blob: 815c972e0455b914b3be56de093a34507e82d06f [file] [log] [blame]
//===--- IRGen.cpp - Swift LLVM IR Generation -----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the entrypoints into IR generation.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "irgen"
#include "IRGenModule.h"
#include "swift/AST/DiagnosticsIRGen.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Dwarf.h"
#include "swift/Basic/Platform.h"
#include "swift/Basic/Statistic.h"
#include "swift/Basic/Timer.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/IRGen/IRGenPublic.h"
#include "swift/IRGen/IRGenSILPasses.h"
#include "swift/LLVMPasses/Passes.h"
#include "swift/LLVMPasses/PassesFwd.h"
#include "swift/SIL/SILModule.h"
#include "swift/SILOptimizer/PassManager/PassManager.h"
#include "swift/SILOptimizer/PassManager/PassPipeline.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/Subsystems.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Linker/Linker.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Coroutines.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/ObjCARC.h"
#include <thread>
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
using namespace swift;
using namespace irgen;
using namespace llvm;
static cl::opt<bool> DisableObjCARCContract(
"disable-objc-arc-contract", cl::Hidden,
cl::desc("Disable running objc arc contract for testing purposes"));
// This option is for performance benchmarking: to ensure a consistent
// performance data, modules are aligned to the page size.
// Warning: this blows up the text segment size. So use this option only for
// performance benchmarking.
static cl::opt<bool> AlignModuleToPageSize(
"align-module-to-page-size", cl::Hidden,
cl::desc("Align the text section of all LLVM modules to the page size"));
namespace {
// We need this to access IRGenOptions from extension functions
class PassManagerBuilderWrapper : public PassManagerBuilder {
public:
const IRGenOptions &IRGOpts;
PassManagerBuilderWrapper(const IRGenOptions &IRGOpts)
: PassManagerBuilder(), IRGOpts(IRGOpts) {}
};
} // end anonymous namespace
static void addSwiftARCOptPass(const PassManagerBuilder &Builder,
PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createSwiftARCOptPass());
}
static void addSwiftContractPass(const PassManagerBuilder &Builder,
PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createSwiftARCContractPass());
}
static void addSwiftMergeFunctionsPass(const PassManagerBuilder &Builder,
PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createSwiftMergeFunctionsPass());
}
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createAddressSanitizerFunctionPass());
PM.add(createAddressSanitizerModulePass());
}
static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createThreadSanitizerPass());
}
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper &>(Builder);
PM.add(createSanitizerCoverageModulePass(
BuilderWrapper.IRGOpts.SanitizeCoverage));
}
std::tuple<llvm::TargetOptions, std::string, std::vector<std::string>,
std::string>
swift::getIRTargetOptions(IRGenOptions &Opts, ASTContext &Ctx) {
// Things that maybe we should collect from the command line:
// - relocation model
// - code model
// FIXME: We should do this entirely through Clang, for consistency.
TargetOptions TargetOpts;
// Explicitly request debugger tuning for LLDB which is the default
// on Darwin platforms but not on others.
TargetOpts.DebuggerTuning = llvm::DebuggerKind::LLDB;
auto *Clang = static_cast<ClangImporter *>(Ctx.getClangModuleLoader());
clang::TargetOptions &ClangOpts = Clang->getTargetInfo().getTargetOpts();
return std::make_tuple(TargetOpts, ClangOpts.CPU, ClangOpts.Features, ClangOpts.Triple);
}
void setModuleFlags(IRGenModule &IGM) {
auto *Module = IGM.getModule();
// These module flags don't affect code generation; they just let us
// error during LTO if the user tries to combine files across ABIs.
Module->addModuleFlag(llvm::Module::Error, "Swift Version",
IRGenModule::swiftVersion);
}
void swift::performLLVMOptimizations(IRGenOptions &Opts, llvm::Module *Module,
llvm::TargetMachine *TargetMachine) {
// Set up a pipeline.
PassManagerBuilderWrapper PMBuilder(Opts);
if (Opts.shouldOptimize() && !Opts.DisableLLVMOptzns) {
PMBuilder.OptLevel = 2; // -Os
PMBuilder.SizeLevel = 1; // -Os
PMBuilder.Inliner = llvm::createFunctionInliningPass(200);
PMBuilder.SLPVectorize = true;
PMBuilder.LoopVectorize = true;
PMBuilder.MergeFunctions = true;
} else {
PMBuilder.OptLevel = 0;
if (!Opts.DisableLLVMOptzns)
PMBuilder.Inliner =
llvm::createAlwaysInlinerLegacyPass(/*insertlifetime*/false);
}
bool RunSwiftSpecificLLVMOptzns =
!Opts.DisableSwiftSpecificLLVMOptzns && !Opts.DisableLLVMOptzns;
// If the optimizer is enabled, we run the ARCOpt pass in the scalar optimizer
// and the Contract pass as late as possible.
if (RunSwiftSpecificLLVMOptzns) {
PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
addSwiftARCOptPass);
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addSwiftContractPass);
}
if (RunSwiftSpecificLLVMOptzns)
addCoroutinePassesToExtensionPoints(PMBuilder);
if (Opts.Sanitizers & SanitizerKind::Address) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addAddressSanitizerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addAddressSanitizerPasses);
}
if (Opts.Sanitizers & SanitizerKind::Thread) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addThreadSanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addThreadSanitizerPass);
}
if (Opts.SanitizeCoverage.CoverageType !=
llvm::SanitizerCoverageOptions::SCK_None) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addSanitizerCoveragePass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addSanitizerCoveragePass);
}
if (RunSwiftSpecificLLVMOptzns)
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addSwiftMergeFunctionsPass);
// Configure the function passes.
