blob: c353d48f44f8c516abd605a6251a89412835bb98 [file] [log] [blame]
//===--- SILPrinter.cpp - Pretty-printing of SIL Code ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This file defines the logic to pretty-print SIL, Instructions, etc.
///
//===----------------------------------------------------------------------===//
#include "swift/Strings.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Basic/QuotedString.h"
#include "swift/SIL/SILPrintContext.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILCoverageMap.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/SILVTable.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include "swift/Basic/STLExtras.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/FileSystem.h"
using namespace swift;
using ID = SILPrintContext::ID;
llvm::cl::opt<bool>
SILPrintNoColor("sil-print-no-color", llvm::cl::init(""),
llvm::cl::desc("Don't use color when printing SIL"));
llvm::cl::opt<bool>
SILFullDemangle("sil-full-demangle", llvm::cl::init(false),
llvm::cl::desc("Fully demangle symbol names in SIL output"));
llvm::cl::opt<bool>
SILPrintDebugInfo("sil-print-debuginfo", llvm::cl::init(false),
llvm::cl::desc("Include debug info in SIL output"));
llvm::cl::opt<bool> SILPrintGenericSpecializationInfo(
"sil-print-generic-specialization-info", llvm::cl::init(false),
llvm::cl::desc("Include generic specialization"
"information info in SIL output"));
static std::string demangleSymbol(StringRef Name) {
if (SILFullDemangle)
return Demangle::demangleSymbolAsString(Name);
return Demangle::demangleSymbolAsString(Name,
Demangle::DemangleOptions::SimplifiedUIDemangleOptions());
}
enum SILColorKind {
SC_Type,
};
namespace {
/// RAII based coloring of SIL output.
class SILColor {
raw_ostream &OS;
enum raw_ostream::Colors Color;
public:
#define DEF_COL(NAME, RAW) case NAME: Color = raw_ostream::RAW; break;
explicit SILColor(raw_ostream &OS, SILColorKind K) : OS(OS) {
if (!OS.has_colors() || SILPrintNoColor)
return;
switch (K) {
DEF_COL(SC_Type, YELLOW)
}
OS.resetColor();
OS.changeColor(Color);
}
explicit SILColor(raw_ostream &OS, ID::ID_Kind K) : OS(OS) {
if (!OS.has_colors() || SILPrintNoColor)
return;
switch (K) {
DEF_COL(ID::SILUndef, RED)
DEF_COL(ID::SILBasicBlock, GREEN)
DEF_COL(ID::SSAValue, MAGENTA)
DEF_COL(ID::Null, YELLOW)
}
OS.resetColor();
OS.changeColor(Color);
}
~SILColor() {
if (!OS.has_colors() || SILPrintNoColor)
return;
// FIXME: instead of resetColor(), we can look into
// capturing the current active color and restoring it.
OS.resetColor();
}
#undef DEF_COL
};
} // end anonymous namespace
void SILPrintContext::ID::print(raw_ostream &OS) {
SILColor C(OS, Kind);
switch (Kind) {
case ID::SILUndef:
OS << "undef";
return;
case ID::SILBasicBlock: OS << "bb"; break;
case ID::SSAValue: OS << '%'; break;
case ID::Null: OS << "<<NULL OPERAND>>"; return;
}
OS << Number;
}
namespace swift {
raw_ostream &operator<<(raw_ostream &OS, SILPrintContext::ID i) {
i.print(OS);
return OS;
}
} // namespace swift
/// IDAndType - Used when a client wants to print something like "%0 : $Int".
struct SILValuePrinterInfo {
ID ValueID;
SILType Type;
Optional<ValueOwnershipKind> OwnershipKind;
SILValuePrinterInfo(ID ValueID) : ValueID(ValueID), Type(), OwnershipKind() {}
SILValuePrinterInfo(ID ValueID, SILType Type)
: ValueID(ValueID), Type(Type), OwnershipKind() {}
SILValuePrinterInfo(ID ValueID, SILType Type,
ValueOwnershipKind OwnershipKind)
: ValueID(ValueID), Type(Type), OwnershipKind(OwnershipKind) {}
};
/// Return the fully qualified dotted path for DeclContext.
static void printFullContext(const DeclContext *Context, raw_ostream &Buffer) {
if (!Context)
return;
switch (Context->getContextKind()) {
case DeclContextKind::Module:
if (Context == cast<ModuleDecl>(Context)->getASTContext().TheBuiltinModule)
Buffer << cast<ModuleDecl>(Context)->getName() << ".";
return;
case DeclContextKind::FileUnit:
// Ignore the file; just print the module.
printFullContext(Context->getParent(), Buffer);
return;
case DeclContextKind::Initializer:
// FIXME
Buffer << "<initializer>";
return;
case DeclContextKind::AbstractClosureExpr:
// FIXME
Buffer << "<anonymous function>";
return;
case DeclContextKind::SerializedLocal:
Buffer << "<serialized local context>";
return;
case DeclContextKind::GenericTypeDecl: {
auto *generic = cast<GenericTypeDecl>(Context);
printFullContext(generic->getDeclContext(), Buffer);
Buffer << generic->getName() << ".";
return;
}
case DeclContextKind::ExtensionDecl: {
const NominalTypeDecl *ExtNominal =
cast<ExtensionDecl>(Context)->getExtendedNominal();
printFullContext(ExtNominal->getDeclContext(), Buffer);
Buffer << ExtNominal->getName() << ".";
return;
}
case DeclContextKind::TopLevelCodeDecl:
// FIXME
Buffer << "<top level code>";
return;
case DeclContextKind::AbstractFunctionDecl:
// FIXME
Buffer << "<abstract function>";
return;
case DeclContextKind::SubscriptDecl:
// FIXME
Buffer << "<subscript>";
return;
case DeclContextKind::EnumElementDecl:
// FIXME
Buffer << "<enum element>";
return;
}
llvm_unreachable("bad decl context");
}
static void printValueDecl(ValueDecl *Decl, raw_ostream &OS) {
printFullContext(Decl->getDeclContext(), OS);
assert(Decl->hasName());
if (Decl->isOperator()) {
OS << '"' << Decl->getBaseName() << '"';
} else {
bool shouldEscape = !Decl->getBaseName().isSpecial() &&
llvm::StringSwitch<bool>(Decl->getBaseName().userFacingName())
// FIXME: Represent "init" by a special name and remove this case
.Case("init", false)
#define KEYWORD(kw) \
.Case(#kw, true)
#include "swift/Syntax/TokenKinds.def"
.Default(false);
if (shouldEscape) {
OS << '`' << Decl->getBaseName().userFacingName() << '`';
} else {
OS << Decl->getBaseName().userFacingName();
}
}
}
/// SILDeclRef uses sigil "#" and prints the fully qualified dotted path.
void SILDeclRef::print(raw_ostream &OS) const {
OS << "#";
if (isNull()) {
OS << "<null>";
return;
}
bool isDot = true;
if (!hasDecl()) {
OS << "<anonymous function>";
} else if (kind == SILDeclRef::Kind::Func) {
auto *FD = cast<FuncDecl>(getDecl());
auto accessor = dyn_cast<AccessorDecl>(FD);
if (!accessor) {
printValueDecl(FD, OS);
isDot = false;
} else {
switch (accessor->getAccessorKind()) {
case AccessorKind::WillSet:
printValueDecl(accessor->getStorage(), OS);
OS << "!willSet";
break;
case AccessorKind::DidSet:
printValueDecl(accessor->getStorage(), OS);
OS << "!didSet";
break;
case AccessorKind::Get:
printValueDecl(accessor->getStorage(), OS);
OS << "!getter";
break;
case AccessorKind::Set:
printValueDecl(accessor->getStorage(), OS);
OS << "!setter";
break;
case AccessorKind::Address:
printValueDecl(accessor->getStorage(), OS);
OS << "!addressor";
break;
case AccessorKind::MutableAddress:
printValueDecl(accessor->getStorage(), OS);
OS << "!mutableAddressor";
break;
case AccessorKind::Read:
printValueDecl(accessor->getStorage(), OS);
OS << "!read";
break;
case AccessorKind::Modify:
printValueDecl(accessor->getStorage(), OS);
OS << "!modify";
break;
}
}
} else {
printValueDecl(getDecl(), OS);
}
switch (kind) {
case SILDeclRef::Kind::Func:
break;
case SILDeclRef::Kind::Allocator:
OS << "!allocator";
break;
case SILDeclRef::Kind::Initializer:
OS << "!initializer";
break;
case SILDeclRef::Kind::EnumElement:
OS << "!enumelt";
break;
case SILDeclRef::Kind::Destroyer:
OS << "!destroyer";
break;
case SILDeclRef::Kind::Deallocator:
OS << "!deallocator";
break;
case SILDeclRef::Kind::IVarInitializer:
OS << "!ivarinitializer";
break;
case SILDeclRef::Kind::IVarDestroyer:
OS << "!ivardestroyer";
break;
case SILDeclRef::Kind::GlobalAccessor:
OS << "!globalaccessor";
break;
case SILDeclRef::Kind::DefaultArgGenerator:
OS << "!defaultarg" << "." << defaultArgIndex;
break;
case SILDeclRef::Kind::StoredPropertyInitializer:
OS << "!propertyinit";
break;
}
auto uncurryLevel = getParameterListCount() - 1;
if (uncurryLevel != 0)
OS << (isDot ? '.' : '!') << uncurryLevel;
if (isForeign)
OS << ((isDot || uncurryLevel != 0) ? '.' : '!') << "foreign";
if (isDirectReference)
OS << ((isDot || uncurryLevel != 0) ? '.' : '!') << "direct";
}
void SILDeclRef::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
/// Pretty-print the generic specialization information.
