue;
struct ebt_replace replace;
memset(&replace, 0, sizeof(replace));
strcpy(replace.name, table->name);
socklen_t optlen = sizeof(replace);
if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen))
failmsg("ebtable: getsockopt(EBT_SO_GET_INFO)", "table=%s", table->name);
replace.num_counters = 0;
table->replace.entries = 0;
for (unsigned h = 0; h < NF_BR_NUMHOOKS; h++)
table->replace.hook_entry[h] = 0;
if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) {
char entrytable[XT_TABLE_SIZE];
memset(&entrytable, 0, sizeof(entrytable));
replace.entries = entrytable;
optlen = sizeof(replace) + replace.entries_size;
if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen))
failmsg("ebtable: getsockopt(EBT_SO_GET_ENTRIES) failed", "table=%s", table->name);
if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0)
continue;
}
debug("ebtable %s: resetting\n", table->name);
// Kernel does not seem to return actual entry points (wat?).
for (unsigned j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) {
if (table->replace.valid_hooks & (1 << h)) {
table->replace.hook_entry[h] = (struct ebt_entries*)table->entrytable + j;
j++;
}
}
table->replace.entries = table->entrytable;
optlen = sizeof(table->replace) + table->replace.entries_size;
if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen))
failmsg("ebtable: setsockopt(EBT_SO_SET_ENTRIES) failed", "table=%s", table->name);
}
close(fd);
}
static void checkpoint_net_namespace(void)
{
#if SYZ_EXECUTOR
if (!flag_net_reset || flag_sandbox_setuid)
return;
#endif
checkpoint_ebtables();
checkpoint_arptables();
checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP);
checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6);
}
static void reset_net_namespace(void)
{
#if SYZ_EXECUTOR
if (!flag_net_reset || flag_sandbox_setuid)
return;
#endif
reset_ebtables();
reset_arptables();
reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP);
reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6);
}
#endif
#if SYZ_EXECUTOR || (SYZ_CGROUPS && (SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID))
#include <fcntl.h>
#include <string.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
static void mount_cgroups(const char* dir, const char** controllers, int count)
{
if (mkdir(dir, 0777)) {
debug("mkdir(%s) failed: %d\n", dir, errno);
return;
}
// First, probe one-by-one to understand what controllers are present.
char enabled[128] = {0};
int i = 0;
for (; i < count; i++) {
if (mount("none", dir, "cgroup", 0, controllers[i])) {
debug("mount(%s, %s) failed: %d\n", dir, controllers[i], errno);
continue;
}
umount(dir);
strcat(enabled, ",");
strcat(enabled, controllers[i]);
}
if (enabled[0] == 0) {
if (rmdir(dir) && errno != EBUSY)
failmsg("rmdir failed", "dir=%s", dir);
return;
}
// Now mount all at once.
if (mount("none", dir, "cgroup", 0, enabled + 1)) {
// In systemd/stretch images this is failing with EBUSY
// (systemd starts messing with these mounts?),
// so we don't fail, but just log the error.
debug("mount(%s, %s) failed: %d\n", dir, enabled + 1, errno);
if (rmdir(dir) && errno != EBUSY)
failmsg("rmdir failed", "dir=%s enabled=%s", dir, enabled);
}
if (chmod(dir, 0777)) {
debug("chmod(%s) failed: %d\n", dir, errno);
}
}
static void mount_cgroups2(const char** controllers, int count)
{
if (mkdir("/syzcgroup/unified", 0777)) {
debug("mkdir(/syzcgroup/unified) failed: %d\n", errno);
return;
}
if (mount("none", "/syzcgroup/unified", "cgroup2", 0, NULL)) {
debug("mount(cgroup2) failed: %d\n", errno);
// For all cases when we don't end up mounting cgroup/cgroup2
// in /syzcgroup/{unified,net,cpu}, we need to remove the dir.
// Otherwise these will end up as normal dirs and the fuzzer may
// create huge files there. These files won't be cleaned up
// after tests and may easily consume all disk space.
// EBUSY usually means that cgroup is already mounted there
// by a previous run of e.g. syz-execprog.
if (rmdir("/syzcgroup/unified") && errno != EBUSY)
fail("rmdir(/syzcgroup/unified) failed");
return;
}
if (chmod("/syzcgroup/unified", 0777)) {
debug("chmod(/syzcgroup/unified) failed: %d\n", errno);
}
int control = open("/syzcgroup/unified/cgroup.subtree_control", O_WRONLY);
if (control == -1)
return;
int i;
for (i = 0; i < count; i++)
if (write(control, controllers[i], strlen(controllers[i])) < 0) {
debug("write(cgroup.subtree_control, %s) failed: %d\n", controllers[i], errno);
}
close(control);
}
static void setup_cgroups()
{
// We want to cover both cgroup and cgroup2.
// Each resource controller can be bound to only one of them,
// so to cover both we divide all controllers into 3 arbitrary groups.
// One group is then bound to cgroup2/unified, and 2 other groups
// are bound to 2 cgroup hierarchies.
// Note: we need to enable controllers one-by-one for both cgroup and cgroup2.
// If we enable all at the same time and one of them fails (b/c of older kernel
// or not enabled configs), then all will fail.
const char* unified_controllers[] = {"+cpu", "+io", "+pids"};
const char* net_controllers[] = {"net", "net_prio", "devices", "blkio", "freezer"};
const char* cpu_controllers[] = {"cpuset", "cpuacct", "hugetlb", "rlimit", "memory"};
if (mkdir("/syzcgroup", 0777)) {
// Can happen due to e.g. read-only file system (EROFS).
debug("mkdir(/syzcgroup) failed: %d\n", errno);
return;
}
mount_cgroups2(unified_controllers, sizeof(unified_controllers) / sizeof(unified_controllers[0]));
mount_cgroups("/syzcgroup/net", net_controllers, sizeof(net_controllers) / sizeof(net_controllers[0]));
mount_cgroups("/syzcgroup/cpu", cpu_controllers, sizeof(cpu_controllers) / sizeof(cpu_controllers[0]));
write_file("/syzcgroup/cpu/cgroup.clone_children", "1");
write_file("/syzcgroup/cpu/cpuset.memory_pressure_enabled", "1");
}
#if (SYZ_EXECUTOR || SYZ_REPEAT) && SYZ_EXECUTOR_USES_FORK_SERVER
static void setup_cgroups_loop()
{
#if SYZ_EXECUTOR
if (!flag_cgroups)
return;
#endif
int pid = getpid();
char file[128];
char cgroupdir[64];
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid);
if (mkdir(cgroupdir, 0777)) {
debug("mkdir(%s) failed: %d\n", cgroupdir, errno);
}
// Restrict number of pids per test process to prevent fork bombs.
// We have up to 16 threads + main process + loop.
// 32 pids should be enough for everyone.
snprintf(file, sizeof(file), "%s/pids.max", cgroupdir);
write_file(file, "32");
// Setup some v1 groups to make things more interesting.
snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir);
write_file(file, "%d", pid);
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid);
if (mkdir(cgroupdir, 0777)) {
debug("mkdir(%s) failed: %d\n", cgroupdir, errno);
}
snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir);
write_file(file, "%d", pid);
// Restrict memory consumption.
// We have some syscalls that inherently consume lots of memory,
// e.g. mounting some filesystem images requires at least 128MB
// image in memory. We restrict RLIMIT_AS to 200MB. Here we gradually
// increase memory limits to make things more interesting.
// Also this takes into account KASAN quarantine size.
// If the limit is lower than KASAN quarantine size, then it can happen
// so that we kill the process, but all of its memory is in quarantine
// and is still accounted against memcg. As the result memcg won't
// allow to allocate any memory in the parent and in the new test process.
// The current limit of 300MB supports up to 9.6GB RAM (quarantine is 1/32).
snprintf(file, sizeof(file), "%s/memory.soft_limit_in_bytes", cgroupdir);
write_file(file, "%d", 299 << 20);
snprintf(file, sizeof(file), "%s/memory.limit_in_bytes", cgroupdir);
write_file(file, "%d", 300 << 20);
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid);
if (mkdir(cgroupdir, 0777)) {
debug("mkdir(%s) failed: %d\n", cgroupdir, errno);
}
snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir);
write_file(file, "%d", pid);
}
static void setup_cgroups_test()
{
#if SYZ_EXECUTOR
if (!flag_cgroups)
return;
#endif
char cgroupdir[64];
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid);
if (symlink(cgroupdir, "./cgroup")) {
debug("symlink(%s, ./cgroup) failed: %d\n", cgroupdir, errno);
}
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid);
if (symlink(cgroupdir, "./cgroup.cpu")) {
debug("symlink(%s, ./cgroup.cpu) failed: %d\n", cgroupdir, errno);
}
snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid);
if (symlink(cgroupdir, "./cgroup.net")) {
debug("symlink(%s, ./cgroup.net) failed: %d\n", cgroupdir, errno);
}
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_NAMESPACE
static void initialize_cgroups()
{
#if SYZ_EXECUTOR
if (!flag_cgroups)
return;
#endif
if (mkdir("./syz-tmp/newroot/syzcgroup", 0700))
fail("mkdir failed");
if (mkdir("./syz-tmp/newroot/syzcgroup/unified", 0700))
fail("mkdir failed");
if (mkdir("./syz-tmp/newroot/syzcgroup/cpu", 0700))
fail("mkdir failed");
if (mkdir("./syz-tmp/newroot/syzcgroup/net", 0700))
fail("mkdir failed");
unsigned bind_mount_flags = MS_BIND | MS_REC | MS_PRIVATE;
if (mount("/syzcgroup/unified", "./syz-tmp/newroot/syzcgroup/unified", NULL, bind_mount_flags, NULL)) {
debug("mount(cgroup2, MS_BIND) failed: %d\n", errno);
}
if (mount("/syzcgroup/cpu", "./syz-tmp/newroot/syzcgroup/cpu", NULL, bind_mount_flags, NULL)) {
debug("mount(cgroup/cpu, MS_BIND) failed: %d\n", errno);
}
if (mount("/syzcgroup/net", "./syz-tmp/newroot/syzcgroup/net", NULL, bind_mount_flags, NULL)) {
debug("mount(cgroup/net, MS_BIND) failed: %d\n", errno);
}
}
#endif
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID
#include <errno.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <unistd.h>
static void setup_common()
{
if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) {
debug("mount(fusectl) failed: %d\n", errno);
}
}
static void setup_binderfs()
{
// NOTE: this function must be called after chroot.