legacy::FunctionPassManager FunctionPasses(Module);
FunctionPasses.add(createTargetTransformInfoWrapperPass(
TargetMachine->getTargetIRAnalysis()));
if (Opts.Verify)
FunctionPasses.add(createVerifierPass());
PMBuilder.populateFunctionPassManager(FunctionPasses);
// The PMBuilder only knows about LLVM AA passes. We should explicitly add
// the swift AA pass after the other ones.
if (RunSwiftSpecificLLVMOptzns) {
FunctionPasses.add(createSwiftAAWrapperPass());
FunctionPasses.add(createExternalAAWrapperPass([](Pass &P, Function &,
AAResults &AAR) {
if (auto *WrapperPass = P.getAnalysisIfAvailable<SwiftAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
}));
}
// Run the function passes.
FunctionPasses.doInitialization();
for (auto I = Module->begin(), E = Module->end(); I != E; ++I)
if (!I->isDeclaration())
FunctionPasses.run(*I);
FunctionPasses.doFinalization();
// Configure the module passes.
legacy::PassManager ModulePasses;
ModulePasses.add(createTargetTransformInfoWrapperPass(
TargetMachine->getTargetIRAnalysis()));
// If we're generating a profile, add the lowering pass now.
if (Opts.GenerateProfile) {
// TODO: Surface the option to emit atomic profile counter increments at
// the driver level.
InstrProfOptions Options;
Options.Atomic = bool(Opts.Sanitizers & SanitizerKind::Thread);
ModulePasses.add(createInstrProfilingLegacyPass(Options));
}
PMBuilder.populateModulePassManager(ModulePasses);
// The PMBuilder only knows about LLVM AA passes. We should explicitly add
// the swift AA pass after the other ones.
if (RunSwiftSpecificLLVMOptzns) {
ModulePasses.add(createSwiftAAWrapperPass());
ModulePasses.add(createExternalAAWrapperPass([](Pass &P, Function &,
AAResults &AAR) {
if (auto *WrapperPass = P.getAnalysisIfAvailable<SwiftAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
}));
}
if (Opts.Verify)
ModulePasses.add(createVerifierPass());
if (Opts.PrintInlineTree)
ModulePasses.add(createInlineTreePrinterPass());
// Do it.
ModulePasses.run(*Module);
if (AlignModuleToPageSize) {
// For performance benchmarking: Align the module to the page size by
// aligning the first function of the module.
unsigned pageSize =
#if HAVE_UNISTD_H
sysconf(_SC_PAGESIZE));
#else
4096; // Use a default value
#endif
for (auto I = Module->begin(), E = Module->end(); I != E; ++I) {
if (!I->isDeclaration()) {
I->setAlignment(pageSize);
break;
}
}
}
}
namespace {
/// An output stream which calculates the MD5 hash of the streamed data.
class MD5Stream : public llvm::raw_ostream {
private:
uint64_t Pos = 0;
llvm::MD5 Hash;
void write_impl(const char *Ptr, size_t Size) override {
Hash.update(ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(Ptr), Size));
Pos += Size;
}
uint64_t current_pos() const override { return Pos; }
public:
void final(MD5::MD5Result &Result) {
flush();
Hash.final(Result);
}
};
} // end anonymous namespace
/// Computes the MD5 hash of the llvm \p Module including the compiler version
/// and options which influence the compilation.
static void getHashOfModule(MD5::MD5Result &Result, IRGenOptions &Opts,
llvm::Module *Module,
llvm::TargetMachine *TargetMachine,
version::Version const& effectiveLanguageVersion) {
// Calculate the hash of the whole llvm module.
MD5Stream HashStream;
llvm::WriteBitcodeToFile(*Module, HashStream);
// Update the hash with the compiler version. We want to recompile if the
// llvm pipeline of the compiler changed.
HashStream << version::getSwiftFullVersion(effectiveLanguageVersion);
// Add all options which influence the llvm compilation but are not yet
// reflected in the llvm module itself.
HashStream << Opts.getLLVMCodeGenOptionsHash();
HashStream.final(Result);
}
/// Returns false if the hash of the current module \p HashData matches the
/// hash which is stored in an existing output object file.
static bool needsRecompile(StringRef OutputFilename, ArrayRef<uint8_t> HashData,
llvm::GlobalVariable *HashGlobal,
llvm::sys::Mutex *DiagMutex) {
if (OutputFilename.empty())
return true;
auto BinaryOwner = object::createBinary(OutputFilename);
if (!BinaryOwner) {
consumeError(BinaryOwner.takeError());
return true;
}
auto *ObjectFile = dyn_cast<object::ObjectFile>(BinaryOwner->getBinary());
if (!ObjectFile)
return true;
StringRef HashSectionName = HashGlobal->getSection();
// Strip the segment name. For mach-o the GlobalVariable's section name format
// is <segment>,<section>.
size_t Comma = HashSectionName.find_last_of(',');
if (Comma != StringRef::npos)
HashSectionName = HashSectionName.substr(Comma + 1);
// Search for the section which holds the hash.