static void printGenericSpecializationInfo(
raw_ostream &OS, StringRef Kind, StringRef Name,
const GenericSpecializationInformation *SpecializationInfo,
SubstitutionMap Subs = { }) {
if (!SpecializationInfo)
return;
auto PrintSubstitutions = [&](SubstitutionMap Subs) {
OS << '<';
interleave(Subs.getReplacementTypes(),
[&](Type type) { OS << type; },
[&] { OS << ", "; });
OS << '>';
};
OS << "// Generic specialization information for " << Kind << " " << Name;
if (!Subs.empty()) {
OS << " ";
PrintSubstitutions(Subs);
}
OS << ":\n";
while (SpecializationInfo) {
OS << "// Caller: " << SpecializationInfo->getCaller()->getName() << '\n';
OS << "// Parent: " << SpecializationInfo->getParent()->getName() << '\n';
OS << "// Substitutions: ";
PrintSubstitutions(SpecializationInfo->getSubstitutions());
OS << '\n';
OS << "//\n";
if (!SpecializationInfo->getCaller()->isSpecialization())
return;
SpecializationInfo =
SpecializationInfo->getCaller()->getSpecializationInfo();
}
}
static void print(raw_ostream &OS, SILValueCategory category) {
switch (category) {
case SILValueCategory::Object: return;
case SILValueCategory::Address: OS << '*'; return;
}
llvm_unreachable("bad value category!");
}
static StringRef getCastConsumptionKindName(CastConsumptionKind kind) {
switch (kind) {
case CastConsumptionKind::TakeAlways: return "take_always";
case CastConsumptionKind::TakeOnSuccess: return "take_on_success";
case CastConsumptionKind::CopyOnSuccess: return "copy_on_success";
case CastConsumptionKind::BorrowAlways: return "borrow_always";
}
llvm_unreachable("bad cast consumption kind");
}
static void printSILTypeColorAndSigil(raw_ostream &OS, SILType t) {
SILColor C(OS, SC_Type);
OS << '$';
// Potentially add a leading sigil for the value category.
::print(OS, t.getCategory());
}
void SILType::print(raw_ostream &OS) const {
printSILTypeColorAndSigil(OS, *this);
// Print other types as their Swift representation.
PrintOptions SubPrinter = PrintOptions::printSIL();
getASTType().print(OS, SubPrinter);
}
void SILType::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
namespace {
class SILPrinter;
/// SILPrinter class - This holds the internal implementation details of
/// printing SIL structures.
class SILPrinter : public SILInstructionVisitor<SILPrinter> {
SILPrintContext &Ctx;
struct {
llvm::formatted_raw_ostream OS;
PrintOptions ASTOptions;
} PrintState;
unsigned LastBufferID;
// Printers for the underlying stream.
#define SIMPLE_PRINTER(TYPE) \
SILPrinter &operator<<(TYPE value) { \
PrintState.OS << value; \
return *this; \
}
SIMPLE_PRINTER(char)
SIMPLE_PRINTER(unsigned)
SIMPLE_PRINTER(uint64_t)
SIMPLE_PRINTER(StringRef)
SIMPLE_PRINTER(Identifier)
SIMPLE_PRINTER(ID)
SIMPLE_PRINTER(QuotedString)
SIMPLE_PRINTER(SILDeclRef)
SIMPLE_PRINTER(APInt)
SIMPLE_PRINTER(ValueOwnershipKind)
#undef SIMPLE_PRINTER
SILPrinter &operator<<(SILValuePrinterInfo i) {
SILColor C(PrintState.OS, SC_Type);
*this << i.ValueID;
if (!i.Type)
return *this;
*this << " : ";
if (i.OwnershipKind && *i.OwnershipKind != ValueOwnershipKind::Any) {
*this << "@" << i.OwnershipKind.getValue() << " ";
}
return *this << i.Type;
}
SILPrinter &operator<<(Type t) {
// Print the type using our print options.
t.print(PrintState.OS, PrintState.ASTOptions);
return *this;
}
SILPrinter &operator<<(SILType t) {
printSILTypeColorAndSigil(PrintState.OS, t);
t.getASTType().print(PrintState.OS, PrintState.ASTOptions);
return *this;
}
public:
SILPrinter(
SILPrintContext &PrintCtx,
llvm::DenseMap<CanType, Identifier> *AlternativeTypeNames = nullptr)
: Ctx(PrintCtx),
PrintState{{PrintCtx.OS()}, PrintOptions::printSIL()},
LastBufferID(0) {
PrintState.ASTOptions.AlternativeTypeNames = AlternativeTypeNames;
PrintState.ASTOptions.PrintForSIL = true;
}
SILValuePrinterInfo getIDAndType(SILValue V) {
return {Ctx.getID(V), V ? V->getType() : SILType()};
}
SILValuePrinterInfo getIDAndTypeAndOwnership(SILValue V) {
return {Ctx.getID(V), V ? V->getType() : SILType(), V.getOwnershipKind()};
}
//===--------------------------------------------------------------------===//
// Big entrypoints.
void print(const SILFunction *F) {
// If we are asked to emit sorted SIL, print out our BBs in RPOT order.
if (Ctx.sortSIL()) {
std::vector<SILBasicBlock *> RPOT;
auto *UnsafeF = const_cast<SILFunction *>(F);
std::copy(po_begin(UnsafeF), po_end(UnsafeF),
std::back_inserter(RPOT));
std::reverse(RPOT.begin(), RPOT.end());
Ctx.initBlockIDs(RPOT);
interleave(RPOT,
[&](SILBasicBlock *B) { print(B); },
[&] { *this << '\n'; });
return;
}
interleave(*F,
[&](const SILBasicBlock &B) { print(&B); },
[&] { *this << '\n'; });
}
void printBlockArgumentUses(const SILBasicBlock *BB) {
if (BB->args_empty())
return;
for (SILValue V : BB->getArguments()) {
if (V->use_empty())
continue;
*this << "// " << Ctx.getID(V);
PrintState.OS.PadToColumn(50);
*this << "// user";
if (std::next(V->use_begin()) != V->use_end())
*this << 's';
*this << ": ";
llvm::SmallVector<ID, 32> UserIDs;
for (auto *Op : V->getUses())
UserIDs.push_back(Ctx.getID(Op->getUser()));
// Display the user ids sorted to give a stable use order in the
// printer's output if we are asked to do so. This makes diffing large
// sections of SIL significantly easier at the expense of not showing
// the _TRUE_ order of the users in the use list.
if (Ctx.sortSIL()) {
std::sort(UserIDs.begin(), UserIDs.end());
}
interleave(UserIDs.begin(), UserIDs.end(),
[&] (ID id) { *this << id; },
[&] { *this << ", "; });
*this << '\n';
}
}
void printBlockArguments(const SILBasicBlock *BB) {
if (BB->args_empty())
return;
*this << '(';
ArrayRef<SILArgument *> Args = BB->getArguments();
// If SIL ownership is enabled and the given function has not had ownership
// stripped out, print out ownership of SILArguments.
if (BB->getParent()->hasOwnership()) {
*this << getIDAndTypeAndOwnership(Args[0]);
for (SILArgument *Arg : Args.drop_front()) {
*this << ", " << getIDAndTypeAndOwnership(Arg);
}
*this << ')';
return;
}
// Otherwise, fall back to the old behavior
*this << getIDAndType(Args[0]);
for (SILArgument *Arg : Args.drop_front()) {
*this << ", " << getIDAndType(Arg);
}
*this << ')';
}
void print(const SILBasicBlock *BB) {
// Output uses for BB arguments. These are put into place as comments before
// the block header.
printBlockArgumentUses(BB);
// Then print the name of our block, the arguments, and the block colon.