// Bind an instance of binderfs specific just to this executor - it will
// only be visible in its mount namespace and will help isolate binder
// devices during fuzzing.
// These commands will just silently fail if binderfs is not supported.
// Ideally it should have been added as a separate feature (with lots of
// minor changes throughout the code base), but it seems to be an overkill
// for just 2 simple lines of code.
if (mkdir("/dev/binderfs", 0777)) {
debug("mkdir(/dev/binderfs) failed: %d\n", errno);
}
if (mount("binder", "/dev/binderfs", "binder", 0, NULL)) {
debug("mount of binder at /dev/binderfs failed: %d\n", errno);
}
#if !SYZ_EXECUTOR && !SYZ_USE_TMP_DIR
// Do a local symlink right away.
if (symlink("/dev/binderfs", "./binderfs")) {
debug("symlink(/dev/binderfs, ./binderfs) failed: %d\n", errno);
}
#endif
}
#include <sched.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/wait.h>
static void loop();
static void sandbox_common()
{
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
setsid();
#if SYZ_EXECUTOR || __NR_syz_init_net_socket || SYZ_DEVLINK_PCI || __NR_syz_socket_connect_nvme_tcp
int netns = open("/proc/self/ns/net", O_RDONLY);
if (netns == -1)
fail("open(/proc/self/ns/net) failed");
if (dup2(netns, kInitNetNsFd) < 0)
fail("dup2(netns, kInitNetNsFd) failed");
close(netns);
#endif
struct rlimit rlim;
#if SYZ_EXECUTOR
rlim.rlim_cur = rlim.rlim_max = (200 << 20) +
(kMaxThreads * kCoverSize + kExtraCoverSize) * sizeof(void*);
#else
rlim.rlim_cur = rlim.rlim_max = (200 << 20);
#endif
setrlimit(RLIMIT_AS, &rlim);
rlim.rlim_cur = rlim.rlim_max = 32 << 20;
setrlimit(RLIMIT_MEMLOCK, &rlim);
rlim.rlim_cur = rlim.rlim_max = 136 << 20;
setrlimit(RLIMIT_FSIZE, &rlim);
rlim.rlim_cur = rlim.rlim_max = 1 << 20;
setrlimit(RLIMIT_STACK, &rlim);
// Note: core size is also restricted by RLIMIT_FSIZE.
rlim.rlim_cur = rlim.rlim_max = 128 << 20;
setrlimit(RLIMIT_CORE, &rlim);
rlim.rlim_cur = rlim.rlim_max = 256; // see kMaxFd
setrlimit(RLIMIT_NOFILE, &rlim);
// CLONE_NEWNS/NEWCGROUP cause EINVAL on some systems,
// so we do them separately of clone in do_sandbox_namespace.
if (unshare(CLONE_NEWNS)) {
debug("unshare(CLONE_NEWNS): %d\n", errno);
}
if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL)) {
debug("mount(\"/\", MS_REC | MS_PRIVATE): %d\n", errno);
}
if (unshare(CLONE_NEWIPC)) {
debug("unshare(CLONE_NEWIPC): %d\n", errno);
}
if (unshare(0x02000000)) {
debug("unshare(CLONE_NEWCGROUP): %d\n", errno);
}
if (unshare(CLONE_NEWUTS)) {
debug("unshare(CLONE_NEWUTS): %d\n", errno);
}
if (unshare(CLONE_SYSVSEM)) {
debug("unshare(CLONE_SYSVSEM): %d\n", errno);
}
// These sysctl's restrict ipc resource usage (by default it's possible
// to eat all system memory by creating e.g. lots of large sem sets).
// These sysctl's are per-namespace, so we need to set them inside
// of the test ipc namespace (after CLONE_NEWIPC).
typedef struct {
const char* name;
const char* value;
} sysctl_t;
static const sysctl_t sysctls[] = {
{"/proc/sys/kernel/shmmax", "16777216"},
{"/proc/sys/kernel/shmall", "536870912"},
{"/proc/sys/kernel/shmmni", "1024"},
{"/proc/sys/kernel/msgmax", "8192"},
{"/proc/sys/kernel/msgmni", "1024"},
{"/proc/sys/kernel/msgmnb", "1024"},
{"/proc/sys/kernel/sem", "1024 1048576 500 1024"},
};
unsigned i;
for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++)
write_file(sysctls[i].name, sysctls[i].value);
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_SETUID || SYZ_SANDBOX_NAMESPACE
static int wait_for_loop(int pid)
{
if (pid < 0)
fail("sandbox fork failed");
debug("spawned loop pid %d\n", pid);
int status = 0;
while (waitpid(-1, &status, __WALL) != pid) {
}
return WEXITSTATUS(status);
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE || SYZ_SANDBOX_NAMESPACE || SYZ_SANDBOX_ANDROID
#include <linux/capability.h>
static void drop_caps(void)
{
struct __user_cap_header_struct cap_hdr = {};
struct __user_cap_data_struct cap_data[2] = {};
cap_hdr.version = _LINUX_CAPABILITY_VERSION_3;
cap_hdr.pid = getpid();
if (syscall(SYS_capget, &cap_hdr, &cap_data))
fail("capget failed");
// Drop CAP_SYS_PTRACE so that test processes can't attach to parent processes.
// Previously it lead to hangs because the loop process stopped due to SIGSTOP.
// Note that a process can always ptrace its direct children, which is enough for testing purposes.
//
// A process with CAP_SYS_NICE can bring kernel down by asking for too high SCHED_DEADLINE priority,
// as the result rcu and other system services that use kernel threads will stop functioning.
// Some parameters for SCHED_DEADLINE should be OK, but we don't have means to enforce
// values of indirect syscall arguments. Peter Zijlstra proposed sysctl_deadline_period_{min,max}
// which could be used to enfore safe limits without droppping CAP_SYS_NICE, but we don't have it yet.
// See the following bug for details:
// https://groups.google.com/forum/#!topic/syzkaller-bugs/G6Wl_PKPIWI
const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE);
cap_data[0].effective &= ~drop;
cap_data[0].permitted &= ~drop;
cap_data[0].inheritable &= ~drop;
if (syscall(SYS_capset, &cap_hdr, &cap_data))
fail("capset failed");
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_NONE
#include <sched.h>
#include <sys/types.h>
static int do_sandbox_none(void)
{
// CLONE_NEWPID takes effect for the first child of the current process,
// so we do it before fork to make the loop "init" process of the namespace.
// We ought to do fail here, but sandbox=none is used in pkg/ipc tests
// and they are usually run under non-root.
// Also since debug is stripped by pkg/csource, we need to do {}
// even though we generally don't do {} around single statements.
if (unshare(CLONE_NEWPID)) {
debug("unshare(CLONE_NEWPID): %d\n", errno);
}
int pid = fork();
if (pid != 0)
return wait_for_loop(pid);
setup_common();
#if SYZ_EXECUTOR || SYZ_VHCI_INJECTION
initialize_vhci();
#endif
sandbox_common();
drop_caps();
#if SYZ_EXECUTOR || SYZ_NET_DEVICES
initialize_netdevices_init();
#endif
if (unshare(CLONE_NEWNET)) {
debug("unshare(CLONE_NEWNET): %d\n", errno);
}
// Enable access to IPPROTO_ICMP sockets, must be done after CLONE_NEWNET.
write_file("/proc/sys/net/ipv4/ping_group_range", "0 65535");
#if SYZ_EXECUTOR || SYZ_DEVLINK_PCI
initialize_devlink_pci();
#endif
#if SYZ_EXECUTOR || SYZ_NET_INJECTION
initialize_tun();
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES
initialize_netdevices();
#endif
#if SYZ_EXECUTOR || SYZ_WIFI
initialize_wifi_devices();
#endif
setup_binderfs();
loop();
doexit(1);
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_SETUID
#include <grp.h>
#include <sched.h>
#include <sys/prctl.h>
#define SYZ_HAVE_SANDBOX_SETUID 1
static int do_sandbox_setuid(void)
{
if (unshare(CLONE_NEWPID)) {
debug("unshare(CLONE_NEWPID): %d\n", errno);
}
int pid = fork();
if (pid != 0)
return wait_for_loop(pid);
setup_common();
#if SYZ_EXECUTOR || SYZ_VHCI_INJECTION
initialize_vhci();
#endif
sandbox_common();
#if SYZ_EXECUTOR || SYZ_NET_DEVICES
initialize_netdevices_init();
#endif
if (unshare(CLONE_NEWNET)) {
debug("unshare(CLONE_NEWNET): %d\n", errno);
}
#if SYZ_EXECUTOR || SYZ_DEVLINK_PCI
initialize_devlink_pci();
#endif
#if SYZ_EXECUTOR || SYZ_NET_INJECTION
initialize_tun();
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES
initialize_netdevices();
#endif
#if SYZ_EXECUTOR || SYZ_WIFI
initialize_wifi_devices();
#endif
setup_binderfs();
const int nobody = 65534;
if (setgroups(0, NULL))
fail("failed to setgroups");
if (syscall(SYS_setresgid, nobody, nobody, nobody))
fail("failed to setresgid");
if (syscall(SYS_setresuid, nobody, nobody, nobody))
fail("failed to setresuid");
// setresuid and setresgid clear the parent-death signal.