for (auto &Section : ObjectFile->sections()) {
StringRef SectionName;
Section.getName(SectionName);
if (SectionName == HashSectionName) {
StringRef SectionData;
Section.getContents(SectionData);
ArrayRef<uint8_t> PrevHashData(
reinterpret_cast<const uint8_t *>(SectionData.data()),
SectionData.size());
LLVM_DEBUG(if (PrevHashData.size() == sizeof(MD5::MD5Result)) {
if (DiagMutex) DiagMutex->lock();
SmallString<32> HashStr;
MD5::stringifyResult(
*reinterpret_cast<MD5::MD5Result *>(
const_cast<unsigned char *>(PrevHashData.data())),
HashStr);
llvm::dbgs() << OutputFilename << ": prev MD5=" << HashStr <<
(HashData == PrevHashData ? " skipping\n" : " recompiling\n");
if (DiagMutex) DiagMutex->unlock();
});
if (HashData == PrevHashData)
return false;
return true;
}
}
return true;
}
static void countStatsPostIRGen(UnifiedStatsReporter &Stats,
const llvm::Module& Module) {
auto &C = Stats.getFrontendCounters();
// FIXME: calculate these in constant time if possible.
C.NumIRGlobals += Module.getGlobalList().size();
C.NumIRFunctions += Module.getFunctionList().size();
C.NumIRAliases += Module.getAliasList().size();
C.NumIRIFuncs += Module.getIFuncList().size();
C.NumIRNamedMetaData += Module.getNamedMDList().size();
C.NumIRValueSymbols += Module.getValueSymbolTable().size();
C.NumIRComdatSymbols += Module.getComdatSymbolTable().size();
for (auto const &Func : Module) {
for (auto const &BB : Func) {
C.NumIRBasicBlocks++;
C.NumIRInsts += BB.size();
}
}
}
/// Run the LLVM passes. In multi-threaded compilation this will be done for
/// multiple LLVM modules in parallel.
bool swift::performLLVM(IRGenOptions &Opts, DiagnosticEngine *Diags,
llvm::sys::Mutex *DiagMutex,
llvm::GlobalVariable *HashGlobal,
llvm::Module *Module,
llvm::TargetMachine *TargetMachine,
const version::Version &effectiveLanguageVersion,
StringRef OutputFilename,
UnifiedStatsReporter *Stats) {
if (Opts.UseIncrementalLLVMCodeGen && HashGlobal) {
// Check if we can skip the llvm part of the compilation if we have an
// existing object file which was generated from the same llvm IR.
MD5::MD5Result Result;
getHashOfModule(Result, Opts, Module, TargetMachine,
effectiveLanguageVersion);
LLVM_DEBUG(
if (DiagMutex) DiagMutex->lock();
SmallString<32> ResultStr;
MD5::stringifyResult(Result, ResultStr);
llvm::dbgs() << OutputFilename << ": MD5=" << ResultStr << '\n';
if (DiagMutex) DiagMutex->unlock();
);
ArrayRef<uint8_t> HashData(reinterpret_cast<uint8_t *>(&Result),
sizeof(Result));
if (Opts.OutputKind == IRGenOutputKind::ObjectFile &&
!Opts.PrintInlineTree &&
!needsRecompile(OutputFilename, HashData, HashGlobal, DiagMutex)) {
// The llvm IR did not change. We don't need to re-create the object file.
return false;
}
// Store the hash in the global variable so that it is written into the
// object file.
auto *HashConstant = ConstantDataArray::get(Module->getContext(), HashData);
HashGlobal->setInitializer(HashConstant);
}
Optional<raw_fd_ostream> RawOS;
if (!OutputFilename.empty()) {
// Try to open the output file. Clobbering an existing file is fine.
// Open in binary mode if we're doing binary output.
llvm::sys::fs::OpenFlags OSFlags = llvm::sys::fs::F_None;
std::error_code EC;
RawOS.emplace(OutputFilename, EC, OSFlags);
if (RawOS->has_error() || EC) {
if (Diags) {
if (DiagMutex)
DiagMutex->lock();
Diags->diagnose(SourceLoc(), diag::error_opening_output,
OutputFilename, EC.message());
if (DiagMutex)
DiagMutex->unlock();
}
RawOS->clear_error();
return true;
}
} else {
assert(Opts.OutputKind == IRGenOutputKind::Module && "no output specified");
}
performLLVMOptimizations(Opts, Module, TargetMachine);
legacy::PassManager EmitPasses;
// Make sure we do ARC contraction under optimization. We don't
// rely on any other LLVM ARC transformations, but we do need ARC
// contraction to add the objc_retainAutoreleasedReturnValue
// assembly markers and remove clang.arc.used.
if (Opts.shouldOptimize() && !DisableObjCARCContract)
EmitPasses.add(createObjCARCContractPass());
// Set up the final emission passes.