*this << Ctx.getID(BB);
printBlockArguments(BB);
*this << ":";
if (!BB->pred_empty()) {
PrintState.OS.PadToColumn(50);
*this << "// Preds:";
llvm::SmallVector<ID, 32> PredIDs;
for (auto *BBI : BB->getPredecessorBlocks())
PredIDs.push_back(Ctx.getID(BBI));
// Display the pred ids sorted to give a stable use order in the printer's
// output if we are asked to do so. This makes diffing large sections of
// SIL significantly easier at the expense of not showing the _TRUE_ order
// of the users in the use list.
if (Ctx.sortSIL()) {
std::sort(PredIDs.begin(), PredIDs.end());
}
for (auto Id : PredIDs)
*this << ' ' << Id;
}
*this << '\n';
for (const SILInstruction &I : *BB) {
Ctx.printInstructionCallBack(&I);
if (SILPrintGenericSpecializationInfo) {
if (auto AI = ApplySite::isa(const_cast<SILInstruction *>(&I)))
if (AI.getSpecializationInfo() && AI.getCalleeFunction())
printGenericSpecializationInfo(
PrintState.OS, "call-site", AI.getCalleeFunction()->getName(),
AI.getSpecializationInfo(), AI.getSubstitutionMap());
}
print(&I);
}
}
//===--------------------------------------------------------------------===//
// SILInstruction Printing Logic
bool printTypeDependentOperands(const SILInstruction *I) {
ArrayRef<Operand> TypeDepOps = I->getTypeDependentOperands();
if (TypeDepOps.empty())
return false;
PrintState.OS.PadToColumn(50);
*this << "// type-defs: ";
interleave(TypeDepOps,
[&](const Operand &op) { *this << Ctx.getID(op.get()); },
[&] { *this << ", "; });
return true;
}
/// Print out the users of the SILValue \p V. Return true if we printed out
/// either an id or a use list. Return false otherwise.
bool printUsersOfSILNode(const SILNode *node, bool printedSlashes) {
llvm::SmallVector<SILValue, 8> values;
if (auto *value = dyn_cast<ValueBase>(node)) {
values.push_back(value);
} else if (auto *inst = dyn_cast<SILInstruction>(node)) {
assert(!isa<SingleValueInstruction>(inst) && "SingleValueInstruction was "
"handled by the previous "
"value base check.");
copy(inst->getResults(), std::back_inserter(values));
}
// If the set of values is empty, we need to print the ID of
// the instruction. Otherwise, if none of the values has a use,
// we don't need to do anything.
if (!values.empty()) {
bool hasUse = false;
for (auto value : values) {
if (!value->use_empty()) hasUse = true;
}
if (!hasUse)
return printedSlashes;
}
if (printedSlashes) {
*this << "; ";
} else {
PrintState.OS.PadToColumn(50);
*this << "// ";
}
if (values.empty()) {
*this << "id: " << Ctx.getID(node);
return true;
}
llvm::SmallVector<ID, 32> UserIDs;
for (auto value : values)
for (auto *Op : value->getUses())
UserIDs.push_back(Ctx.getID(Op->getUser()));
*this << "user";
if (UserIDs.size() != 1)
*this << 's';
*this << ": ";
// If we are asked to, display the user ids sorted to give a stable use
// order in the printer's output. This makes diffing large sections of SIL
// significantly easier.
if (Ctx.sortSIL()) {
std::sort(UserIDs.begin(), UserIDs.end());
}
interleave(UserIDs.begin(), UserIDs.end(), [&](ID id) { *this << id; },
[&] { *this << ", "; });
return true;
}
void printDebugLocRef(SILLocation Loc, const SourceManager &SM,
bool PrintComma = true) {
auto DL = Loc.decodeDebugLoc(SM);
if (!DL.Filename.empty()) {
if (PrintComma)
*this << ", ";
*this << "loc " << QuotedString(DL.Filename) << ':' << DL.Line << ':'
<< DL.Column;
}
}
void printDebugScope(const SILDebugScope *DS, const SourceManager &SM) {
if (!DS)
return;
if (!Ctx.hasScopeID(DS)) {
printDebugScope(DS->Parent.dyn_cast<const SILDebugScope *>(), SM);
printDebugScope(DS->InlinedCallSite, SM);
unsigned ID = Ctx.assignScopeID(DS);
*this << "sil_scope " << ID << " { ";
printDebugLocRef(DS->Loc, SM, false);
*this << " parent ";
if (auto *F = DS->Parent.dyn_cast<SILFunction *>())
*this << "@" << F->getName() << " : $" << F->getLoweredFunctionType();
else {
auto *PS = DS->Parent.get<const SILDebugScope *>();
*this << Ctx.getScopeID(PS);
}
if (auto *CS = DS->InlinedCallSite)
*this << " inlined_at " << Ctx.getScopeID(CS);
*this << " }\n";
}
}
void printDebugScopeRef(const SILDebugScope *DS, const SourceManager &SM,
bool PrintComma = true) {
if (DS) {
if (PrintComma)
*this << ", ";
*this << "scope " << Ctx.getScopeID(DS);
}
}
void printSILLocation(SILLocation L, SILModule &M, const SILDebugScope *DS,
bool printedSlashes) {
if (!L.isNull()) {
if (!printedSlashes) {
PrintState.OS.PadToColumn(50);
*this << "//";
}
*this << " ";
// To minimize output, only print the line and column number for
// everything but the first instruction.
L.getSourceLoc().printLineAndColumn(PrintState.OS,
M.getASTContext().SourceMgr);
// Print the type of location.
switch (L.getKind()) {
case SILLocation::NoneKind:
assert(L.isAutoGenerated() && "This kind shouldn't be printed.");
break;
case SILLocation::RegularKind:
break;
case SILLocation::ReturnKind:
*this << ":return";
break;
case SILLocation::ImplicitReturnKind:
*this << ":imp_return";
break;
case SILLocation::InlinedKind:
*this << ":inlined";
break;
case SILLocation::MandatoryInlinedKind:
*this << ":minlined";
break;
case SILLocation::CleanupKind:
*this << ":cleanup";
break;
case SILLocation::ArtificialUnreachableKind:
*this << ":art_unreach";
break;
}
if (L.isSILFile())
*this << ":sil";
if (L.isAutoGenerated())
*this << ":auto_gen";
if (L.isInPrologue())
*this << ":in_prologue";
}
if (L.isNull()) {
if (!printedSlashes) {
PrintState.OS.PadToColumn(50);
*this << "//";
}
if (L.isInTopLevel())
*this << " top_level";
else if (L.isAutoGenerated())
*this << " auto_gen";
else
*this << " no_loc";
if (L.isInPrologue())
*this << ":in_prologue";
}
if (!DS)
return;
// Print inlined-at location, if any.
const SILDebugScope *CS = DS;
while ((CS = CS->InlinedCallSite)) {
*this << ": ";
if (auto *InlinedF = CS->getInlinedFunction())
*this << demangleSymbol(InlinedF->getName());
else
*this << '?';
*this << " perf_inlined_at ";
auto CallSite = CS->Loc;
if (!CallSite.isNull() && CallSite.isASTNode())
CallSite.getSourceLoc().print(
PrintState.OS, M.getASTContext().SourceMgr, LastBufferID);
else
*this << "?";
}
}
void printInstOpCode(const SILInstruction *I) {
*this << getSILInstructionName(I->getKind()) << " ";
}
void print(const SILInstruction *I) {
if (auto *FRI = dyn_cast<FunctionRefInst>(I))
*this << " // function_ref "
<< demangleSymbol(FRI->getReferencedFunction()->getName())
<< "\n";
else if (auto *FRI = dyn_cast<DynamicFunctionRefInst>(I))
*this << " // dynamic_function_ref "
<< demangleSymbol(FRI->getReferencedFunction()->getName())
<< "\n";
else if (auto *FRI = dyn_cast<PreviousDynamicFunctionRefInst>(I))
*this << " // prev_dynamic_function_ref "
<< demangleSymbol(FRI->getReferencedFunction()->getName())
<< "\n";
*this << " ";
// Print results.
auto results = I->getResults();
if (results.size() == 1 &&
I->isStaticInitializerInst() &&
I == &I->getParent()->back()) {
*this << "%initval = ";
} else if (results.size() == 1) {
ID Name = Ctx.getID(results[0]);
*this << Name << " = ";
} else if (results.size() > 1) {
*this << '(';
bool first = true;
for (auto result : results) {
if (first) {
first = false;
} else {
*this << ", ";
}
ID Name = Ctx.getID(result);
*this << Name;
}
*this << ") = ";
}
// Print the opcode.
printInstOpCode(I);
// Use the visitor to print the rest of the instruction.
visit(const_cast<SILInstruction*>(I));
// Maybe print debugging information.
bool printedSlashes = false;
if (Ctx.printDebugInfo() && !I->isStaticInitializerInst()) {
auto &SM = I->getModule().getASTContext().SourceMgr;
printDebugLocRef(I->getLoc(), SM);
printDebugScopeRef(I->getDebugScope(), SM);
}
printedSlashes = printTypeDependentOperands(I);
// Print users, or id for valueless instructions.
printedSlashes = printUsersOfSILNode(I, printedSlashes);
// Print SIL location.
if (Ctx.printVerbose()) {
printSILLocation(I->getLoc(), I->getModule(), I->getDebugScope(),
printedSlashes);
}
*this << '\n';
}
void print(const SILNode *node) {
switch (node->getKind()) {
#define INST(ID, PARENT) \
case SILNodeKind::ID:
#include "swift/SIL/SILNodes.def"
print(cast<SILInstruction>(node));
return;
#define ARGUMENT(ID, PARENT) \
case SILNodeKind::ID:
#include "swift/SIL/SILNodes.def"
printSILArgument(cast<SILArgument>(node));
return;
case SILNodeKind::SILUndef:
printSILUndef(cast<SILUndef>(node));
return;
#define MULTIPLE_VALUE_INST_RESULT(ID, PARENT) \
case SILNodeKind::ID:
#include "swift/SIL/SILNodes.def"
printSILMultipleValueInstructionResult(
cast<MultipleValueInstructionResult>(node));
return;
}
llvm_unreachable("bad kind");
}
void printSILArgument(const SILArgument *arg) {
// This should really only happen during debugging.