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
// This is required to open /proc/self/ files.
// Otherwise they are owned by root and we can't open them after setuid.
// See task_dump_owner function in kernel.
prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
loop();
doexit(1);
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_NAMESPACE
#include <sched.h>
#include <sys/mman.h>
#include <sys/mount.h>
static int real_uid;
static int real_gid;
__attribute__((aligned(64 << 10))) static char sandbox_stack[1 << 20];
static int namespace_sandbox_proc(void* arg)
{
sandbox_common();
// /proc/self/setgroups is not present on some systems, ignore error.
write_file("/proc/self/setgroups", "deny");
if (!write_file("/proc/self/uid_map", "0 %d 1\n", real_uid))
fail("write of /proc/self/uid_map failed");
if (!write_file("/proc/self/gid_map", "0 %d 1\n", real_gid))
fail("write of /proc/self/gid_map failed");
#if SYZ_EXECUTOR || SYZ_NET_DEVICES
initialize_netdevices_init();
#endif
// CLONE_NEWNET must always happen before tun setup,
// because we want the tun device in the test namespace.
if (unshare(CLONE_NEWNET))
fail("unshare(CLONE_NEWNET)");
// Enable access to IPPROTO_ICMP sockets, must be done after CLONE_NEWNET.
write_file("/proc/sys/net/ipv4/ping_group_range", "0 65535");
#if SYZ_EXECUTOR || SYZ_DEVLINK_PCI
initialize_devlink_pci();
#endif
#if SYZ_EXECUTOR || SYZ_NET_INJECTION
// We setup tun here as it needs to be in the test net namespace,
// which in turn needs to be in the test user namespace.
// However, IFF_NAPI_FRAGS will fail as we are not root already.
// TODO: we should create tun in the init net namespace and use setns
// to move it to the target namespace.
initialize_tun();
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES
initialize_netdevices();
#endif
#if SYZ_EXECUTOR || SYZ_WIFI
initialize_wifi_devices();
#endif
if (mkdir("./syz-tmp", 0777))
fail("mkdir(syz-tmp) failed");
if (mount("", "./syz-tmp", "tmpfs", 0, NULL))
fail("mount(tmpfs) failed");
if (mkdir("./syz-tmp/newroot", 0777))
fail("mkdir failed");
if (mkdir("./syz-tmp/newroot/dev", 0700))
fail("mkdir failed");
unsigned bind_mount_flags = MS_BIND | MS_REC | MS_PRIVATE;
if (mount("/dev", "./syz-tmp/newroot/dev", NULL, bind_mount_flags, NULL))
fail("mount(dev) failed");
if (mkdir("./syz-tmp/newroot/proc", 0700))
fail("mkdir failed");
if (mount(NULL, "./syz-tmp/newroot/proc", "proc", 0, NULL))
fail("mount(proc) failed");
if (mkdir("./syz-tmp/newroot/selinux", 0700))
fail("mkdir failed");
// selinux mount used to be at /selinux, but then moved to /sys/fs/selinux.
const char* selinux_path = "./syz-tmp/newroot/selinux";
if (mount("/selinux", selinux_path, NULL, bind_mount_flags, NULL)) {
if (errno != ENOENT)
fail("mount(/selinux) failed");
if (mount("/sys/fs/selinux", selinux_path, NULL, bind_mount_flags, NULL) && errno != ENOENT)
fail("mount(/sys/fs/selinux) failed");
}
if (mkdir("./syz-tmp/newroot/sys", 0700))
fail("mkdir failed");
if (mount("/sys", "./syz-tmp/newroot/sys", 0, bind_mount_flags, NULL))
fail("mount(sysfs) failed");
#if SYZ_EXECUTOR || SYZ_CGROUPS
initialize_cgroups();
#endif
if (mkdir("./syz-tmp/pivot", 0777))
fail("mkdir failed");
if (syscall(SYS_pivot_root, "./syz-tmp", "./syz-tmp/pivot")) {
debug("pivot_root failed\n");
if (chdir("./syz-tmp"))
fail("chdir failed");
} else {
debug("pivot_root OK\n");
if (chdir("/"))
fail("chdir failed");
if (umount2("./pivot", MNT_DETACH))
fail("umount failed");
}
if (chroot("./newroot"))
fail("chroot failed");
if (chdir("/"))
fail("chdir failed");
setup_binderfs();
drop_caps();
loop();
doexit(1);
}
#define SYZ_HAVE_SANDBOX_NAMESPACE 1
static int do_sandbox_namespace(void)
{
setup_common();
#if SYZ_EXECUTOR || SYZ_VHCI_INJECTION
// HCIDEVUP requires CAP_ADMIN, so this needs to happen early.
initialize_vhci();
#endif
real_uid = getuid();
real_gid = getgid();
mprotect(sandbox_stack, 4096, PROT_NONE); // to catch stack underflows
int pid = clone(namespace_sandbox_proc, &sandbox_stack[sizeof(sandbox_stack) - 64],
CLONE_NEWUSER | CLONE_NEWPID, 0);
return wait_for_loop(pid);
}
#endif
#if SYZ_EXECUTOR || SYZ_SANDBOX_ANDROID
// seccomp only supported for Arm, Arm64, X86, and X86_64 archs
#if GOARCH_arm || GOARCH_arm64 || GOARCH_386 || GOARCH_amd64
#include <assert.h>
#include <errno.h>
#include <linux/audit.h>
#include <linux/filter.h>
#include <linux/seccomp.h>
#include <stddef.h>
#include <stdlib.h>
#include <sys/prctl.h>
#include <sys/syscall.h>
#include "android/android_seccomp.h"
#if GOARCH_amd64 || GOARCH_386
// Syz-executor is linked against glibc when fuzzing runs on Cuttlefish x86-x64.
// However Android blocks calls into mkdir, rmdir, symlink which causes
// syz-executor to crash. When fuzzing runs on Android device this issue
// is not observed, because syz-executor is linked against Bionic. Under
// the hood Bionic invokes mkdirat, inlinkat and symlinkat, which are
// allowed by seccomp-bpf.
// This issue may exist not only in Android, but also in Linux in general
// where seccomp filtering is enforced.
//
// This trick makes linker believe it matched the correct version of mkdir,
// rmdir, symlink. So now behavior is the same across ARM and non-ARM builds.
inline int mkdir(const char* path, mode_t mode)
{
return mkdirat(AT_FDCWD, path, mode);
}
inline int rmdir(const char* path)
{
return unlinkat(AT_FDCWD, path, AT_REMOVEDIR);
}
inline int symlink(const char* old_path, const char* new_path)
{
return symlinkat(old_path, AT_FDCWD, new_path);
}
#endif
#endif
#include <fcntl.h> // open(2)
#include <grp.h> // setgroups
#include <sys/xattr.h> // setxattr, getxattr
#define AID_NET_BT_ADMIN 3001
#define AID_NET_BT 3002
#define AID_INET 3003
#define AID_EVERYBODY 9997
#define AID_APP 10000
#define UNTRUSTED_APP_UID (AID_APP + 999)
#define UNTRUSTED_APP_GID (AID_APP + 999)
#define SYSTEM_UID 1000
#define SYSTEM_GID 1000
const char* const SELINUX_CONTEXT_UNTRUSTED_APP = "u:r:untrusted_app:s0:c512,c768";
const char* const SELINUX_LABEL_APP_DATA_FILE = "u:object_r:app_data_file:s0:c512,c768";
const char* const SELINUX_CONTEXT_FILE = "/proc/thread-self/attr/current";
const char* const SELINUX_XATTR_NAME = "security.selinux";
const gid_t UNTRUSTED_APP_GROUPS[] = {UNTRUSTED_APP_GID, AID_NET_BT_ADMIN, AID_NET_BT, AID_INET, AID_EVERYBODY};
const size_t UNTRUSTED_APP_NUM_GROUPS = sizeof(UNTRUSTED_APP_GROUPS) / sizeof(UNTRUSTED_APP_GROUPS[0]);
const gid_t SYSTEM_GROUPS[] = {SYSTEM_GID, AID_NET_BT_ADMIN, AID_NET_BT, AID_INET, AID_EVERYBODY};
const size_t SYSTEM_NUM_GROUPS = sizeof(SYSTEM_GROUPS) / sizeof(SYSTEM_GROUPS[0]);
// Similar to libselinux getcon(3), but:
// - No library dependency
// - No dynamic memory allocation
// - Uses fail() instead of returning an error code
static void getcon(char* context, size_t context_size)
{
int fd = open(SELINUX_CONTEXT_FILE, O_RDONLY);
if (fd < 0)
fail("getcon: couldn't open context file");
ssize_t nread = read(fd, context, context_size);
close(fd);
if (nread <= 0)
fail("getcon: failed to read context file");
// The contents of the context file MAY end with a newline
// and MAY not have a null terminator. Handle this here.