switch (Opts.OutputKind) {
case IRGenOutputKind::Module:
break;
case IRGenOutputKind::LLVMAssembly:
EmitPasses.add(createPrintModulePass(*RawOS));
break;
case IRGenOutputKind::LLVMBitcode:
EmitPasses.add(createBitcodeWriterPass(*RawOS));
break;
case IRGenOutputKind::NativeAssembly:
case IRGenOutputKind::ObjectFile: {
llvm::TargetMachine::CodeGenFileType FileType;
FileType = (Opts.OutputKind == IRGenOutputKind::NativeAssembly
? llvm::TargetMachine::CGFT_AssemblyFile
: llvm::TargetMachine::CGFT_ObjectFile);
EmitPasses.add(createTargetTransformInfoWrapperPass(
TargetMachine->getTargetIRAnalysis()));
bool fail = TargetMachine->addPassesToEmitFile(EmitPasses, *RawOS, nullptr,
FileType, !Opts.Verify);
if (fail) {
if (Diags) {
if (DiagMutex)
DiagMutex->lock();
Diags->diagnose(SourceLoc(), diag::error_codegen_init_fail);
if (DiagMutex)
DiagMutex->unlock();
}
return true;
}
break;
}
}
if (Stats) {
if (DiagMutex)
DiagMutex->lock();
countStatsPostIRGen(*Stats, *Module);
if (DiagMutex)
DiagMutex->unlock();
}
EmitPasses.run(*Module);
if (Stats && RawOS.hasValue()) {
if (DiagMutex)
DiagMutex->lock();
Stats->getFrontendCounters().NumLLVMBytesOutput += RawOS->tell();
if (DiagMutex)
DiagMutex->unlock();
}
return false;
}
std::unique_ptr<llvm::TargetMachine>
swift::createTargetMachine(IRGenOptions &Opts, ASTContext &Ctx) {
CodeGenOpt::Level OptLevel = Opts.shouldOptimize()
? CodeGenOpt::Default // -Os
: CodeGenOpt::None;
// Set up TargetOptions and create the target features string.
TargetOptions TargetOpts;
std::string CPU;
std::string EffectiveClangTriple;
std::vector<std::string> targetFeaturesArray;
std::tie(TargetOpts, CPU, targetFeaturesArray, EffectiveClangTriple)
= getIRTargetOptions(Opts, Ctx);
const llvm::Triple &EffectiveTriple = llvm::Triple(EffectiveClangTriple);
std::string targetFeatures;
if (!targetFeaturesArray.empty()) {
llvm::SubtargetFeatures features;
for (const std::string &feature : targetFeaturesArray)
if (!shouldRemoveTargetFeature(feature)) {
features.AddFeature(feature);
}
targetFeatures = features.getString();
}
std::string Error;
const Target *Target =
TargetRegistry::lookupTarget(EffectiveTriple.str(), Error);
if (!Target) {
Ctx.Diags.diagnose(SourceLoc(), diag::no_llvm_target, EffectiveTriple.str(),
Error);
return nullptr;
}
// Create a target machine.
llvm::TargetMachine *TargetMachine = Target->createTargetMachine(
EffectiveTriple.str(), CPU, targetFeatures, TargetOpts, Reloc::PIC_,
None, OptLevel);
if (!TargetMachine) {
Ctx.Diags.diagnose(SourceLoc(), diag::no_llvm_target,
EffectiveTriple.str(), "no LLVM target machine");
return nullptr;
}
return std::unique_ptr<llvm::TargetMachine>(TargetMachine);
}
IRGenerator::IRGenerator(IRGenOptions &options, SILModule &module)
: Opts(options), SIL(module), QueueIndex(0) {
}
std::unique_ptr<llvm::TargetMachine> IRGenerator::createTargetMachine() {
return ::createTargetMachine(Opts, SIL.getASTContext());
}
// With -embed-bitcode, save a copy of the llvm IR as data in the
// __LLVM,__bitcode section and save the command-line options in the
// __LLVM,__swift_cmdline section.
static void embedBitcode(llvm::Module *M, const IRGenOptions &Opts)
{
if (Opts.EmbedMode == IRGenEmbedMode::None)
return;
// Save llvm.compiler.used and remove it.
SmallVector<llvm::Constant*, 2> UsedArray;
SmallSet<llvm::GlobalValue*, 4> UsedGlobals;
auto *UsedElementType =
llvm::Type::getInt8Ty(M->getContext())->getPointerTo(0);
llvm::GlobalVariable *Used =
collectUsedGlobalVariables(*M, UsedGlobals, true);
for (auto *GV : UsedGlobals) {
if (GV->getName() != "llvm.embedded.module" &&
GV->getName() != "llvm.cmdline")
UsedArray.push_back(
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
}
if (Used)
Used->eraseFromParent();
// Embed the bitcode for the llvm module.
std::string Data;
llvm::raw_string_ostream OS(Data);
if (Opts.EmbedMode == IRGenEmbedMode::EmbedBitcode)
llvm::WriteBitcodeToFile(*M, OS);
ArrayRef<uint8_t> ModuleData(
reinterpret_cast<const uint8_t *>(OS.str().data()), OS.str().size());
llvm::Constant *ModuleConstant =
llvm::ConstantDataArray::get(M->getContext(), ModuleData);
llvm::GlobalVariable *GV = new llvm::GlobalVariable(*M,
ModuleConstant->getType(), true,
llvm::GlobalValue::PrivateLinkage,
ModuleConstant);
UsedArray.push_back(
llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
GV->setSection("__LLVM,__bitcode");
if (llvm::GlobalVariable *Old =
M->getGlobalVariable("llvm.embedded.module", true)) {
GV->takeName(Old);
Old->replaceAllUsesWith(GV);
delete Old;
} else {
GV->setName("llvm.embedded.module");
}
// Embed command-line options.