*this << Ctx.getID(arg) << " = argument of "
<< Ctx.getID(arg->getParent()) << " : " << arg->getType();
// Print users.
(void) printUsersOfSILNode(arg, false);
*this << '\n';
}
void printSILUndef(const SILUndef *undef) {
// This should really only happen during debugging.
*this << "undef<" << undef->getType() << ">\n";
}
void printSILMultipleValueInstructionResult(
const MultipleValueInstructionResult *result) {
// This should really only happen during debugging.
if (result->getParent()->getNumResults() == 1) {
*this << "**" << Ctx.getID(result) << "** = ";
} else {
*this << '(';
interleave(result->getParent()->getResults(),
[&](SILValue value) {
if (value == SILValue(result)) {
*this << "**" << Ctx.getID(result) << "**";
return;
}
*this << Ctx.getID(value);
},
[&] { *this << ", "; });
*this << ')';
}
*this << " = ";
printInstOpCode(result->getParent());
auto *nonConstParent =
const_cast<MultipleValueInstruction *>(result->getParent());
visit(static_cast<SILInstruction *>(nonConstParent));
// Print users.
(void)printUsersOfSILNode(result, false);
*this << '\n';
}
void printInContext(const SILNode *node) {
auto sortByID = [&](const SILNode *a, const SILNode *b) {
return Ctx.getID(a).Number < Ctx.getID(b).Number;
};
if (auto *I = dyn_cast<SILInstruction>(node)) {
auto operands = map<SmallVector<SILValue,4>>(I->getAllOperands(),
[](Operand const &o) {
return o.get();
});
std::sort(operands.begin(), operands.end(), sortByID);
for (auto &operand : operands) {
*this << " ";
print(operand);
}
}
*this << "-> ";
print(node);
if (auto V = dyn_cast<ValueBase>(node)) {
auto users = map<SmallVector<const SILInstruction*,4>>(V->getUses(),
[](Operand *o) {
return o->getUser();
});
std::sort(users.begin(), users.end(), sortByID);
for (auto &user : users) {
*this << " ";
print(user);
}
}
}
void printDebugVar(Optional<SILDebugVariable> Var) {
if (!Var || Var->Name.empty())
return;
if (Var->Constant)
*this << ", let";
else
*this << ", var";
*this << ", name \"" << Var->Name << '"';
if (Var->ArgNo)
*this << ", argno " << Var->ArgNo;
}
void visitAllocStackInst(AllocStackInst *AVI) {
*this << AVI->getElementType();
printDebugVar(AVI->getVarInfo());
}
void printAllocRefInstBase(AllocRefInstBase *ARI) {
if (ARI->isObjC())
*this << "[objc] ";
if (ARI->canAllocOnStack())
*this << "[stack] ";
auto Types = ARI->getTailAllocatedTypes();
auto Counts = ARI->getTailAllocatedCounts();
for (unsigned Idx = 0, NumTypes = Types.size(); Idx < NumTypes; ++Idx) {
*this << "[tail_elems " << Types[Idx] << " * "
<< getIDAndType(Counts[Idx].get()) << "] ";
}
}
void visitAllocRefInst(AllocRefInst *ARI) {
printAllocRefInstBase(ARI);
*this << ARI->getType();
}
void visitAllocRefDynamicInst(AllocRefDynamicInst *ARDI) {
printAllocRefInstBase(ARDI);
*this << getIDAndType(ARDI->getMetatypeOperand());
*this << ", " << ARDI->getType();
}
void visitAllocValueBufferInst(AllocValueBufferInst *AVBI) {
*this << AVBI->getValueType() << " in " << getIDAndType(AVBI->getOperand());
}
void visitAllocBoxInst(AllocBoxInst *ABI) {
*this << ABI->getType();
printDebugVar(ABI->getVarInfo());
}
void printSubstitutions(SubstitutionMap Subs,
GenericSignature *Sig = nullptr) {
if (!Subs.hasAnySubstitutableParams()) return;
// FIXME: This is a hack to cope with cases where the substitution map uses
// a generic signature that's close-to-but-not-the-same-as expected.
auto genericSig = Sig ? Sig : Subs.getGenericSignature();
*this << '<';
bool first = true;
for (auto gp : genericSig->getGenericParams()) {
if (first) first = false;
else *this << ", ";
*this << Type(gp).subst(Subs);
}
*this << '>';
}
template <class Inst>
void visitApplyInstBase(Inst *AI) {
*this << Ctx.getID(AI->getCallee());
printSubstitutions(AI->getSubstitutionMap(),
AI->getOrigCalleeType()->getGenericSignature());
*this << '(';
interleave(AI->getArguments(),
[&](const SILValue &arg) { *this << Ctx.getID(arg); },
[&] { *this << ", "; });
*this << ") : ";
if (auto callee = AI->getCallee())
*this << callee->getType();
else
*this << "<<NULL CALLEE>>";
}
void visitApplyInst(ApplyInst *AI) {
if (AI->isNonThrowing())
*this << "[nothrow] ";
visitApplyInstBase(AI);
}
void visitBeginApplyInst(BeginApplyInst *AI) {
if (AI->isNonThrowing())
*this << "[nothrow] ";
visitApplyInstBase(AI);
}
void visitTryApplyInst(TryApplyInst *AI) {
visitApplyInstBase(AI);
*this << ", normal " << Ctx.getID(AI->getNormalBB());
*this << ", error " << Ctx.getID(AI->getErrorBB());
}
void visitPartialApplyInst(PartialApplyInst *CI) {
switch (CI->getFunctionType()->getCalleeConvention()) {
case ParameterConvention::Direct_Owned:
// Default; do nothing.
break;
case ParameterConvention::Direct_Guaranteed:
*this << "[callee_guaranteed] ";
break;
// Should not apply to callees.
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Constant:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Indirect_InoutAliasable:
llvm_unreachable("unexpected callee convention!");
}
if (CI->isOnStack())
*this << "[on_stack] ";
visitApplyInstBase(CI);
}
void visitAbortApplyInst(AbortApplyInst *AI) {
*this << Ctx.getID(AI->getOperand());
}
void visitEndApplyInst(EndApplyInst *AI) {
*this << Ctx.getID(AI->getOperand());
}
void visitFunctionRefInst(FunctionRefInst *FRI) {
FRI->getReferencedFunction()->printName(PrintState.OS);
*this << " : " << FRI->getType();
}
void visitDynamicFunctionRefInst(DynamicFunctionRefInst *FRI) {
FRI->getReferencedFunction()->printName(PrintState.OS);
*this << " : " << FRI->getType();
}
void
visitPreviousDynamicFunctionRefInst(PreviousDynamicFunctionRefInst *FRI) {
FRI->getReferencedFunction()->printName(PrintState.OS);
*this << " : " << FRI->getType();
}
void visitBuiltinInst(BuiltinInst *BI) {
*this << QuotedString(BI->getName().str());
printSubstitutions(BI->getSubstitutions());
*this << "(";
interleave(BI->getArguments(), [&](SILValue v) {
*this << getIDAndType(v);
}, [&]{
*this << ", ";
});
*this << ") : ";
*this << BI->getType();
}
void visitAllocGlobalInst(AllocGlobalInst *AGI) {
if (AGI->getReferencedGlobal()) {
AGI->getReferencedGlobal()->printName(PrintState.OS);
} else {
*this << "<<placeholder>>";
}
}
void visitGlobalAddrInst(GlobalAddrInst *GAI) {
if (GAI->getReferencedGlobal()) {
GAI->getReferencedGlobal()->printName(PrintState.OS);
} else {
*this << "<<placeholder>>";
}
*this << " : " << GAI->getType();
}
void visitGlobalValueInst(GlobalValueInst *GVI) {
GVI->getReferencedGlobal()->printName(PrintState.OS);
*this << " : " << GVI->getType();
}
void visitIntegerLiteralInst(IntegerLiteralInst *ILI) {
const auto &lit = ILI->getValue();
*this << ILI->getType() << ", " << lit;
}
void visitFloatLiteralInst(FloatLiteralInst *FLI) {
*this << FLI->getType() << ", 0x";
APInt bits = FLI->getBits();
*this << bits.toString(16, /*Signed*/ false);
llvm::SmallString<12> decimal;
FLI->getValue().toString(decimal);
*this << " // " << decimal;
}
static StringRef getStringEncodingName(StringLiteralInst::Encoding kind) {
switch (kind) {
case StringLiteralInst::Encoding::Bytes: return "bytes ";
case StringLiteralInst::Encoding::UTF8: return "utf8 ";
case StringLiteralInst::Encoding::UTF16: return "utf16 ";
case StringLiteralInst::Encoding::ObjCSelector: return "objc_selector ";
}
llvm_unreachable("bad string literal encoding");
}
void visitStringLiteralInst(StringLiteralInst *SLI) {
*this << getStringEncodingName(SLI->getEncoding());
if (SLI->getEncoding() != StringLiteralInst::Encoding::Bytes) {
// FIXME: this isn't correct: this doesn't properly handle translating
// UTF16 into UTF8, and the SIL parser always parses as UTF8.