if (context[nread - 1] == '\n')
context[nread - 1] = '\0';
}
// Similar to libselinux setcon(3), but:
// - No library dependency
// - No dynamic memory allocation
// - Uses fail() instead of returning an error code
static void setcon(const char* context)
{
char new_context[512];
// Attempt to write the new context
int fd = open(SELINUX_CONTEXT_FILE, O_WRONLY);
if (fd < 0)
fail("setcon: could not open context file");
ssize_t bytes_written = write(fd, context, strlen(context));
// N.B.: We cannot reuse this file descriptor, since the target SELinux context
// may not be able to read from it.
close(fd);
if (bytes_written != (ssize_t)strlen(context))
failmsg("setcon: could not write entire context", "wrote=%zi, expected=%zu", bytes_written, strlen(context));
// Validate the transition by checking the context
getcon(new_context, sizeof(new_context));
if (strcmp(context, new_context) != 0)
failmsg("setcon: failed to change", "want=%s, context=%s", context, new_context);
}
// Similar to libselinux setfilecon(3), but:
// - No library dependency
// - No dynamic memory allocation
// - Uses fail() instead of returning an error code
static void setfilecon(const char* path, const char* context)
{
char new_context[512];
if (setxattr(path, SELINUX_XATTR_NAME, context, strlen(context) + 1, 0) != 0)
fail("setfilecon: setxattr failed");
if (getxattr(path, SELINUX_XATTR_NAME, new_context, sizeof(new_context)) < 0)
fail("setfilecon: getxattr failed");
if (strcmp(context, new_context) != 0)
failmsg("setfilecon: could not set context", "want=%s, got=%s", context, new_context);
}
#define SYZ_HAVE_SANDBOX_ANDROID 1
static int do_sandbox_android(uint64 sandbox_arg)
{
setup_common();
#if SYZ_EXECUTOR || SYZ_VHCI_INJECTION
initialize_vhci();
#endif
sandbox_common();
drop_caps();
#if SYZ_EXECUTOR || SYZ_NET_DEVICES
initialize_netdevices_init();
#endif
// CLONE_NEWNET must always happen before tun setup, because we want the tun
// device in the test namespace. If we don't do this, executor will crash with
// SYZFATAL: executor NUM failed NUM times: executor NUM: EOF
if (unshare(CLONE_NEWNET)) {
debug("unshare(CLONE_NEWNET): %d\n", errno);
}
// Enable access to IPPROTO_ICMP sockets, must be done after CLONE_NEWNET.
write_file("/proc/sys/net/ipv4/ping_group_range", "0 65535");
#if SYZ_EXECUTOR || SYZ_DEVLINK_PCI
initialize_devlink_pci();
#endif
#if SYZ_EXECUTOR || SYZ_NET_INJECTION
initialize_tun();
#endif
#if SYZ_EXECUTOR || SYZ_NET_DEVICES
initialize_netdevices();
#endif
uid_t uid = UNTRUSTED_APP_UID;
size_t num_groups = UNTRUSTED_APP_NUM_GROUPS;
const gid_t* groups = UNTRUSTED_APP_GROUPS;
gid_t gid = UNTRUSTED_APP_GID;
debug("executor received sandbox_arg=%llu\n", sandbox_arg);
if (sandbox_arg == 1) {
uid = SYSTEM_UID;
num_groups = SYSTEM_NUM_GROUPS;
groups = SYSTEM_GROUPS;
gid = SYSTEM_GID;
debug("fuzzing under SYSTEM account\n");
}
if (chown(".", uid, uid) != 0)
failmsg("do_sandbox_android: chmod failed", "sandbox_arg=%llu", sandbox_arg);
if (setgroups(num_groups, groups) != 0)
failmsg("do_sandbox_android: setgroups failed", "sandbox_arg=%llu", sandbox_arg);
if (setresgid(gid, gid, gid) != 0)
failmsg("do_sandbox_android: setresgid failed", "sandbox_arg=%llu", sandbox_arg);
setup_binderfs();
#if GOARCH_arm || GOARCH_arm64 || GOARCH_386 || GOARCH_amd64
// Will fail() if anything fails.
// Must be called when the new process still has CAP_SYS_ADMIN, in this case,
// before changing uid from 0, which clears capabilities.
int account = SCFS_RestrictedApp;
if (sandbox_arg == 1)
account = SCFS_SystemAccount;
set_app_seccomp_filter(account);
#endif
if (setresuid(uid, uid, uid) != 0)
failmsg("do_sandbox_android: setresuid failed", "sandbox_arg=%llu", sandbox_arg);
// setresuid and setresgid clear the parent-death signal.
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
setfilecon(".", SELINUX_LABEL_APP_DATA_FILE);
if (uid == UNTRUSTED_APP_UID)
setcon(SELINUX_CONTEXT_UNTRUSTED_APP);
loop();
doexit(1);
}
#endif
#if SYZ_EXECUTOR || SYZ_REPEAT && SYZ_USE_TMP_DIR
#include <dirent.h>
#include <errno.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#define FS_IOC_SETFLAGS _IOW('f', 2, long)
// One does not simply remove a directory.
// There can be mounts, so we need to try to umount.
// Moreover, a mount can be mounted several times, so we need to try to umount in a loop.
// Moreover, after umount a dir can become non-empty again, so we need another loop.
// Moreover, a mount can be re-mounted as read-only and then we will fail to make a dir empty.
static void remove_dir(const char* dir)
{
int iter = 0;
DIR* dp = 0;
retry:
#if SYZ_EXECUTOR || !SYZ_SANDBOX_ANDROID
#if SYZ_EXECUTOR
if (!flag_sandbox_android)
#endif
while (umount2(dir, MNT_DETACH | UMOUNT_NOFOLLOW) == 0) {
debug("umount(%s)\n", dir);
}
#endif
dp = opendir(dir);
if (dp == NULL) {
if (errno == EMFILE) {
// This happens when the test process casts prlimit(NOFILE) on us.
// Ideally we somehow prevent test processes from messing with parent processes.
// But full sandboxing is expensive, so let's ignore this error for now.
exitf("opendir(%s) failed due to NOFILE, exiting", dir);
}
exitf("opendir(%s) failed", dir);
}
struct dirent* ep = 0;
while ((ep = readdir(dp))) {
if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0)
continue;
char filename[FILENAME_MAX];
snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name);
// If it's 9p mount with broken transport, lstat will fail.
// So try to umount first.
#if SYZ_EXECUTOR || !SYZ_SANDBOX_ANDROID
#if SYZ_EXECUTOR
if (!flag_sandbox_android)
#endif
while (umount2(filename, MNT_DETACH | UMOUNT_NOFOLLOW) == 0) {
debug("umount(%s)\n", filename);
}
#endif
struct stat st;
if (lstat(filename, &st))
exitf("lstat(%s) failed", filename);
if (S_ISDIR(st.st_mode)) {
remove_dir(filename);
continue;
}
int i;
for (i = 0;; i++) {
if (unlink(filename) == 0)
break;
if (errno == EPERM) {
// Try to reset FS_XFLAG_IMMUTABLE.
int fd = open(filename, O_RDONLY);
if (fd != -1) {
long flags = 0;
if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) {
debug("reset FS_XFLAG_IMMUTABLE\n");
}
close(fd);
continue;
}
}
if (errno == EROFS) {
debug("ignoring EROFS\n");
break;
}
if (errno != EBUSY || i > 100)
exitf("unlink(%s) failed", filename);
#if SYZ_EXECUTOR || !SYZ_SANDBOX_ANDROID
#if SYZ_EXECUTOR
if (!flag_sandbox_android) {
#endif
debug("umount(%s)\n", filename);
if (umount2(filename, MNT_DETACH | UMOUNT_NOFOLLOW))
exitf("umount(%s) failed", filename);
#if SYZ_EXECUTOR
}
#endif
#endif
}
}
closedir(dp);
for (int i = 0;; i++) {
if (rmdir(dir) == 0)
break;
if (i < 100) {
if (errno == EPERM) {
// Try to reset FS_XFLAG_IMMUTABLE.
int fd = open(dir, O_RDONLY);
if (fd != -1) {
long flags = 0;
if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) {
debug("reset FS_XFLAG_IMMUTABLE\n");
}
close(fd);
continue;
}
}
if (errno == EROFS) {
debug("ignoring EROFS\n");
break;
}
if (errno == EBUSY) {
#if SYZ_EXECUTOR || !SYZ_SANDBOX_ANDROID
#if SYZ_EXECUTOR
if (!flag_sandbox_android) {
#endif
debug("umount(%s)\n", dir);
if (umount2(dir, MNT_DETACH | UMOUNT_NOFOLLOW))
exitf("umount(%s) failed", dir);
#if SYZ_EXECUTOR
}
#endif
#endif
continue;
}
if (errno == ENOTEMPTY) {
if (iter < 100) {
iter++;
goto retry;
}
}
}
exitf("rmdir(%s) failed", dir);
}
}
#endif
#if SYZ_EXECUTOR || SYZ_FAULT
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
static int inject_fault(int nth)
{
int fd;
fd = open("/proc/thread-self/fail-nth", O_RDWR);
// We treat errors here as temporal/non-critical because we see
// occasional ENOENT/EACCES errors returned. It seems that fuzzer
// somehow gets its hands to it.