ArrayRef<uint8_t>
CmdData(reinterpret_cast<const uint8_t *>(Opts.CmdArgs.data()),
Opts.CmdArgs.size());
llvm::Constant *CmdConstant =
llvm::ConstantDataArray::get(M->getContext(), CmdData);
GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true,
llvm::GlobalValue::PrivateLinkage,
CmdConstant);
GV->setSection("__LLVM,__swift_cmdline");
UsedArray.push_back(
llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
if (llvm::GlobalVariable *Old = M->getGlobalVariable("llvm.cmdline", true)) {
GV->takeName(Old);
Old->replaceAllUsesWith(GV);
delete Old;
} else {
GV->setName("llvm.cmdline");
}
if (UsedArray.empty())
return;
// Recreate llvm.compiler.used.
auto *ATy = llvm::ArrayType::get(UsedElementType, UsedArray.size());
auto *NewUsed = new GlobalVariable(
*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
NewUsed->setSection("llvm.metadata");
}
static void initLLVMModule(const IRGenModule &IGM, ModuleDecl &M) {
auto *Module = IGM.getModule();
assert(Module && "Expected llvm:Module for IR generation!");
Module->setTargetTriple(IGM.Triple.str());
// Set the module's string representation.
Module->setDataLayout(IGM.DataLayout.getStringRepresentation());
auto *MDNode = IGM.getModule()->getOrInsertNamedMetadata("swift.module.flags");
auto &Context = IGM.getModule()->getContext();
auto *Value = M.isStdlibModule() ? llvm::ConstantInt::getTrue(Context)
: llvm::ConstantInt::getFalse(Context);
MDNode->addOperand(llvm::MDTuple::get(Context,
{llvm::MDString::get(Context,
"standard-library"),
llvm::ConstantAsMetadata::get(Value)}));
}
std::pair<IRGenerator *, IRGenModule *>
swift::irgen::createIRGenModule(SILModule *SILMod, StringRef OutputFilename,
StringRef MainInputFilenameForDebugInfo,
llvm::LLVMContext &LLVMContext) {
IRGenOptions Opts;
IRGenerator *irgen = new IRGenerator(Opts, *SILMod);
auto targetMachine = irgen->createTargetMachine();
if (!targetMachine)
return std::make_pair(nullptr, nullptr);
// Create the IR emitter.
IRGenModule *IGM =
new IRGenModule(*irgen, std::move(targetMachine), nullptr, LLVMContext,
"", OutputFilename, MainInputFilenameForDebugInfo);
initLLVMModule(*IGM, *SILMod->getSwiftModule());
return std::pair<IRGenerator *, IRGenModule *>(irgen, IGM);
}
void swift::irgen::deleteIRGenModule(
std::pair<IRGenerator *, IRGenModule *> &IRGenPair) {
delete IRGenPair.second;
delete IRGenPair.first;
}
/// Run the IRGen preparation SIL pipeline. Passes have access to the
/// IRGenModule.
static void runIRGenPreparePasses(SILModule &Module,
irgen::IRGenModule &IRModule) {
SILPassManager PM(&Module, &IRModule, "irgen", /*isMandatoryPipeline=*/ true);
bool largeLoadable = Module.getOptions().EnableLargeLoadableTypes;
#define PASS(ID, Tag, Name)
#define IRGEN_PASS(ID, Tag, Name) \
if (swift::PassKind::ID == swift::PassKind::LoadableByAddress) { \
if (largeLoadable) { \
PM.registerIRGenPass(swift::PassKind::ID, irgen::create##ID()); \
} \
} else { \
PM.registerIRGenPass(swift::PassKind::ID, irgen::create##ID()); \
}
#include "swift/SILOptimizer/PassManager/Passes.def"
PM.executePassPipelinePlan(
SILPassPipelinePlan::getIRGenPreparePassPipeline(Module.getOptions()));
}
/// Generates LLVM IR, runs the LLVM passes and produces the output file.
/// All this is done in a single thread.
static std::unique_ptr<llvm::Module>
performIRGeneration(IRGenOptions &Opts, ModuleDecl *M,
std::unique_ptr<SILModule> SILMod, StringRef ModuleName,
const PrimarySpecificPaths &PSPs,
llvm::LLVMContext &LLVMContext, SourceFile *SF = nullptr,
llvm::GlobalVariable **outModuleHash = nullptr) {
auto &Ctx = M->getASTContext();
assert(!Ctx.hadError());
IRGenerator irgen(Opts, *SILMod);
auto targetMachine = irgen.createTargetMachine();
if (!targetMachine) return nullptr;
// Create the IR emitter.
IRGenModule IGM(irgen, std::move(targetMachine), nullptr, LLVMContext,
ModuleName, PSPs.OutputFilename,
PSPs.MainInputFilenameForDebugInfo);
initLLVMModule(IGM, *SILMod->getSwiftModule());
// Run SIL level IRGen preparation passes.
runIRGenPreparePasses(*SILMod, IGM);
{
SharedTimer timer("IRGen");
// Emit the module contents.
irgen.emitGlobalTopLevel();
if (SF) {
IGM.emitSourceFile(*SF);
} else {
for (auto *File : M->getFiles()) {
if (auto *nextSF = dyn_cast<SourceFile>(File)) {
if (nextSF->ASTStage >= SourceFile::TypeChecked)
IGM.emitSourceFile(*nextSF);
} else {
File->collectLinkLibraries([&IGM](LinkLibrary LinkLib) {
IGM.addLinkLibrary(LinkLib);
});
}
}
}
// Okay, emit any definitions that we suddenly need.
irgen.emitLazyDefinitions();
// Register our info with the runtime if needed.
if (Opts.UseJIT) {
IGM.emitBuiltinReflectionMetadata();
IGM.emitRuntimeRegistration();
} else {
// Emit protocol conformances into a section we can recognize at runtime.
