blob: d9177bce713a6e22e7d70ca8780944f515535791 [file] [log] [blame]
// Copyright 2015 syzkaller project authors. All rights reserved.
// Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file.
// +build
#include <fcntl.h>
#include <limits.h>
#include <pthread.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/prctl.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#define SYZ_EXECUTOR
#include "common_linux.h"
#include "executor_linux.h"
#include "executor.h"
#include "syscalls_linux.h"
#define KCOV_INIT_TRACE32 _IOR('c', 1, uint32)
#define KCOV_INIT_TRACE64 _IOR('c', 1, uint64)
#define KCOV_ENABLE _IO('c', 100)
#define KCOV_DISABLE _IO('c', 101)
const unsigned long KCOV_TRACE_PC = 0;
const unsigned long KCOV_TRACE_CMP = 1;
const int kInFd = 3;
const int kOutFd = 4;
// The address chosen must also work on 32-bit kernels with 1GB user address space.
void* const kOutputDataAddr = (void*)0x1b2bc20000ull;
uint32* output_data;
uint32* output_pos;
static bool detect_kernel_bitness();
int main(int argc, char** argv)
{
is_kernel_64_bit = detect_kernel_bitness();
if (argc == 2 && strcmp(argv[1], "version") == 0) {
puts(GOOS " " GOARCH " " SYZ_REVISION " " GIT_REVISION);
return 0;
}
prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
if (mmap(&input_data[0], kMaxInput, PROT_READ, MAP_PRIVATE | MAP_FIXED, kInFd, 0) != &input_data[0])
fail("mmap of input file failed");
// The output region is the only thing in executor process for which consistency matters.
// If it is corrupted ipc package will fail to parse its contents and panic.
// But fuzzer constantly invents new ways of how to currupt the region,
// so we map the region at a (hopefully) hard to guess address surrounded by unmapped pages.
output_data = (uint32*)mmap(kOutputDataAddr, kMaxOutput,
PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, kOutFd, 0);
if (output_data != kOutputDataAddr)
fail("mmap of output file failed");
if (mmap((void*)SYZ_DATA_OFFSET, SYZ_NUM_PAGES * SYZ_PAGE_SIZE, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1, 0) != (void*)SYZ_DATA_OFFSET)
fail("mmap of data segment failed");
// Prevent random programs to mess with these fds.
// Due to races in collider mode, a program can e.g. ftruncate one of these fds,
// which will cause fuzzer to crash.
// That's also the reason why we close kInPipeFd/kOutPipeFd below.
close(kInFd);
close(kOutFd);
setup_control_pipes();
receive_handshake();
cover_open();
install_segv_handler();
use_temporary_dir();
int pid = -1;
switch (flag_sandbox) {
case sandbox_none:
pid = do_sandbox_none();
break;
case sandbox_setuid:
pid = do_sandbox_setuid();
break;
case sandbox_namespace:
pid = do_sandbox_namespace();
break;
default:
fail("unknown sandbox type");
}
if (pid < 0)
fail("clone failed");
debug("spawned loop pid %d\n", pid);
int status = 0;
while (waitpid(-1, &status, __WALL) != pid) {
}
status = WEXITSTATUS(status);
// Other statuses happen when fuzzer processes manages to kill loop.
if (status != kFailStatus && status != kErrorStatus)
status = kRetryStatus;
// If an external sandbox process wraps executor, the out pipe will be closed
// before the sandbox process exits this will make ipc package kill the sandbox.
// As the result sandbox process will exit with exit status 9 instead of the executor
// exit status (notably kRetryStatus). Consequently, ipc will treat it as hard
// failure rather than a temporal failure. So we duplicate the exit status on the pipe.
reply_execute(status);
errno = 0;
if (status == kFailStatus)
fail("loop failed");
if (status == kErrorStatus)
error("loop errored");
// Loop can be killed by a test process with e.g.:
// ptrace(PTRACE_SEIZE, 1, 0, 0x100040)
// This is unfortunate, but I don't have a better solution than ignoring it for now.
exitf("loop exited with status %d", status);
// Unreachable.