if (fd == -1)
exitf("failed to open /proc/thread-self/fail-nth");
char buf[16];
sprintf(buf, "%d", nth);
if (write(fd, buf, strlen(buf)) != (ssize_t)strlen(buf))
exitf("failed to write /proc/thread-self/fail-nth");
return fd;
}
#endif
#if SYZ_EXECUTOR
static int fault_injected(int fail_fd)
{
char buf[16];
int n = read(fail_fd, buf, sizeof(buf) - 1);
if (n <= 0)
exitf("failed to read /proc/thread-self/fail-nth");
int res = n == 2 && buf[0] == '0' && buf[1] == '\n';
buf[0] = '0';
if (write(fail_fd, buf, 1) != 1)
exitf("failed to write /proc/thread-self/fail-nth");
close(fail_fd);
return res;
}
#endif
#if (SYZ_EXECUTOR || SYZ_REPEAT) && SYZ_EXECUTOR_USES_FORK_SERVER
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
static void kill_and_wait(int pid, int* status)
{
kill(-pid, SIGKILL);
kill(pid, SIGKILL);
// First, give it up to 100 ms to surrender.
for (int i = 0; i < 100; i++) {
if (waitpid(-1, status, WNOHANG | __WALL) == pid)
return;
usleep(1000);
}
// Now, try to abort fuse connections as they cause deadlocks,
// see Documentation/filesystems/fuse.txt for details.
// There is no good way to figure out the right connections
// provided that the process could use unshare(CLONE_NEWNS),
// so we abort all.
debug("kill is not working\n");
DIR* dir = opendir("/sys/fs/fuse/connections");
if (dir) {
for (;;) {
struct dirent* ent = readdir(dir);
if (!ent)
break;
if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0)
continue;
char abort[300];
snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name);
int fd = open(abort, O_WRONLY);
if (fd == -1) {
debug("failed to open %s: %d\n", abort, errno);
continue;
}
debug("aborting fuse conn %s\n", ent->d_name);
if (write(fd, abort, 1) < 0) {
debug("failed to abort: %d\n", errno);
}
close(fd);
}
closedir(dir);
} else {
debug("failed to open /sys/fs/fuse/connections: %d\n", errno);
}
// Now, just wait, no other options.
while (waitpid(-1, status, __WALL) != pid) {
}
}
#endif
#if (SYZ_EXECUTOR || SYZ_REPEAT && (SYZ_CGROUPS || SYZ_NET_RESET)) && SYZ_EXECUTOR_USES_FORK_SERVER
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#define SYZ_HAVE_SETUP_LOOP 1
static void setup_loop()
{
#if SYZ_EXECUTOR || SYZ_CGROUPS
setup_cgroups_loop();
#endif
#if SYZ_EXECUTOR || SYZ_NET_RESET
checkpoint_net_namespace();
#endif
}
#endif
#if (SYZ_EXECUTOR || SYZ_REPEAT && (SYZ_NET_RESET || __NR_syz_mount_image || __NR_syz_read_part_table)) && SYZ_EXECUTOR_USES_FORK_SERVER
#define SYZ_HAVE_RESET_LOOP 1
static void reset_loop()
{
#if SYZ_EXECUTOR || __NR_syz_mount_image || __NR_syz_read_part_table
char buf[64];
snprintf(buf, sizeof(buf), "/dev/loop%llu", procid);
int loopfd = open(buf, O_RDWR);
if (loopfd != -1) {
ioctl(loopfd, LOOP_CLR_FD, 0);
close(loopfd);
}
#endif
#if SYZ_EXECUTOR || SYZ_NET_RESET
reset_net_namespace();
#endif
}
#endif
#if (SYZ_EXECUTOR || SYZ_REPEAT) && SYZ_EXECUTOR_USES_FORK_SERVER
#include <sys/prctl.h>
#include <unistd.h>
#define SYZ_HAVE_SETUP_TEST 1
static void setup_test()
{
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
setpgrp();
#if SYZ_EXECUTOR || SYZ_CGROUPS
setup_cgroups_test();
#endif
// It's the leaf test process we want to be always killed first.
write_file("/proc/self/oom_score_adj", "1000");
#if SYZ_EXECUTOR || SYZ_NET_INJECTION
// Read all remaining packets from tun to better
// isolate consequently executing programs.
flush_tun();
#endif
#if SYZ_EXECUTOR || SYZ_USE_TMP_DIR
// Add a binderfs symlink to the tmp folder.
if (symlink("/dev/binderfs", "./binderfs")) {
debug("symlink(/dev/binderfs, ./binderfs) failed: %d", errno);
}
#endif
}
#endif
#if SYZ_EXECUTOR || SYZ_CLOSE_FDS
#define SYZ_HAVE_CLOSE_FDS 1
static void close_fds()
{
#if SYZ_EXECUTOR
if (!flag_close_fds)
return;
#endif
// Keeping a 9p transport pipe open will hang the proccess dead,
// so close all opened file descriptors.
// Also close all USB emulation descriptors to trigger exit from USB
// event loop to collect coverage.
for (int fd = 3; fd < MAX_FDS; fd++)
close(fd);
}
#endif
#if SYZ_EXECUTOR || SYZ_FAULT
#include <errno.h>
static void setup_fault()
{
static struct {
const char* file;
const char* val;
bool fatal;
} files[] = {
{"/sys/kernel/debug/failslab/ignore-gfp-wait", "N", true},
// These are enabled by separate configs (e.g. CONFIG_FAIL_FUTEX)
// and we did not check all of them in host.checkFaultInjection, so we ignore errors.
{"/sys/kernel/debug/fail_futex/ignore-private", "N", false},
{"/sys/kernel/debug/fail_page_alloc/ignore-gfp-highmem", "N", false},
{"/sys/kernel/debug/fail_page_alloc/ignore-gfp-wait", "N", false},
{"/sys/kernel/debug/fail_page_alloc/min-order", "0", false},
};
unsigned i;
for (i = 0; i < sizeof(files) / sizeof(files[0]); i++) {
if (!write_file(files[i].file, files[i].val)) {
debug("failed to write %s: %d\n", files[i].file, errno);
if (files[i].fatal)
failmsg("failed to write fault injection file", "file=%s", files[i].file);
}
}
}
#endif
#if SYZ_EXECUTOR || SYZ_LEAK
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#define KMEMLEAK_FILE "/sys/kernel/debug/kmemleak"
static void setup_leak()
{
// Flush boot leaks.
if (!write_file(KMEMLEAK_FILE, "scan"))
fail("failed to write(kmemleak, \"scan\")");
sleep(5); // account for MSECS_MIN_AGE
if (!write_file(KMEMLEAK_FILE, "scan"))
fail("failed to write(kmemleak, \"scan\")");
if (!write_file(KMEMLEAK_FILE, "clear"))
fail("failed to write(kmemleak, \"clear\")");
}
#define SYZ_HAVE_LEAK_CHECK 1
#if SYZ_EXECUTOR
static void check_leaks(char** frames, int nframes)
#else
static void check_leaks(void)
#endif
{
int fd = open(KMEMLEAK_FILE, O_RDWR);
if (fd == -1)
fail("failed to open(kmemleak)");
// KMEMLEAK has false positives. To mitigate most of them, it checksums
// potentially leaked objects, and reports them only on the next scan
// iff the checksum does not change. Because of that we do the following
// intricate dance:
// Scan, sleep, scan again. At this point we can get some leaks.
// If there are leaks, we sleep and scan again, this can remove
// false leaks. Then, read kmemleak again. If we get leaks now, then
// hopefully these are true positives during the previous testing cycle.
uint64 start = current_time_ms();
if (write(fd, "scan", 4) != 4)
fail("failed to write(kmemleak, \"scan\")");
sleep(1);
// Account for MSECS_MIN_AGE
// (1 second less because scanning will take at least a second).
while (current_time_ms() - start < 4 * 1000)
sleep(1);
if (write(fd, "scan", 4) != 4)
fail("failed to write(kmemleak, \"scan\")");
static char buf[128 << 10];
ssize_t n = read(fd, buf, sizeof(buf) - 1);
if (n < 0)
fail("failed to read(kmemleak)");
int nleaks = 0;
if (n != 0) {
sleep(1);
if (write(fd, "scan", 4) != 4)
fail("failed to write(kmemleak, \"scan\")");
if (lseek(fd, 0, SEEK_SET) < 0)
fail("failed to lseek(kmemleak)");
n = read(fd, buf, sizeof(buf) - 1);
if (n < 0)
fail("failed to read(kmemleak)");
buf[n] = 0;
char* pos = buf;
char* end = buf + n;
while (pos < end) {
char* next = strstr(pos + 1, "unreferenced object");
if (!next)
next = end;
char prev = *next;
*next = 0;
#if SYZ_EXECUTOR
int f;
for (f = 0; f < nframes; f++) {
if (strstr(pos, frames[f]))
break;
}
if (f != nframes) {
*next = prev;
pos = next;
continue;
}
#endif
// BUG in output should be recognized by manager.