// In JIT mode these are manually registered above.
IGM.emitSwiftProtocols();
IGM.emitProtocolConformances();
IGM.emitTypeMetadataRecords();
IGM.emitBuiltinReflectionMetadata();
IGM.emitReflectionMetadataVersion();
irgen.emitEagerClassInitialization();
irgen.emitDynamicReplacements();
}
// Emit symbols for eliminated dead methods.
IGM.emitVTableStubs();
// Verify type layout if we were asked to.
if (!Opts.VerifyTypeLayoutNames.empty())
IGM.emitTypeVerifier();
std::for_each(Opts.LinkLibraries.begin(), Opts.LinkLibraries.end(),
[&](LinkLibrary linkLib) {
IGM.addLinkLibrary(linkLib);
});
if (!IGM.finalize())
return nullptr;
setModuleFlags(IGM);
}
// Bail out if there are any errors.
if (Ctx.hadError()) return nullptr;
// Free the memory occupied by the SILModule.
// Execute this task in parallel to the LLVM compilation.
auto SILModuleRelease = [&SILMod]() { SILMod.reset(nullptr); };
auto Thread = std::thread(SILModuleRelease);
// Wait for the thread to terminate.
SWIFT_DEFER { Thread.join(); };
embedBitcode(IGM.getModule(), Opts);
if (outModuleHash) {
*outModuleHash = IGM.ModuleHash;
} else {
SharedTimer timer("LLVM pipeline");
// Since no out module hash was set, we need to performLLVM.
if (performLLVM(Opts, &IGM.Context.Diags, nullptr, IGM.ModuleHash,
IGM.getModule(), IGM.TargetMachine.get(),
IGM.Context.LangOpts.EffectiveLanguageVersion,
IGM.OutputFilename, IGM.Context.Stats))
return nullptr;
}
return std::unique_ptr<llvm::Module>(IGM.releaseModule());
}
namespace {
struct LLVMCodeGenThreads {
struct Thread {
LLVMCodeGenThreads &parent;
unsigned threadIndex;
#ifdef __APPLE__
pthread_t threadId;
#else
std::thread thread;
#endif
Thread(LLVMCodeGenThreads &parent, unsigned threadIndex)
: parent(parent), threadIndex(threadIndex)
{}
/// Run llvm codegen.
void run() {
auto *diagMutex = parent.diagMutex;
while (IRGenModule *IGM = parent.irgen->fetchFromQueue()) {
LLVM_DEBUG(diagMutex->lock();
dbgs() << "thread " << threadIndex << ": fetched "
<< IGM->OutputFilename << "\n";
diagMutex->unlock(););
embedBitcode(IGM->getModule(), parent.irgen->Opts);
performLLVM(parent.irgen->Opts, &IGM->Context.Diags, diagMutex,
IGM->ModuleHash, IGM->getModule(), IGM->TargetMachine.get(),
IGM->Context.LangOpts.EffectiveLanguageVersion,
IGM->OutputFilename, IGM->Context.Stats);
if (IGM->Context.Diags.hadAnyError())
return;
}
LLVM_DEBUG(diagMutex->lock();
dbgs() << "thread " << threadIndex << ": done\n";
diagMutex->unlock(););
return;
}
};
IRGenerator *irgen;
llvm::sys::Mutex *diagMutex;
std::vector<Thread> threads;
LLVMCodeGenThreads(IRGenerator *irgen, llvm::sys::Mutex *diagMutex,
unsigned numThreads)
: irgen(irgen), diagMutex(diagMutex) {
threads.reserve(numThreads);
for (unsigned idx = 0; idx < numThreads; ++idx) {
// the 0-th thread is executed by the main thread.
threads.push_back(Thread(*this, idx + 1));
}
}
static void *runThread(void *arg) {
auto *thread = reinterpret_cast<Thread *>(arg);
thread->run();
return nullptr;
}
void startThreads() {
#ifdef __APPLE__
// Increase the thread stack size on macosx to 8MB (default is 512KB). This
// matches the main thread.
pthread_attr_t stackSizeAttribute;
int err = pthread_attr_init(&stackSizeAttribute);
assert(!err);
err = pthread_attr_setstacksize(&stackSizeAttribute, 8 * 1024 * 1024);
assert(!err);
for (auto &thread : threads) {
pthread_create(&thread.threadId, &stackSizeAttribute,
LLVMCodeGenThreads::runThread, &thread);
}
pthread_attr_destroy(&stackSizeAttribute);
#else
for (auto &thread : threads) {
thread.thread = std::thread(runThread, &thread);
}
#endif
}
void runMainThread() {
Thread mainThread(*this, 0);
mainThread.run();
}
void join() {
#ifdef __APPLE__
for (auto &thread : threads)
pthread_join(thread.threadId, 0);
#else
for (auto &thread: threads) {
thread.thread.join();
}
#endif
}
};
}
/// Generates LLVM IR, runs the LLVM passes and produces the output files.