*this << QuotedString(SLI->getValue());
return;
}
// "Bytes" are always output in a hexadecimal form.
*this << '"' << llvm::toHex(SLI->getValue()) << '"';
}
void printLoadOwnershipQualifier(LoadOwnershipQualifier Qualifier) {
switch (Qualifier) {
case LoadOwnershipQualifier::Unqualified:
return;
case LoadOwnershipQualifier::Take:
*this << "[take] ";
return;
case LoadOwnershipQualifier::Copy:
*this << "[copy] ";
return;
case LoadOwnershipQualifier::Trivial:
*this << "[trivial] ";
return;
}
}
void visitLoadInst(LoadInst *LI) {
printLoadOwnershipQualifier(LI->getOwnershipQualifier());
*this << getIDAndType(LI->getOperand());
}
void visitLoadBorrowInst(LoadBorrowInst *LBI) {
*this << getIDAndType(LBI->getOperand());
}
void visitBeginBorrowInst(BeginBorrowInst *LBI) {
*this << getIDAndType(LBI->getOperand());
}
void printStoreOwnershipQualifier(StoreOwnershipQualifier Qualifier) {
switch (Qualifier) {
case StoreOwnershipQualifier::Unqualified:
return;
case StoreOwnershipQualifier::Init:
*this << "[init] ";
return;
case StoreOwnershipQualifier::Assign:
*this << "[assign] ";
return;
case StoreOwnershipQualifier::Trivial:
*this << "[trivial] ";
return;
}
}
void printAssignOwnershipQualifier(AssignOwnershipQualifier Qualifier) {
switch (Qualifier) {
case AssignOwnershipQualifier::Unknown:
return;
case AssignOwnershipQualifier::Init:
*this << "[init] ";
return;
case AssignOwnershipQualifier::Reassign:
*this << "[reassign] ";
return;
case AssignOwnershipQualifier::Reinit:
*this << "[reinit] ";
return;
}
}
void visitStoreInst(StoreInst *SI) {
*this << Ctx.getID(SI->getSrc()) << " to ";
printStoreOwnershipQualifier(SI->getOwnershipQualifier());
*this << getIDAndType(SI->getDest());
}
void visitStoreBorrowInst(StoreBorrowInst *SI) {
*this << Ctx.getID(SI->getSrc()) << " to ";
*this << getIDAndType(SI->getDest());
}
void visitEndBorrowInst(EndBorrowInst *EBI) {
*this << getIDAndType(EBI->getOperand());
}
void visitAssignInst(AssignInst *AI) {
*this << Ctx.getID(AI->getSrc()) << " to ";
printAssignOwnershipQualifier(AI->getOwnershipQualifier());
*this << getIDAndType(AI->getDest());
}
void visitMarkUninitializedInst(MarkUninitializedInst *MU) {
switch (MU->getKind()) {
case MarkUninitializedInst::Var: *this << "[var] "; break;
case MarkUninitializedInst::RootSelf: *this << "[rootself] "; break;
case MarkUninitializedInst::CrossModuleRootSelf:
*this << "[crossmodulerootself] ";
break;
case MarkUninitializedInst::DerivedSelf: *this << "[derivedself] "; break;
case MarkUninitializedInst::DerivedSelfOnly:
*this << "[derivedselfonly] ";
break;
case MarkUninitializedInst::DelegatingSelf: *this << "[delegatingself] ";break;
case MarkUninitializedInst::DelegatingSelfAllocated:
*this << "[delegatingselfallocated] ";
break;
}
*this << getIDAndType(MU->getOperand());
}
void visitMarkFunctionEscapeInst(MarkFunctionEscapeInst *MFE) {
interleave(MFE->getElements(),
[&](SILValue Var) { *this << getIDAndType(Var); },
[&] { *this << ", "; });
}
void visitDebugValueInst(DebugValueInst *DVI) {
*this << getIDAndType(DVI->getOperand());
printDebugVar(DVI->getVarInfo());
}
void visitDebugValueAddrInst(DebugValueAddrInst *DVAI) {
*this << getIDAndType(DVAI->getOperand());
printDebugVar(DVAI->getVarInfo());
}
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
void visitLoad##Name##Inst(Load##Name##Inst *LI) { \
if (LI->isTake()) \
*this << "[take] "; \
*this << getIDAndType(LI->getOperand()); \
} \
void visitStore##Name##Inst(Store##Name##Inst *SI) { \
*this << Ctx.getID(SI->getSrc()) << " to "; \
if (SI->isInitializationOfDest()) \
*this << "[initialization] "; \
*this << getIDAndType(SI->getDest()); \
}
#include "swift/AST/ReferenceStorage.def"
void visitCopyAddrInst(CopyAddrInst *CI) {
if (CI->isTakeOfSrc())
*this << "[take] ";
*this << Ctx.getID(CI->getSrc()) << " to ";
if (CI->isInitializationOfDest())
*this << "[initialization] ";
*this << getIDAndType(CI->getDest());
}
void visitBindMemoryInst(BindMemoryInst *BI) {
*this << getIDAndType(BI->getBase()) << ", ";
*this << getIDAndType(BI->getIndex()) << " to ";
*this << BI->getBoundType();
}
void visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *CI) {
*this << getIDAndType(CI->getOperand()) << " to " << CI->getType();
}
void visitCheckedCastBranchInst(CheckedCastBranchInst *CI) {
if (CI->isExact())
*this << "[exact] ";
*this << getIDAndType(CI->getOperand()) << " to " << CI->getCastType()
<< ", " << Ctx.getID(CI->getSuccessBB()) << ", "
<< Ctx.getID(CI->getFailureBB());
if (CI->getTrueBBCount())
*this << " !true_count(" << CI->getTrueBBCount().getValue() << ")";
if (CI->getFalseBBCount())
*this << " !false_count(" << CI->getFalseBBCount().getValue() << ")";
}
void visitCheckedCastValueBranchInst(CheckedCastValueBranchInst *CI) {
*this << getIDAndType(CI->getOperand()) << " to " << CI->getCastType()
<< ", " << Ctx.getID(CI->getSuccessBB()) << ", "
<< Ctx.getID(CI->getFailureBB());
}
void visitUnconditionalCheckedCastAddrInst(UnconditionalCheckedCastAddrInst *CI) {
*this << CI->getSourceType() << " in " << getIDAndType(CI->getSrc())
<< " to " << CI->getTargetType() << " in "
<< getIDAndType(CI->getDest());
}
void visitUnconditionalCheckedCastValueInst(
UnconditionalCheckedCastValueInst *CI) {
*this << getIDAndType(CI->getOperand()) << " to " << CI->getType();
}
void visitCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *CI) {
*this << getCastConsumptionKindName(CI->getConsumptionKind()) << ' '
<< CI->getSourceType() << " in " << getIDAndType(CI->getSrc())
<< " to " << CI->getTargetType() << " in "
<< getIDAndType(CI->getDest()) << ", "
<< Ctx.getID(CI->getSuccessBB()) << ", "
<< Ctx.getID(CI->getFailureBB());
if (CI->getTrueBBCount())
*this << " !true_count(" << CI->getTrueBBCount().getValue() << ")";
if (CI->getFalseBBCount())
*this << " !false_count(" << CI->getFalseBBCount().getValue() << ")";
}
void printUncheckedConversionInst(ConversionInst *CI, SILValue operand) {
*this << getIDAndType(operand) << " to " << CI->getType();
}
void visitUncheckedOwnershipConversionInst(
UncheckedOwnershipConversionInst *UOCI) {
*this << getIDAndType(UOCI->getOperand()) << ", "
<< "@" << UOCI->getOperand().getOwnershipKind() << " to "
<< "@" << UOCI->getConversionOwnershipKind();
}
void visitConvertFunctionInst(ConvertFunctionInst *CI) {
*this << getIDAndType(CI->getOperand()) << " to ";
if (CI->withoutActuallyEscaping())
*this << "[without_actually_escaping] ";
*this << CI->getType();
}
void visitConvertEscapeToNoEscapeInst(ConvertEscapeToNoEscapeInst *CI) {
*this << (CI->isLifetimeGuaranteed() ? "" : "[not_guaranteed] ")
<< getIDAndType(CI->getOperand()) << " to " << CI->getType();
}
void visitThinFunctionToPointerInst(ThinFunctionToPointerInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitPointerToThinFunctionInst(PointerToThinFunctionInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitUpcastInst(UpcastInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitAddressToPointerInst(AddressToPointerInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitPointerToAddressInst(PointerToAddressInst *CI) {
*this << getIDAndType(CI->getOperand()) << " to ";
if (CI->isStrict())
*this << "[strict] ";
if (CI->isInvariant())
*this << "[invariant] ";
*this << CI->getType();
}
void visitUncheckedRefCastInst(UncheckedRefCastInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitUncheckedRefCastAddrInst(UncheckedRefCastAddrInst *CI) {
*this << ' ' << CI->getSourceType() << " in " << getIDAndType(CI->getSrc())
<< " to " << CI->getTargetType() << " in "
<< getIDAndType(CI->getDest());
}