fprintf(stderr, "BUG: memory leak\n%s\n", pos);
*next = prev;
pos = next;
nleaks++;
}
}
if (write(fd, "clear", 5) != 5)
fail("failed to write(kmemleak, \"clear\")");
close(fd);
if (nleaks)
doexit(1);
}
#endif
#if SYZ_EXECUTOR || SYZ_BINFMT_MISC
#include <fcntl.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
static void setup_binfmt_misc()
{
if (mount(0, "/proc/sys/fs/binfmt_misc", "binfmt_misc", 0, 0)) {
debug("mount(binfmt_misc) failed: %d\n", errno);
}
write_file("/proc/sys/fs/binfmt_misc/register", ":syz0:M:0:\x01::./file0:");
write_file("/proc/sys/fs/binfmt_misc/register", ":syz1:M:1:\x02::./file0:POC");
}
#endif
#if SYZ_EXECUTOR || SYZ_KCSAN
#define KCSAN_DEBUGFS_FILE "/sys/kernel/debug/kcsan"
static void setup_kcsan()
{
if (!write_file(KCSAN_DEBUGFS_FILE, "on"))
fail("failed to enable KCSAN");
}
#if SYZ_EXECUTOR // currently only used by executor
static void setup_kcsan_filterlist(char** frames, int nframes, bool suppress)
{
int fd = open(KCSAN_DEBUGFS_FILE, O_WRONLY);
if (fd == -1)
fail("failed to open kcsan debugfs file");
printf("%s KCSAN reports in functions: ",
suppress ? "suppressing" : "only showing");
if (!suppress)
dprintf(fd, "whitelist\n");
for (int i = 0; i < nframes; ++i) {
printf("'%s' ", frames[i]);
dprintf(fd, "!%s\n", frames[i]);
}
printf("\n");
close(fd);
}
#define SYZ_HAVE_KCSAN 1
#endif
#endif
#if SYZ_EXECUTOR || SYZ_USB
static void setup_usb()
{
if (chmod("/dev/raw-gadget", 0666))
fail("failed to chmod /dev/raw-gadget");
}
#endif
#if SYZ_EXECUTOR || SYZ_SYSCTL
#include <errno.h>
#include <stdio.h>
#include <string.h>
static void setup_sysctl()
{
char mypid[32];
snprintf(mypid, sizeof(mypid), "%d", getpid());
// TODO: consider moving all sysctl's into CMDLINE config later.
// Kernel has support for setting sysctl's via command line since 3db978d480e28 (v5.8).
struct {
const char* name;
const char* data;
} files[] = {
#if GOARCH_amd64 || GOARCH_386
// nmi_check_duration() prints "INFO: NMI handler took too long" on slow debug kernels.
// It happens a lot in qemu, and the messages are frequently corrupted
// (intermixed with other kernel output as they are printed from NMI)
// and are not matched against the suppression in pkg/report.
// This write prevents these messages from being printed.
{"/sys/kernel/debug/x86/nmi_longest_ns", "10000000000"},
#endif
{"/proc/sys/kernel/hung_task_check_interval_secs", "20"},
// bpf_jit_kallsyms and disabling bpf_jit_harden are required
// for unwinding through bpf functions.
{"/proc/sys/net/core/bpf_jit_kallsyms", "1"},
{"/proc/sys/net/core/bpf_jit_harden", "0"},
// This is to provide more useful info in crash reports.
{"/proc/sys/kernel/kptr_restrict", "0"},
{"/proc/sys/kernel/softlockup_all_cpu_backtrace", "1"},
// This is to restrict effects of recursive exponential mounts, for details see
// "mnt: Add a per mount namespace limit on the number of mounts" commit.
{"/proc/sys/fs/mount-max", "100"},
// Dumping all tasks to console can take too long.
{"/proc/sys/vm/oom_dump_tasks", "0"},
// Executor hits lots of SIGSEGVs, no point in logging them.
{"/proc/sys/debug/exception-trace", "0"},
{"/proc/sys/kernel/printk", "7 4 1 3"},
// Faster gc (1 second) is intended to make tests more repeatable.
{"/proc/sys/kernel/keys/gc_delay", "1"},
// We always want to prefer killing the allocating test process rather than somebody else
// (sshd or another random test process).
{"/proc/sys/vm/oom_kill_allocating_task", "1"},
// This blocks some of the ways the fuzzer can trigger a reboot.
// ctrl-alt-del=0 tells kernel to signal cad_pid instead of rebooting
// and setting cad_pid to the current pid (transient "syz-executor setup") makes it a no-op.
// For context see: https://groups.google.com/g/syzkaller-bugs/c/WqOY4TiRnFg/m/6P9u8lWZAQAJ
{"/proc/sys/kernel/ctrl-alt-del", "0"},
{"/proc/sys/kernel/cad_pid", mypid},
};
for (size_t i = 0; i < sizeof(files) / sizeof(files[0]); i++) {
if (!write_file(files[i].name, files[i].data))
printf("write to %s failed: %s\n", files[i].name, strerror(errno));
}
}
#endif
#if SYZ_EXECUTOR || SYZ_802154
#include <net/if.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#define NL802154_CMD_SET_SHORT_ADDR 11
#define NL802154_ATTR_IFINDEX 3
#define NL802154_ATTR_SHORT_ADDR 10
static void setup_802154()
{
int sock_route = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock_route == -1)
fail("socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE) failed");
int sock_generic = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (sock_generic < 0)
fail("socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC) failed");
int nl802154_family_id = netlink_query_family_id(&nlmsg, sock_generic, "nl802154", true);
for (int i = 0; i < 2; i++) {
// wpan0/1 are created by CONFIG_IEEE802154_HWSIM.
// sys/linux/socket_ieee802154.txt knowns about these names and consts.
char devname[] = "wpan0";
devname[strlen(devname) - 1] += i;
uint64 hwaddr = 0xaaaaaaaaaaaa0002 + (i << 8);
uint16 shortaddr = 0xaaa0 + i;
int ifindex = if_nametoindex(devname);
struct genlmsghdr genlhdr;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = NL802154_CMD_SET_SHORT_ADDR;
netlink_init(&nlmsg, nl802154_family_id, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(&nlmsg, NL802154_ATTR_IFINDEX, &ifindex, sizeof(ifindex));
netlink_attr(&nlmsg, NL802154_ATTR_SHORT_ADDR, &shortaddr, sizeof(shortaddr));
int err = netlink_send(&nlmsg, sock_generic);
if (err < 0) {
debug("NL802154_CMD_SET_SHORT_ADDR failed: %s\n", strerror(errno));
}
netlink_device_change(&nlmsg, sock_route, devname, true, 0, &hwaddr, sizeof(hwaddr), 0);
if (i == 0) {
netlink_add_device_impl(&nlmsg, "lowpan", "lowpan0", false);
netlink_done(&nlmsg);
netlink_attr(&nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex));
int err = netlink_send(&nlmsg, sock_route);
if (err < 0) {
debug("netlink: adding device lowpan0 type lowpan link wpan0: %s\n", strerror(errno));
}
}
}
close(sock_route);
close(sock_generic);
}
#endif
#if GOARCH_s390x
#include <sys/mman.h>
// Ugly way to work around gcc's "error: function called through a non-compatible type".
// Simply casting via (void*) inline does not work b/c gcc sees through a chain of casts.
// The macro is used in generated C code.
#define CAST(f) ({void* p = (void*)f; p; })
#endif
#if SYZ_EXECUTOR || __NR_syz_fuse_handle_req
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
// From linux/fuse.h
#define FUSE_MIN_READ_BUFFER 8192
// From linux/fuse.h
enum fuse_opcode {
FUSE_LOOKUP = 1,
FUSE_FORGET = 2, // no reply
FUSE_GETATTR = 3,
FUSE_SETATTR = 4,
FUSE_READLINK = 5,
FUSE_SYMLINK = 6,
FUSE_MKNOD = 8,
FUSE_MKDIR = 9,
FUSE_UNLINK = 10,
FUSE_RMDIR = 11,
FUSE_RENAME = 12,
FUSE_LINK = 13,
FUSE_OPEN = 14,
FUSE_READ = 15,
FUSE_WRITE = 16,
FUSE_STATFS = 17,
FUSE_RELEASE = 18,
FUSE_FSYNC = 20,
FUSE_SETXATTR = 21,
FUSE_GETXATTR = 22,
FUSE_LISTXATTR = 23,
FUSE_REMOVEXATTR = 24,
FUSE_FLUSH = 25,
FUSE_INIT = 26,
FUSE_OPENDIR = 27,
FUSE_READDIR = 28,
FUSE_RELEASEDIR = 29,
FUSE_FSYNCDIR = 30,
FUSE_GETLK = 31,
FUSE_SETLK = 32,
FUSE_SETLKW = 33,
FUSE_ACCESS = 34,
FUSE_CREATE = 35,
FUSE_INTERRUPT = 36,
FUSE_BMAP = 37,
FUSE_DESTROY = 38,
FUSE_IOCTL = 39,
FUSE_POLL = 40,
FUSE_NOTIFY_REPLY = 41,
FUSE_BATCH_FORGET = 42,
FUSE_FALLOCATE = 43,
FUSE_READDIRPLUS = 44,
FUSE_RENAME2 = 45,
FUSE_LSEEK = 46,
FUSE_COPY_FILE_RANGE = 47,
FUSE_SETUPMAPPING = 48,
FUSE_REMOVEMAPPING = 49,
// CUSE specific operations
CUSE_INIT = 4096,
// Reserved opcodes: helpful to detect structure endian-ness
CUSE_INIT_BSWAP_RESERVED = 1048576, // CUSE_INIT << 8
FUSE_INIT_BSWAP_RESERVED = 436207616, // FUSE_INIT << 24
};
// From linux/fuse.h
struct fuse_in_header {
uint32 len;
uint32 opcode;
uint64 unique;
uint64 nodeid;
uint32 uid;
uint32 gid;
uint32 pid;
uint32 padding;
};
// From linux/fuse.h
struct fuse_out_header {
uint32 len;
// This is actually a int32_t but *_t variants fail to compile inside
// the executor (it appends an additional _t for some reason) and int32
// does not exist. Since we don't touch this field, defining it as
// unsigned should not cause any problems.