/// All this is done in multiple threads.
static void performParallelIRGeneration(
IRGenOptions &Opts, swift::ModuleDecl *M, std::unique_ptr<SILModule> SILMod,
StringRef ModuleName, int numThreads,
ArrayRef<std::string> outputFilenames) {
IRGenerator irgen(Opts, *SILMod);
// Enter a cleanup to delete all the IGMs and their associated LLVMContexts
// that have been associated with the IRGenerator.
struct IGMDeleter {
IRGenerator &IRGen;
IGMDeleter(IRGenerator &irgen) : IRGen(irgen) {}
~IGMDeleter() {
for (auto it = IRGen.begin(); it != IRGen.end(); ++it) {
IRGenModule *IGM = it->second;
LLVMContext *Context = &IGM->LLVMContext;
delete IGM;
delete Context;
}
}
} _igmDeleter(irgen);
auto OutputIter = outputFilenames.begin();
bool IGMcreated = false;
auto &Ctx = M->getASTContext();
// Create an IRGenModule for each source file.
bool DidRunSILCodeGenPreparePasses = false;
for (auto *File : M->getFiles()) {
auto nextSF = dyn_cast<SourceFile>(File);
if (!nextSF || nextSF->ASTStage < SourceFile::TypeChecked)
continue;
// There must be an output filename for each source file.
// We ignore additional output filenames.
if (OutputIter == outputFilenames.end()) {
Ctx.Diags.diagnose(SourceLoc(), diag::too_few_output_filenames);
return;
}
auto targetMachine = irgen.createTargetMachine();
if (!targetMachine) continue;
// This (and the IGM itself) will get deleted by the IGMDeleter
// as long as the IGM is registered with the IRGenerator.
auto Context = new LLVMContext();
// Create the IR emitter.
IRGenModule *IGM =
new IRGenModule(irgen, std::move(targetMachine), nextSF, *Context,
ModuleName, *OutputIter++, nextSF->getFilename());
IGMcreated = true;
initLLVMModule(*IGM, *SILMod->getSwiftModule());
if (!DidRunSILCodeGenPreparePasses) {
// Run SIL level IRGen preparation passes on the module the first time
// around.
runIRGenPreparePasses(*SILMod, *IGM);
DidRunSILCodeGenPreparePasses = true;
}
}
if (!IGMcreated) {
// TODO: Check this already at argument parsing.
Ctx.Diags.diagnose(SourceLoc(), diag::no_input_files_for_mt);
return;
}
// Emit the module contents.
irgen.emitGlobalTopLevel();
for (auto *File : M->getFiles()) {
if (auto *SF = dyn_cast<SourceFile>(File)) {
CurrentIGMPtr IGM = irgen.getGenModule(SF);
IGM->emitSourceFile(*SF);
} else {
File->collectLinkLibraries([&](LinkLibrary LinkLib) {
irgen.getPrimaryIGM()->addLinkLibrary(LinkLib);
});
}
}
// Okay, emit any definitions that we suddenly need.
irgen.emitLazyDefinitions();
irgen.emitSwiftProtocols();
irgen.emitDynamicReplacements();
irgen.emitProtocolConformances();
irgen.emitTypeMetadataRecords();
irgen.emitReflectionMetadataVersion();
irgen.emitEagerClassInitialization();
// Emit reflection metadata for builtin and imported types.
irgen.emitBuiltinReflectionMetadata();
IRGenModule *PrimaryGM = irgen.getPrimaryIGM();
// Emit symbols for eliminated dead methods.
PrimaryGM->emitVTableStubs();
// Verify type layout if we were asked to.
if (!Opts.VerifyTypeLayoutNames.empty())
PrimaryGM->emitTypeVerifier();
std::for_each(Opts.LinkLibraries.begin(), Opts.LinkLibraries.end(),
[&](LinkLibrary linkLib) {
PrimaryGM->addLinkLibrary(linkLib);
});
llvm::DenseSet<StringRef> referencedGlobals;
for (auto it = irgen.begin(); it != irgen.end(); ++it) {
IRGenModule *IGM = it->second;
llvm::Module *M = IGM->getModule();
auto collectReference = [&](llvm::GlobalValue &G) {
if (G.isDeclaration()
&& (G.getLinkage() == GlobalValue::LinkOnceODRLinkage ||
G.getLinkage() == GlobalValue::ExternalLinkage)) {
referencedGlobals.insert(G.getName());
G.setLinkage(GlobalValue::ExternalLinkage);
}
};
for (llvm::GlobalVariable &G : M->getGlobalList()) {
collectReference(G);
}
for (llvm::Function &F : M->getFunctionList()) {
collectReference(F);
}
for (llvm::GlobalAlias &A : M->getAliasList()) {
collectReference(A);
}
}
for (auto it = irgen.begin(); it != irgen.end(); ++it) {
IRGenModule *IGM = it->second;
llvm::Module *M = IGM->getModule();
// Update the linkage of shared functions/globals.