return 1;
}
static __thread thread_t* current_thread;
long execute_syscall(call_t* c, long a0, long a1, long a2, long a3, long a4, long a5, long a6, long a7, long a8)
{
if (c->call)
return c->call(a0, a1, a2, a3, a4, a5, a6, a7, a8);
return syscall(c->sys_nr, a0, a1, a2, a3, a4, a5);
}
void cover_open()
{
if (!flag_cover)
return;
for (int i = 0; i < kMaxThreads; i++) {
thread_t* th = &threads[i];
th->cover_fd = open("/sys/kernel/debug/kcov", O_RDWR);
if (th->cover_fd == -1)
fail("open of /sys/kernel/debug/kcov failed");
const int kcov_init_trace = is_kernel_64_bit ? KCOV_INIT_TRACE64 : KCOV_INIT_TRACE32;
if (ioctl(th->cover_fd, kcov_init_trace, kCoverSize))
fail("cover init trace write failed");
size_t mmap_alloc_size = kCoverSize * (is_kernel_64_bit ? 8 : 4);
th->cover_data = (char*)mmap(NULL, mmap_alloc_size,
PROT_READ | PROT_WRITE, MAP_SHARED, th->cover_fd, 0);
th->cover_end = th->cover_data + mmap_alloc_size;
if (th->cover_data == MAP_FAILED)
fail("cover mmap failed");
}
}
void cover_enable(thread_t* th)
{
if (!flag_cover)
return;
debug("#%d: enabling /sys/kernel/debug/kcov\n", th->id);
int kcov_mode = flag_collect_comps ? KCOV_TRACE_CMP : KCOV_TRACE_PC;
// This should be fatal,
// but in practice ioctl fails with assorted errors (9, 14, 25),
// so we use exitf.
if (ioctl(th->cover_fd, KCOV_ENABLE, kcov_mode))
exitf("cover enable write trace failed, mode=%d", kcov_mode);
debug("#%d: enabled /sys/kernel/debug/kcov\n", th->id);
current_thread = th;
}
void cover_reset(thread_t* th)
{
if (!flag_cover)
return;
if (th == 0)
th = current_thread;
*(uint64*)th->cover_data = 0;
}
uint32 read_cover_size(thread_t* th)
{
if (!flag_cover)
return 0;
// Note: this assumes little-endian kernel.
uint32 n = *(uint32*)th->cover_data;
debug("#%d: read cover size = %u\n", th->id, n);
if (n >= kCoverSize)
fail("#%d: too much cover %u", th->id, n);
return n;
}
uint32* write_output(uint32 v)
{
if (collide)
return 0;
if (output_pos < output_data || (char*)output_pos >= (char*)output_data + kMaxOutput)
fail("output overflow");
*output_pos = v;
return output_pos++;
}
void write_completed(uint32 completed)
{
__atomic_store_n(output_data, completed, __ATOMIC_RELEASE);
}
bool kcov_comparison_t::ignore() const
{
// Comparisons with 0 are not interesting, fuzzer should be able to guess 0's without help.
if (arg1 == 0 && (arg2 == 0 || (type & KCOV_CMP_CONST)))
return true;
if ((type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8) {
// This can be a pointer (assuming 64-bit kernel).
// First of all, we want avert fuzzer from our output region.
// Without this fuzzer manages to discover and corrupt it.
uint64 out_start = (uint64)kOutputDataAddr;
uint64 out_end = out_start + kMaxOutput;
if (arg1 >= out_start && arg1 <= out_end)
return true;
if (arg2 >= out_start && arg2 <= out_end)
return true;
#if defined(__i386__) || defined(__x86_64__)
// Filter out kernel physical memory addresses.
// These are internal kernel comparisons and should not be interesting.
// The range covers first 1TB of physical mapping.
uint64 kmem_start = (uint64)0xffff880000000000ull;
uint64 kmem_end = (uint64)0xffff890000000000ull;
bool kptr1 = arg1 >= kmem_start && arg1 <= kmem_end;
bool kptr2 = arg2 >= kmem_start && arg2 <= kmem_end;
if (kptr1 && kptr2)
return true;
if (kptr1 && arg2 == 0)
return true;
if (kptr2 && arg1 == 0)
return true;
#endif
}
return false;
}
static bool detect_kernel_bitness()
{
if (sizeof(void*) == 8)
return true;
// It turns out to be surprisingly hard to understand if the kernel underneath is 64-bits.
// A common method is to look at uname.machine. But it is produced in some involved ways,
// and we will need to know about all strings it returns and in the end it can be overriden
// during build and lie (and there are known precedents of this).
// So instead we look at size of addresses in /proc/kallsyms.
bool wide = true;
int fd = open("/proc/kallsyms", O_RDONLY);
if (fd != -1) {
char buf[16];
if (read(fd, buf, sizeof(buf)) == sizeof(buf) &&
(buf[8] == ' ' || buf[8] == '\t'))
wide = false;
close(fd);
}
debug("detected %d-bit kernel\n", wide ? 64 : 32);
return wide;
}