uint32 error;
uint64 unique;
};
// Struct shared between syz_fuse_handle_req() and the fuzzer. Used to provide
// a fuzzed response for each request type.
struct syz_fuse_req_out {
struct fuse_out_header* init;
struct fuse_out_header* lseek;
struct fuse_out_header* bmap;
struct fuse_out_header* poll;
struct fuse_out_header* getxattr;
struct fuse_out_header* lk;
struct fuse_out_header* statfs;
struct fuse_out_header* write;
struct fuse_out_header* read;
struct fuse_out_header* open;
struct fuse_out_header* attr;
struct fuse_out_header* entry;
struct fuse_out_header* dirent;
struct fuse_out_header* direntplus;
struct fuse_out_header* create_open;
struct fuse_out_header* ioctl;
};
// Link the reponse to the request and send it to /dev/fuse.
static int fuse_send_response(int fd,
const struct fuse_in_header* in_hdr,
struct fuse_out_header* out_hdr)
{
if (!out_hdr) {
debug("fuse_send_response: received a NULL out_hdr\n");
return -1;
}
out_hdr->unique = in_hdr->unique;
if (write(fd, out_hdr, out_hdr->len) == -1) {
debug("fuse_send_response > write failed: %d\n", errno);
return -1;
}
return 0;
}
// This function reads a request from /dev/fuse and tries to pick the correct
// response from the input struct syz_fuse_req_out (a3). Responses are still
// generated by the fuzzer.
static volatile long syz_fuse_handle_req(volatile long a0, // /dev/fuse fd.
volatile long a1, // Read buffer.
volatile long a2, // Buffer len.
volatile long a3) // syz_fuse_req_out.
{
struct syz_fuse_req_out* req_out = (struct syz_fuse_req_out*)a3;
struct fuse_out_header* out_hdr = NULL;
char* buf = (char*)a1;
int buf_len = (int)a2;
int fd = (int)a0;
if (!req_out) {
debug("syz_fuse_handle_req: received a NULL syz_fuse_req_out\n");
return -1;
}
if (buf_len < FUSE_MIN_READ_BUFFER) {
debug("FUSE requires the read buffer to be at least %u\n", FUSE_MIN_READ_BUFFER);
return -1;
}
int ret = read(fd, buf, buf_len);
if (ret == -1) {
debug("syz_fuse_handle_req > read failed: %d\n", errno);
return -1;
}
// Safe to do because ret > 0 (!= -1) and < FUSE_MIN_READ_BUFFER (= 8192).
if ((size_t)ret < sizeof(struct fuse_in_header)) {
debug("syz_fuse_handle_req: received a truncated FUSE header\n");
return -1;
}
const struct fuse_in_header* in_hdr = (const struct fuse_in_header*)buf;
debug("syz_fuse_handle_req: received opcode %d\n", in_hdr->opcode);
if (in_hdr->len > (uint32)ret) {
debug("syz_fuse_handle_req: received a truncated message\n");
return -1;
}
switch (in_hdr->opcode) {
case FUSE_GETATTR:
case FUSE_SETATTR:
out_hdr = req_out->attr;
break;
case FUSE_LOOKUP:
case FUSE_SYMLINK:
case FUSE_LINK:
case FUSE_MKNOD:
case FUSE_MKDIR:
out_hdr = req_out->entry;
break;
case FUSE_OPEN:
case FUSE_OPENDIR:
out_hdr = req_out->open;
break;
case FUSE_STATFS:
out_hdr = req_out->statfs;
break;
case FUSE_RMDIR:
case FUSE_RENAME:
case FUSE_RENAME2:
case FUSE_FALLOCATE:
case FUSE_SETXATTR:
case FUSE_REMOVEXATTR:
case FUSE_FSYNCDIR:
case FUSE_FSYNC:
case FUSE_SETLKW:
case FUSE_SETLK:
case FUSE_ACCESS:
case FUSE_FLUSH:
case FUSE_RELEASE:
case FUSE_RELEASEDIR:
case FUSE_UNLINK:
case FUSE_DESTROY:
// These opcodes do not have any reply data. Hence, we pick
// another response and only use the shared header.
out_hdr = req_out->init;
if (!out_hdr) {
debug("syz_fuse_handle_req: received a NULL out_hdr\n");
return -1;
}
out_hdr->len = sizeof(struct fuse_out_header);
break;
case FUSE_READ:
out_hdr = req_out->read;
break;
case FUSE_READDIR:
out_hdr = req_out->dirent;
break;
case FUSE_READDIRPLUS:
out_hdr = req_out->direntplus;
break;
case FUSE_INIT:
out_hdr = req_out->init;
break;
case FUSE_LSEEK:
out_hdr = req_out->lseek;
break;
case FUSE_GETLK:
out_hdr = req_out->lk;
break;
case FUSE_BMAP:
out_hdr = req_out->bmap;
break;
case FUSE_POLL:
out_hdr = req_out->poll;
break;
case FUSE_GETXATTR:
case FUSE_LISTXATTR:
out_hdr = req_out->getxattr;
break;
case FUSE_WRITE:
case FUSE_COPY_FILE_RANGE:
out_hdr = req_out->write;
break;
case FUSE_FORGET:
case FUSE_BATCH_FORGET:
// FUSE_FORGET and FUSE_BATCH_FORGET expect no reply.
return 0;
case FUSE_CREATE:
out_hdr = req_out->create_open;
break;
case FUSE_IOCTL:
out_hdr = req_out->ioctl;
break;
default:
debug("syz_fuse_handle_req: unknown FUSE opcode\n");
return -1;
}
return fuse_send_response(fd, in_hdr, out_hdr);
}
#endif
#if SYZ_EXECUTOR || __NR_syz_80211_inject_frame
#include <errno.h>
#include <linux/genetlink.h>
#include <linux/if_ether.h>
#include <linux/nl80211.h>
#include <net/if.h>
#include <sys/ioctl.h>
// This pseudo syscall performs 802.11 frame injection.
//
// Its current implementation performs the injection by means of mac80211_hwsim.
// The procedure consists of the following steps:
// 1. Open a netlink socket
// 2. Register as an application responsible for wireless medium simulation by executing
// HWSIM_CMD_REGISTER. This is a preq-requisite for the following step. After HWSIM_CMD_REGISTER
// is executed, mac80211_hwsim stops simulating a perfect medium.
// It is also important to note that this command registers a specific socket, not a netlink port.
// 3. Inject a frame to the required interface by executing HWSIM_CMD_FRAME.
// 4. Close the socket. mac80211_hwsim will detect this and return to perfect medium simulation.
//
// Note that we cannot (should not) open a socket, register it once and then use it for frame injection
// throughout the lifetime of a proc. When some socket is registered, mac80211_hwsim does not broadcast
// frames to all interfaces itself. As we do not perform this activity either, a permanently registered
// socket will disrupt normal network operation.