void visitUncheckedAddrCastInst(UncheckedAddrCastInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitRefToRawPointerInst(RefToRawPointerInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitRawPointerToRefInst(RawPointerToRefInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
#define LOADABLE_REF_STORAGE(Name, ...) \
void visitRefTo##Name##Inst(RefTo##Name##Inst *CI) { \
printUncheckedConversionInst(CI, CI->getOperand()); \
} \
void visit##Name##ToRefInst(Name##ToRefInst *CI) { \
printUncheckedConversionInst(CI, CI->getOperand()); \
}
#include "swift/AST/ReferenceStorage.def"
void visitThinToThickFunctionInst(ThinToThickFunctionInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitObjCToThickMetatypeInst(ObjCToThickMetatypeInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitObjCMetatypeToObjectInst(ObjCMetatypeToObjectInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitObjCExistentialMetatypeToObjectInst(
ObjCExistentialMetatypeToObjectInst *CI) {
printUncheckedConversionInst(CI, CI->getOperand());
}
void visitObjCProtocolInst(ObjCProtocolInst *CI) {
*this << "#" << CI->getProtocol()->getName() << " : " << CI->getType();
}
void visitRefToBridgeObjectInst(RefToBridgeObjectInst *I) {
*this << getIDAndType(I->getConverted()) << ", "
<< getIDAndType(I->getBitsOperand());
}
void visitBridgeObjectToRefInst(BridgeObjectToRefInst *I) {
printUncheckedConversionInst(I, I->getOperand());
}
void visitBridgeObjectToWordInst(BridgeObjectToWordInst *I) {
printUncheckedConversionInst(I, I->getOperand());
}
void visitCopyValueInst(CopyValueInst *I) {
*this << getIDAndType(I->getOperand());
}
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
void visitCopy##Name##ValueInst(Copy##Name##ValueInst *I) { \
*this << getIDAndType(I->getOperand()); \
}
#include "swift/AST/ReferenceStorage.def"
void visitDestroyValueInst(DestroyValueInst *I) {
*this << getIDAndType(I->getOperand());
}
void visitStructInst(StructInst *SI) {
*this << SI->getType() << " (";
interleave(SI->getElements(),
[&](const SILValue &V) { *this << getIDAndType(V); },
[&] { *this << ", "; });
*this << ')';
}
void visitObjectInst(ObjectInst *OI) {
*this << OI->getType() << " (";
interleave(OI->getBaseElements(),
[&](const SILValue &V) { *this << getIDAndType(V); },
[&] { *this << ", "; });
if (!OI->getTailElements().empty()) {
*this << ", [tail_elems] ";
interleave(OI->getTailElements(),
[&](const SILValue &V) { *this << getIDAndType(V); },
[&] { *this << ", "; });
}
*this << ')';
}
void visitTupleInst(TupleInst *TI) {
// Check to see if the type of the tuple can be inferred accurately from the
// elements.
bool SimpleType = true;
for (auto &Elt : TI->getType().castTo<TupleType>()->getElements()) {
if (Elt.hasName() || Elt.isVararg()) {
SimpleType = false;
break;
}
}
// If the type is simple, just print the tuple elements.
if (SimpleType) {
*this << '(';
interleave(TI->getElements(),
[&](const SILValue &V){ *this << getIDAndType(V); },
[&] { *this << ", "; });
*this << ')';
} else {
// Otherwise, print the type, then each value.
*this << TI->getType() << " (";
interleave(TI->getElements(),
[&](const SILValue &V) { *this << Ctx.getID(V); },
[&] { *this << ", "; });
*this << ')';
}
}
void visitEnumInst(EnumInst *UI) {
*this << UI->getType() << ", "
<< SILDeclRef(UI->getElement(), SILDeclRef::Kind::EnumElement);
if (UI->hasOperand()) {
*this << ", " << getIDAndType(UI->getOperand());
}
}
void visitInitEnumDataAddrInst(InitEnumDataAddrInst *UDAI) {
*this << getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitUncheckedEnumDataInst(UncheckedEnumDataInst *UDAI) {
*this << getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitUncheckedTakeEnumDataAddrInst(UncheckedTakeEnumDataAddrInst *UDAI) {
*this << getIDAndType(UDAI->getOperand()) << ", "
<< SILDeclRef(UDAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitInjectEnumAddrInst(InjectEnumAddrInst *IUAI) {
*this << getIDAndType(IUAI->getOperand()) << ", "
<< SILDeclRef(IUAI->getElement(), SILDeclRef::Kind::EnumElement);
}
void visitTupleExtractInst(TupleExtractInst *EI) {
*this << getIDAndType(EI->getOperand()) << ", " << EI->getFieldNo();
}
void visitTupleElementAddrInst(TupleElementAddrInst *EI) {
*this << getIDAndType(EI->getOperand()) << ", " << EI->getFieldNo();
}
void visitStructExtractInst(StructExtractInst *EI) {
*this << getIDAndType(EI->getOperand()) << ", #";
printFullContext(EI->getField()->getDeclContext(), PrintState.OS);
*this << EI->getField()->getName().get();
}
void visitStructElementAddrInst(StructElementAddrInst *EI) {
*this << getIDAndType(EI->getOperand()) << ", #";
printFullContext(EI->getField()->getDeclContext(), PrintState.OS);
*this << EI->getField()->getName().get();
}
void visitRefElementAddrInst(RefElementAddrInst *EI) {
*this << getIDAndType(EI->getOperand()) << ", #";
printFullContext(EI->getField()->getDeclContext(), PrintState.OS);
*this << EI->getField()->getName().get();
}
void visitRefTailAddrInst(RefTailAddrInst *RTAI) {
*this << getIDAndType(RTAI->getOperand()) << ", " << RTAI->getTailType();
}
void visitDestructureStructInst(DestructureStructInst *DSI) {
*this << getIDAndType(DSI->getOperand());
}
void visitDestructureTupleInst(DestructureTupleInst *DTI) {
*this << getIDAndType(DTI->getOperand());
}
void printMethodInst(MethodInst *I, SILValue Operand) {
*this << getIDAndType(Operand) << ", " << I->getMember();
}
void visitClassMethodInst(ClassMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand());
*this << " : " << AMI->getMember().getDecl()->getInterfaceType();
*this << ", ";
*this << AMI->getType();
}
void visitSuperMethodInst(SuperMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand());
*this << " : " << AMI->getMember().getDecl()->getInterfaceType();
*this << ", ";
*this << AMI->getType();
}
void visitObjCMethodInst(ObjCMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand());
*this << " : " << AMI->getMember().getDecl()->getInterfaceType();
*this << ", ";
*this << AMI->getType();
}
void visitObjCSuperMethodInst(ObjCSuperMethodInst *AMI) {
printMethodInst(AMI, AMI->getOperand());
*this << " : " << AMI->getMember().getDecl()->getInterfaceType();
*this << ", ";
*this << AMI->getType();
}
void visitWitnessMethodInst(WitnessMethodInst *WMI) {
PrintOptions QualifiedSILTypeOptions =
PrintOptions::printQualifiedSILType();
QualifiedSILTypeOptions.CurrentModule = WMI->getModule().getSwiftModule();
*this << "$" << WMI->getLookupType() << ", " << WMI->getMember() << " : ";
WMI->getMember().getDecl()->getInterfaceType().print(
PrintState.OS, QualifiedSILTypeOptions);
if (!WMI->getTypeDependentOperands().empty()) {
*this << ", ";
*this << getIDAndType(WMI->getTypeDependentOperands()[0].get());
}
*this << " : " << WMI->getType();
}
void visitOpenExistentialAddrInst(OpenExistentialAddrInst *OI) {
if (OI->getAccessKind() == OpenedExistentialAccess::Immutable)
*this << "immutable_access ";
else
*this << "mutable_access ";
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
}
void visitOpenExistentialRefInst(OpenExistentialRefInst *OI) {
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
}
void visitOpenExistentialMetatypeInst(OpenExistentialMetatypeInst *OI) {
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
}
void visitOpenExistentialBoxInst(OpenExistentialBoxInst *OI) {
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
}
void visitOpenExistentialBoxValueInst(OpenExistentialBoxValueInst *OI) {
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
}
void visitOpenExistentialValueInst(OpenExistentialValueInst *OI) {