// If a shared function/global is referenced from another file it must have
// weak instead of linkonce linkage. Otherwise LLVM would remove the
// definition (if it's not referenced in the same file).
auto updateLinkage = [&](llvm::GlobalValue &G) {
if (!G.isDeclaration()
&& G.getLinkage() == GlobalValue::LinkOnceODRLinkage
&& referencedGlobals.count(G.getName()) != 0) {
G.setLinkage(GlobalValue::WeakODRLinkage);
}
};
for (llvm::GlobalVariable &G : M->getGlobalList()) {
updateLinkage(G);
}
for (llvm::Function &F : M->getFunctionList()) {
updateLinkage(F);
}
for (llvm::GlobalAlias &A : M->getAliasList()) {
updateLinkage(A);
}
if (!IGM->finalize())
return;
setModuleFlags(*IGM);
}
// Bail out if there are any errors.
if (Ctx.hadError()) return;
SharedTimer timer("LLVM pipeline");
llvm::sys::Mutex DiagMutex;
// Start all the threads and do the LLVM compilation.
LLVMCodeGenThreads codeGenThreads(&irgen, &DiagMutex, numThreads - 1);
codeGenThreads.startThreads();
// Free the memory occupied by the SILModule.
// Execute this task in parallel to the LLVM compilation.
auto SILModuleRelease = [&SILMod]() { SILMod.reset(nullptr); };
auto releaseModuleThread = std::thread(SILModuleRelease);
codeGenThreads.runMainThread();
// Wait for all threads.
releaseModuleThread.join();
codeGenThreads.join();
}
std::unique_ptr<llvm::Module> swift::performIRGeneration(
IRGenOptions &Opts, swift::ModuleDecl *M, std::unique_ptr<SILModule> SILMod,
StringRef ModuleName, const PrimarySpecificPaths &PSPs,
llvm::LLVMContext &LLVMContext,
ArrayRef<std::string> parallelOutputFilenames,
llvm::GlobalVariable **outModuleHash) {
if (SILMod->getOptions().shouldPerformIRGenerationInParallel() &&
!parallelOutputFilenames.empty()) {
auto NumThreads = SILMod->getOptions().NumThreads;
::performParallelIRGeneration(Opts, M, std::move(SILMod), ModuleName,
NumThreads, parallelOutputFilenames);
// TODO: Parallel LLVM compilation cannot be used if a (single) module is
// needed as return value.
return nullptr;
}
return ::performIRGeneration(Opts, M, std::move(SILMod), ModuleName, PSPs,
LLVMContext, nullptr, outModuleHash);
}
std::unique_ptr<llvm::Module> swift::
performIRGeneration(IRGenOptions &Opts, SourceFile &SF,
std::unique_ptr<SILModule> SILMod,
StringRef ModuleName, const PrimarySpecificPaths &PSPs,
llvm::LLVMContext &LLVMContext,
llvm::GlobalVariable **outModuleHash) {
return ::performIRGeneration(Opts, SF.getParentModule(), std::move(SILMod),
ModuleName, PSPs, LLVMContext, &SF,
outModuleHash);
}
void
swift::createSwiftModuleObjectFile(SILModule &SILMod, StringRef Buffer,
StringRef OutputPath) {
LLVMContext VMContext;
auto &Ctx = SILMod.getASTContext();
assert(!Ctx.hadError());
IRGenOptions Opts;
Opts.OutputKind = IRGenOutputKind::ObjectFile;
IRGenerator irgen(Opts, SILMod);
auto targetMachine = irgen.createTargetMachine();
if (!targetMachine) return;
IRGenModule IGM(irgen, std::move(targetMachine), nullptr, VMContext,
OutputPath, OutputPath, "");
initLLVMModule(IGM, *SILMod.getSwiftModule());
auto *Ty = llvm::ArrayType::get(IGM.Int8Ty, Buffer.size());
auto *Data =
llvm::ConstantDataArray::getString(VMContext, Buffer, /*AddNull=*/false);
auto &M = *IGM.getModule();
auto *ASTSym = new llvm::GlobalVariable(M, Ty, /*constant*/ true,
llvm::GlobalVariable::InternalLinkage,
Data, "__Swift_AST");
std::string Section;
switch (IGM.TargetInfo.OutputObjectFormat) {
case llvm::Triple::UnknownObjectFormat:
llvm_unreachable("unknown object format");
case llvm::Triple::COFF:
Section = COFFASTSectionName;
break;
case llvm::Triple::ELF:
Section = ELFASTSectionName;
break;
case llvm::Triple::MachO:
Section = std::string(MachOASTSegmentName) + "," + MachOASTSectionName;
break;
case llvm::Triple::Wasm:
Section = WasmASTSectionName;
break;
}
ASTSym->setSection(Section);
ASTSym->setAlignment(8);
::performLLVM(Opts, &Ctx.Diags, nullptr, nullptr, IGM.getModule(),
IGM.TargetMachine.get(),
Ctx.LangOpts.EffectiveLanguageVersion,
OutputPath);
}
bool swift::performLLVM(IRGenOptions &Opts, ASTContext &Ctx,
llvm::Module *Module, StringRef OutputFilename,
UnifiedStatsReporter *Stats) {
// Build TargetMachine.
auto TargetMachine = createTargetMachine(Opts, Ctx);
if (!TargetMachine)
return true;
auto *Clang = static_cast<ClangImporter *>(Ctx.getClangModuleLoader());
// Use clang's datalayout.
Module->setDataLayout(Clang->getTargetInfo().getDataLayout());
embedBitcode(Module, Opts);
if (::performLLVM(Opts, &Ctx.Diags, nullptr, nullptr, Module,
TargetMachine.get(),
Ctx.LangOpts.EffectiveLanguageVersion,
OutputFilename, Stats))
return true;
return false;
}