#define HWSIM_ATTR_RX_RATE 5
#define HWSIM_ATTR_SIGNAL 6
#define HWSIM_ATTR_ADDR_RECEIVER 1
#define HWSIM_ATTR_FRAME 3
#define WIFI_MAX_INJECT_LEN 2048
static int hwsim_register_socket(struct nlmsg* nlmsg, int sock, int hwsim_family)
{
struct genlmsghdr genlhdr;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = HWSIM_CMD_REGISTER;
netlink_init(nlmsg, hwsim_family, 0, &genlhdr, sizeof(genlhdr));
int err = netlink_send_ext(nlmsg, sock, 0, NULL, false);
if (err < 0) {
debug("hwsim_register_device failed: %s\n", strerror(errno));
}
return err;
}
static int hwsim_inject_frame(struct nlmsg* nlmsg, int sock, int hwsim_family, uint8* mac_addr, uint8* data, int len)
{
struct genlmsghdr genlhdr;
uint32 rx_rate = WIFI_DEFAULT_RX_RATE;
uint32 signal = WIFI_DEFAULT_SIGNAL;
memset(&genlhdr, 0, sizeof(genlhdr));
genlhdr.cmd = HWSIM_CMD_FRAME;
netlink_init(nlmsg, hwsim_family, 0, &genlhdr, sizeof(genlhdr));
netlink_attr(nlmsg, HWSIM_ATTR_RX_RATE, &rx_rate, sizeof(rx_rate));
netlink_attr(nlmsg, HWSIM_ATTR_SIGNAL, &signal, sizeof(signal));
netlink_attr(nlmsg, HWSIM_ATTR_ADDR_RECEIVER, mac_addr, ETH_ALEN);
netlink_attr(nlmsg, HWSIM_ATTR_FRAME, data, len);
int err = netlink_send_ext(nlmsg, sock, 0, NULL, false);
if (err < 0) {
debug("hwsim_inject_frame failed: %s\n", strerror(errno));
}
return err;
}
static long syz_80211_inject_frame(volatile long a0, volatile long a1, volatile long a2)
{
uint8* mac_addr = (uint8*)a0;
uint8* buf = (uint8*)a1;
int buf_len = (int)a2;
struct nlmsg tmp_msg;
if (buf_len < 0 || buf_len > WIFI_MAX_INJECT_LEN) {
debug("syz_80211_inject_frame: wrong buffer size %d\n", buf_len);
return -1;
}
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (sock < 0) {
debug("syz_80211_inject_frame: socket creation failed, errno %d\n", errno);
return -1;
}
int hwsim_family_id = netlink_query_family_id(&tmp_msg, sock, "MAC80211_HWSIM", false);
int ret = hwsim_register_socket(&tmp_msg, sock, hwsim_family_id);
if (ret < 0) {
debug("syz_80211_inject_frame: failed to register socket, ret %d\n", ret);
close(sock);
return -1;
}
ret = hwsim_inject_frame(&tmp_msg, sock, hwsim_family_id, mac_addr, buf, buf_len);
close(sock);
if (ret < 0) {
debug("syz_80211_inject_frame: failed to inject message, ret %d\n", ret);
return -1;
}
return 0;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_80211_join_ibss
#define WIFI_MAX_SSID_LEN 32
#define WIFI_JOIN_IBSS_NO_SCAN 0
#define WIFI_JOIN_IBSS_BG_SCAN 1
#define WIFI_JOIN_IBSS_BG_NO_SCAN 2
static long syz_80211_join_ibss(volatile long a0, volatile long a1, volatile long a2, volatile long a3)
{
char* interface = (char*)a0;
uint8* ssid = (uint8*)a1;
int ssid_len = (int)a2;
int mode = (int)a3; // This parameter essentially determines whether it will perform a scan
struct nlmsg tmp_msg;
uint8 bssid[ETH_ALEN] = WIFI_IBSS_BSSID;
if (ssid_len < 0 || ssid_len > WIFI_MAX_SSID_LEN) {
debug("syz_80211_join_ibss: invalid ssid len %d\n", ssid_len);
return -1;
}
if (mode < 0 || mode > WIFI_JOIN_IBSS_BG_NO_SCAN) {
debug("syz_80211_join_ibss: invalid mode %d\n", mode);
return -1;
}
int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (sock < 0) {
debug("syz_80211_join_ibss: socket creation failed, errno %d\n", errno);
return -1;
}
int nl80211_family_id = netlink_query_family_id(&tmp_msg, sock, "nl80211", false);
struct join_ibss_props ibss_props = {
.wiphy_freq = WIFI_DEFAULT_FREQUENCY,
.wiphy_freq_fixed = (mode == WIFI_JOIN_IBSS_NO_SCAN || mode == WIFI_JOIN_IBSS_BG_NO_SCAN),
.mac = bssid,
.ssid = ssid,
.ssid_len = ssid_len};
int ret = nl80211_setup_ibss_interface(&tmp_msg, sock, nl80211_family_id, interface, &ibss_props, false);
close(sock);
if (ret < 0) {
debug("syz_80211_join_ibss: failed set up IBSS network for %.32s\n", interface);
return -1;
}
if (mode == WIFI_JOIN_IBSS_NO_SCAN) {
ret = await_ifla_operstate(&tmp_msg, interface, IF_OPER_UP, false);
if (ret < 0) {
debug("syz_80211_join_ibss: await_ifla_operstate failed for %.32s, ret %d\n", interface, ret);
return -1;
}
}
return 0;
}
#endif
#if SYZ_EXECUTOR || __NR_syz_clone || __NR_syz_clone3
#if SYZ_EXECUTOR
// The slowdown multiplier is already taken into account.
#define USLEEP_FORKED_CHILD (3 * syscall_timeout_ms * 1000)
#else
#define USLEEP_FORKED_CHILD (3 * /*{{{BASE_CALL_TIMEOUT_MS}}}*/ *1000)
#endif
static long handle_clone_ret(long ret)
{
if (ret != 0) {
#if SYZ_EXECUTOR || SYZ_HANDLE_SEGV
__atomic_store_n(&clone_ongoing, 0, __ATOMIC_RELAXED);
#endif
return ret;
}
// Exit if we're in the child process - not all kernels provide the proper means
// to prevent fork-bombs.
// But first sleep for some time. This will hopefully foster IPC fuzzing.
usleep(USLEEP_FORKED_CHILD);
// Note that exit_group is a bad choice here because if we created just a thread, then
// the whole process will be killed. A plain exit will work fine in any case.
syscall(__NR_exit, 0);
while (1) {
}
}
#endif
#if SYZ_EXECUTOR || __NR_syz_clone
#include <sched.h>
// syz_clone is mostly needed on kernels which do not suport clone3.
static long syz_clone(volatile long flags, volatile long stack, volatile long stack_len,
volatile long ptid, volatile long ctid, volatile long tls)
{
// ABI requires 16-byte stack alignment.
long sp = (stack + stack_len) & ~15;
#if SYZ_EXECUTOR || SYZ_HANDLE_SEGV
__atomic_store_n(&clone_ongoing, 1, __ATOMIC_RELAXED);
#endif
// Clear the CLONE_VM flag. Otherwise it'll very likely corrupt syz-executor.
long ret = (long)syscall(__NR_clone, flags & ~CLONE_VM, sp, ptid, ctid, tls);
return handle_clone_ret(ret);
}
#endif
#if SYZ_EXECUTOR || __NR_syz_clone3
#include <linux/sched.h>
#include <sched.h>
#define MAX_CLONE_ARGS_BYTES 256
static long syz_clone3(volatile long a0, volatile long a1)
{
unsigned long copy_size = a1;
if (copy_size < sizeof(uint64) || copy_size > MAX_CLONE_ARGS_BYTES)
return -1;
// The structure may have different sizes on different kernel versions, so copy it as raw bytes.
char clone_args[MAX_CLONE_ARGS_BYTES];
memcpy(&clone_args, (void*)a0, copy_size);
// As in syz_clone, clear the CLONE_VM flag. Flags are in the first 8-byte integer field.
uint64* flags = (uint64*)&clone_args;
*flags &= ~CLONE_VM;
#if SYZ_EXECUTOR || SYZ_HANDLE_SEGV
__atomic_store_n(&clone_ongoing, 1, __ATOMIC_RELAXED);
#endif
return handle_clone_ret((long)syscall(__NR_clone3, &clone_args, copy_size));
}
#endif
#if SYZ_EXECUTOR || __NR_syz_pkey_set
// syz_pkey_set(key pkey, val flags[pkey_flags])
static long syz_pkey_set(volatile long pkey, volatile long val)
{
#if GOARCH_amd64 || GOARCH_386
uint32 eax = 0;
uint32 ecx = 0;
asm volatile("rdpkru"
: "=a"(eax)
: "c"(ecx)
: "edx");
// PKRU register contains 2 bits per key.
// Max number of keys is 16.
// Clear old bits for the key:
eax &= ~(3 << ((pkey % 16) * 2));
// Set new bits for the key:
eax |= (val & 3) << ((pkey % 16) * 2);
uint32 edx = 0;
asm volatile("wrpkru" ::"a"(eax), "c"(ecx), "d"(edx));
#endif
return 0;
}
#endif
#if SYZ_EXECUTOR || SYZ_SWAP
#include <fcntl.h>
#include <linux/falloc.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/swap.h>
#include <sys/types.h>
#define SWAP_FILE "./swap-file"
#define SWAP_FILE_SIZE (128 * 1000 * 1000) // 128 MB.
static void setup_swap()
{
// The call must be idempotent, so first disable swap and remove the swap file.
swapoff(SWAP_FILE);
unlink(SWAP_FILE);
// Zero-fill the file.
int fd = open(SWAP_FILE, O_CREAT | O_WRONLY | O_CLOEXEC, 0600);
if (fd == -1) {
failmsg("swap file open failed", "file: %s", SWAP_FILE);
return;
}
// We cannot do ftruncate -- swapon complains about this. Do fallocate instead.
fallocate(fd, FALLOC_FL_ZERO_RANGE, 0, SWAP_FILE_SIZE);
close(fd);
// Set up the swap file.
char cmdline[64];
sprintf(cmdline, "mkswap %s", SWAP_FILE);
if (runcmdline(cmdline)) {
fail("mkswap failed");
return;
}
if (swapon(SWAP_FILE, SWAP_FLAG_PREFER) == 1) {
failmsg("swapon failed", "file: %s", SWAP_FILE);
return;
}
}
#endif
#if SYZ_EXECUTOR || __NR_syz_pidfd_open
#include <sys/syscall.h>
// TODO: long-term we should improve our sandboxing rules since there are also
// many other opportunities for a fuzzer process to access what it shouldn't.
// Here we only shut down one of the recently discovered ways.
static long syz_pidfd_open(volatile long pid, volatile long flags)
{
if (pid == 1) {
// Under a PID namespace, pid=1 is the parent process.
// We don't want a forked child to mangle parent syz-executor's fds.
pid = 0;
}
return syscall(__NR_pidfd_open, pid, flags);
}
#endif