*this << getIDAndType(OI->getOperand()) << " to " << OI->getType();
}
void visitInitExistentialAddrInst(InitExistentialAddrInst *AEI) {
*this << getIDAndType(AEI->getOperand()) << ", $"
<< AEI->getFormalConcreteType();
}
void visitInitExistentialValueInst(InitExistentialValueInst *AEI) {
*this << getIDAndType(AEI->getOperand()) << ", $"
<< AEI->getFormalConcreteType() << ", " << AEI->getType();
}
void visitInitExistentialRefInst(InitExistentialRefInst *AEI) {
*this << getIDAndType(AEI->getOperand()) << " : $"
<< AEI->getFormalConcreteType() << ", " << AEI->getType();
}
void visitInitExistentialMetatypeInst(InitExistentialMetatypeInst *AEI) {
*this << getIDAndType(AEI->getOperand()) << ", " << AEI->getType();
}
void visitAllocExistentialBoxInst(AllocExistentialBoxInst *AEBI) {
*this << AEBI->getExistentialType() << ", $"
<< AEBI->getFormalConcreteType();
}
void visitDeinitExistentialAddrInst(DeinitExistentialAddrInst *DEI) {
*this << getIDAndType(DEI->getOperand());
}
void visitDeinitExistentialValueInst(DeinitExistentialValueInst *DEI) {
*this << getIDAndType(DEI->getOperand());
}
void visitDeallocExistentialBoxInst(DeallocExistentialBoxInst *DEI) {
*this << getIDAndType(DEI->getOperand()) << ", $" << DEI->getConcreteType();
}
void visitProjectBlockStorageInst(ProjectBlockStorageInst *PBSI) {
*this << getIDAndType(PBSI->getOperand());
}
void visitInitBlockStorageHeaderInst(InitBlockStorageHeaderInst *IBSHI) {
*this << getIDAndType(IBSHI->getBlockStorage()) << ", invoke "
<< Ctx.getID(IBSHI->getInvokeFunction());
printSubstitutions(IBSHI->getSubstitutions());
*this << " : " << IBSHI->getInvokeFunction()->getType()
<< ", type " << IBSHI->getType();
}
void visitValueMetatypeInst(ValueMetatypeInst *MI) {
*this << MI->getType() << ", " << getIDAndType(MI->getOperand());
}
void visitExistentialMetatypeInst(ExistentialMetatypeInst *MI) {
*this << MI->getType() << ", " << getIDAndType(MI->getOperand());
}
void visitMetatypeInst(MetatypeInst *MI) { *this << MI->getType(); }
void visitFixLifetimeInst(FixLifetimeInst *RI) {
*this << getIDAndType(RI->getOperand());
}
void visitEndLifetimeInst(EndLifetimeInst *ELI) {
*this << getIDAndType(ELI->getOperand());
}
void visitValueToBridgeObjectInst(ValueToBridgeObjectInst *VBOI) {
*this << getIDAndType(VBOI->getOperand());
}
void visitClassifyBridgeObjectInst(ClassifyBridgeObjectInst *CBOI) {
*this << getIDAndType(CBOI->getOperand());
}
void visitMarkDependenceInst(MarkDependenceInst *MDI) {
*this << getIDAndType(MDI->getValue()) << " on "
<< getIDAndType(MDI->getBase());
}
void visitCopyBlockInst(CopyBlockInst *RI) {
*this << getIDAndType(RI->getOperand());
}
void visitCopyBlockWithoutEscapingInst(CopyBlockWithoutEscapingInst *RI) {
*this << getIDAndType(RI->getBlock()) << " withoutEscaping "
<< getIDAndType(RI->getClosure());
}
void visitRefCountingInst(RefCountingInst *I) {
if (I->isNonAtomic())
*this << "[nonatomic] ";
*this << getIDAndType(I->getOperand(0));
}
void visitIsUniqueInst(IsUniqueInst *CUI) {
*this << getIDAndType(CUI->getOperand());
}
void visitIsEscapingClosureInst(IsEscapingClosureInst *CUI) {
if (CUI->getVerificationType())
*this << "[objc] ";
*this << getIDAndType(CUI->getOperand());
}
void visitDeallocStackInst(DeallocStackInst *DI) {
*this << getIDAndType(DI->getOperand());
}
void visitDeallocRefInst(DeallocRefInst *DI) {
if (DI->canAllocOnStack())
*this << "[stack] ";
*this << getIDAndType(DI->getOperand());
}
void visitDeallocPartialRefInst(DeallocPartialRefInst *DPI) {
*this << getIDAndType(DPI->getInstance());
*this << ", ";
*this << getIDAndType(DPI->getMetatype());
}
void visitDeallocValueBufferInst(DeallocValueBufferInst *DVBI) {
*this << DVBI->getValueType() << " in " << getIDAndType(DVBI->getOperand());
}
void visitDeallocBoxInst(DeallocBoxInst *DI) {
*this << getIDAndType(DI->getOperand());
}
void visitDestroyAddrInst(DestroyAddrInst *DI) {
*this << getIDAndType(DI->getOperand());
}
void visitProjectValueBufferInst(ProjectValueBufferInst *PVBI) {
*this << PVBI->getValueType() << " in " << getIDAndType(PVBI->getOperand());
}
void visitProjectBoxInst(ProjectBoxInst *PBI) {
*this << getIDAndType(PBI->getOperand()) << ", " << PBI->getFieldIndex();
}
void visitProjectExistentialBoxInst(ProjectExistentialBoxInst *PEBI) {
*this << PEBI->getType().getObjectType()
<< " in " << getIDAndType(PEBI->getOperand());
}
void visitBeginAccessInst(BeginAccessInst *BAI) {
*this << '[' << getSILAccessKindName(BAI->getAccessKind()) << "] ["
<< getSILAccessEnforcementName(BAI->getEnforcement()) << "] "
<< (BAI->hasNoNestedConflict() ? "[no_nested_conflict] " : "")
<< (BAI->isFromBuiltin() ? "[builtin] " : "")
<< getIDAndType(BAI->getOperand());
}
void visitEndAccessInst(EndAccessInst *EAI) {
*this << (EAI->isAborting() ? "[abort] " : "")
<< getIDAndType(EAI->getOperand());
}
void visitBeginUnpairedAccessInst(BeginUnpairedAccessInst *BAI) {
*this << '[' << getSILAccessKindName(BAI->getAccessKind()) << "] ["
<< getSILAccessEnforcementName(BAI->getEnforcement()) << "] "
<< (BAI->hasNoNestedConflict() ? "[no_nested_conflict] " : "")
<< (BAI->isFromBuiltin() ? "[builtin] " : "")
<< getIDAndType(BAI->getSource()) << ", "
<< getIDAndType(BAI->getBuffer());
}
void visitEndUnpairedAccessInst(EndUnpairedAccessInst *EAI) {
*this << (EAI->isAborting() ? "[abort] " : "") << '['
<< getSILAccessEnforcementName(EAI->getEnforcement()) << "] "
<< (EAI->isFromBuiltin() ? "[builtin] " : "")
<< getIDAndType(EAI->getOperand());
}
void visitCondFailInst(CondFailInst *FI) {
*this << getIDAndType(FI->getOperand());
}
void visitIndexAddrInst(IndexAddrInst *IAI) {
*this << getIDAndType(IAI->getBase()) << ", "
<< getIDAndType(IAI->getIndex());
}
void visitTailAddrInst(TailAddrInst *TAI) {
*this << getIDAndType(TAI->getBase()) << ", "
<< getIDAndType(TAI->getIndex()) << ", " << TAI->getTailType();
}
void visitIndexRawPointerInst(IndexRawPointerInst *IAI) {
*this << getIDAndType(IAI->getBase()) << ", "
<< getIDAndType(IAI->getIndex());
}
void visitUnreachableInst(UnreachableInst *UI) {}
void visitReturnInst(ReturnInst *RI) {
*this << getIDAndType(RI->getOperand());
}
void visitThrowInst(ThrowInst *TI) {
*this << getIDAndType(TI->getOperand());
}
void visitUnwindInst(UnwindInst *UI) {
// no operands
}
void visitYieldInst(YieldInst *YI) {
auto values = YI->getYieldedValues();
if (values.size() != 1) *this << '(';
interleave(values,
[&](SILValue value) { *this << getIDAndType(value); },
[&] { *this << ", "; });
if (values.size() != 1) *this << ')';
*this << ", resume " << Ctx.getID(YI->getResumeBB())
<< ", unwind " << Ctx.getID(YI->getUnwindBB());
}
void visitSwitchValueInst(SwitchValueInst *SII) {
*this << getIDAndType(SII->getOperand());
for (unsigned i = 0, e = SII->getNumCases(); i < e; ++i) {
SILValue value;
SILBasicBlock *dest;
std::tie(value, dest) = SII->getCase(i);
*this << ", case " << Ctx.getID(value) << ": " << Ctx.getID(dest);
}
if (SII->hasDefault())
*this << ", default " << Ctx.getID(SII->getDefaultBB());
}
void printSwitchEnumInst(SwitchEnumInstBase *SOI) {
*this << getIDAndType(SOI->getOperand());
for (unsigned i = 0, e = SOI->getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILBasicBlock *dest;
std::tie(elt, dest) = SOI->getCase(i);
*this << ", case " << SILDeclRef(elt, SILDeclRef::Kind::EnumElement)
<< ": " << Ctx.getID(dest);
if (SOI->getCaseCount(i)) {
*this << " !case_count(" << SOI->getCaseCount(i).getValue() << ")";
}
}
if (SOI->hasDefault()) {
*this << ", default " << Ctx.getID(SOI->getDefaultBB());
if (SOI->getDefaultCount()) {
*this << " !default_count(" << SOI->getDefaultCount().getValue() << ")";
}
}
}
void visitSwitchEnumInst(SwitchEnumInst *SOI) {
printSwitchEnumInst(SOI);
}
void visitSwitchEnumAddrInst(SwitchEnumAddrInst *SOI) {
printSwitchEnumInst(SOI);
}
void printSelectEnumInst(SelectEnumInstBase *SEI) {
*this << getIDAndType(SEI->getEnumOperand());
for (unsigned i = 0, e = SEI->getNumCases(); i < e; ++i) {
EnumElementDecl *elt;
SILValue result;
std::tie(elt, result) = SEI->getCase(i);
*this << ", case " << SILDeclRef(elt, SILDeclRef::Kind::EnumElement)
<< ": " << Ctx.getID(result);
}
if (SEI->hasDefault())
*this << ", default " << Ctx.getID(SEI->getDefaultResult());
*this << " : " << SEI->getType();
}
void visitSelectEnumInst(SelectEnumInst *SEI) {
printSelectEnumInst(SEI);
}
void visitSelectEnumAddrInst(SelectEnumAddrInst *SEI) {
printSelectEnumInst(SEI);
}
void visitSelectValueInst(SelectValueInst *SVI) {
*this << getIDAndType(SVI->getOperand());
for (unsigned i = 0, e = SVI->getNumCases(); i < e; ++i) {
SILValue casevalue;
SILValue result;
std::tie(casevalue, result) = SVI->getCase(i);
*this << ", case " << Ctx.getID(casevalue) << ": " << Ctx.getID(result);
}
if (SVI->hasDefault())
*this << ", default " << Ctx.getID(SVI->getDefaultResult());
*this << " : " << SVI->getType();
}
void visitDynamicMethodBranchInst(DynamicMethodBranchInst *DMBI) {
*this << getIDAndType(DMBI->getOperand()) << ", " << DMBI->getMember()
<< ", " << Ctx.getID(DMBI->getHasMethodBB()) << ", "
<< Ctx.getID(DMBI->getNoMethodBB());
}
void printBranchArgs(OperandValueArrayRef args) {
if (args.empty()) return;
*this << '(';
interleave(args,
[&](SILValue v) { *this << getIDAndType(v); },
[&] { *this << ", "; });
*this << ')';
}
void visitBranchInst(BranchInst *UBI) {
*this << Ctx.getID(UBI->getDestBB());
printBranchArgs(UBI->getArgs());
}
void visitCondBranchInst(CondBranchInst *CBI) {
*this << Ctx.getID(CBI->getCondition()) << ", "
<< Ctx.getID(CBI->getTrueBB());
printBranchArgs(CBI->getTrueArgs());
*this << ", " << Ctx.getID(CBI->getFalseBB());
printBranchArgs(CBI->getFalseArgs());
if (CBI->getTrueBBCount())
*this << " !true_count(" << CBI->getTrueBBCount().getValue() << ")";
if (CBI->getFalseBBCount())
*this << " !false_count(" << CBI->getFalseBBCount().getValue() << ")";
}
void visitKeyPathInst(KeyPathInst *KPI) {
*this << KPI->getType() << ", ";
auto pattern = KPI->getPattern();
if (pattern->getGenericSignature()) {
pattern->getGenericSignature()->print(PrintState.OS);
*this << ' ';
}
*this << "(";
if (!pattern->getObjCString().empty())
*this << "objc \"" << pattern->getObjCString() << "\"; ";
*this << "root $" << KPI->getPattern()->getRootType();
for (auto &component : pattern->getComponents()) {
*this << "; ";
printKeyPathPatternComponent(component);
}
*this << ')';
if (!KPI->getSubstitutions().empty()) {
*this << ' ';
printSubstitutions(KPI->getSubstitutions());
}
if (!KPI->getAllOperands().empty()) {
*this << " (";
interleave(KPI->getAllOperands(),
[&](const Operand &operand) {
*this << Ctx.getID(operand.get());
}, [&]{
*this << ", ";
});
*this << ")";
}
}
void
printKeyPathPatternComponent(const KeyPathPatternComponent &component) {
auto printComponentIndices =
[&](ArrayRef<KeyPathPatternComponent::Index> indices) {
*this << '[';
interleave(indices,
[&](const KeyPathPatternComponent::Index &i) {
*this << "%$" << i.Operand << " : $"
<< i.FormalType << " : "
<< i.LoweredType;
}, [&]{
*this << ", ";
});
*this << ']';
};
switch (auto kind = component.getKind()) {
case KeyPathPatternComponent::Kind::StoredProperty: {
auto prop = component.getStoredPropertyDecl();
*this << "stored_property #";
printValueDecl(prop, PrintState.OS);
*this << " : $" << component.getComponentType();
break;
}
case KeyPathPatternComponent::Kind::GettableProperty:
case KeyPathPatternComponent::Kind::SettableProperty: {
*this << (kind == KeyPathPatternComponent::Kind::GettableProperty
? "gettable_property $" : "settable_property $")
<< component.getComponentType() << ", "
<< " id ";
auto id = component.getComputedPropertyId();
switch (id.getKind()) {
case KeyPathPatternComponent::ComputedPropertyId::DeclRef: {
auto declRef = id.getDeclRef();
*this << declRef << " : "
<< declRef.getDecl()->getInterfaceType();
break;
}
case KeyPathPatternComponent::ComputedPropertyId::Function: {
id.getFunction()->printName(PrintState.OS);
*this << " : " << id.getFunction()->getLoweredType();
break;
}
case KeyPathPatternComponent::ComputedPropertyId::Property: {
*this << "##";
printValueDecl(id.getProperty(), PrintState.OS);
break;
}
}
*this << ", getter ";
component.getComputedPropertyGetter()->printName(PrintState.OS);
*this << " : "
<< component.getComputedPropertyGetter()->getLoweredType();
if (kind == KeyPathPatternComponent::Kind::SettableProperty) {
*this << ", setter ";
component.getComputedPropertySetter()->printName(PrintState.OS);
*this << " : "
<< component.getComputedPropertySetter()->getLoweredType();
}
if (!component.getSubscriptIndices().empty()) {
*this << ", indices ";
printComponentIndices(component.getSubscriptIndices());
*this << ", indices_equals ";
component.getSubscriptIndexEquals()->printName(PrintState.OS);
*this << " : "
<< component.getSubscriptIndexEquals()->getLoweredType();
*this << ", indices_hash ";
component.getSubscriptIndexHash()->printName(PrintState.OS);
*this << " : "
<< component.getSubscriptIndexHash()->getLoweredType();
}
if (auto external = component.getExternalDecl()) {
*this << ", external #";
printValueDecl(external, PrintState.OS);
auto subs = component.getExternalSubstitutions();
if (!subs.empty()) {
printSubstitutions(subs);
}
}
break;
}
case KeyPathPatternComponent::Kind::OptionalWrap:
case KeyPathPatternComponent::Kind::OptionalChain:
case KeyPathPatternComponent::Kind::OptionalForce: {
switch (kind) {
case KeyPathPatternComponent::Kind::OptionalWrap:
*this << "optional_wrap : $";
break;
case KeyPathPatternComponent::Kind::OptionalChain:
*this << "optional_chain : $";
break;
case KeyPathPatternComponent::Kind::OptionalForce:
*this << "optional_force : $";
break;
default:
llvm_unreachable("out of sync");
}
*this << component.getComponentType();
break;
}
case KeyPathPatternComponent::Kind::TupleElement: {
*this << "tuple_element #" << component.getTupleIndex();
*this << " : $" << component.getComponentType();
break;
}
}
}
};
} // end anonymous namespace
static void printBlockID(raw_ostream &OS, SILBasicBlock *bb) {
SILPrintContext Ctx(OS);
OS << Ctx.getID(bb);
}
void SILBasicBlock::printAsOperand(raw_ostream &OS, bool PrintType) {
printBlockID(OS, this);
}
//===----------------------------------------------------------------------===//
// Printing for SILInstruction, SILBasicBlock, SILFunction, and SILModule
//===----------------------------------------------------------------------===//
void SILNode::dump() const {
print(llvm::errs());
}
void SILNode::print(raw_ostream &OS) const {
SILPrintContext Ctx(OS);
SILPrinter(Ctx).print(this);
}
void SILInstruction::dump() const {
print(llvm::errs());
}
void SingleValueInstruction::dump() const {
SILInstruction::dump();
}
void SILInstruction::print(raw_ostream &OS) const {
SILPrintContext Ctx(OS);
SILPrinter(Ctx).print(this);
}
/// Pretty-print the SILBasicBlock to errs.
void SILBasicBlock::dump() const {
print(llvm::errs());
}
/// Pretty-print the SILBasicBlock to the designated stream.
void SILBasicBlock::print(raw_ostream &OS) const {
SILPrintContext Ctx(OS);
// Print the debug scope (and compute if we didn't do it already).
auto &SM = this->getParent()->getModule().getASTContext().SourceMgr;
for (auto &I : *this) {
SILPrinter P(Ctx);
P.printDebugScope(I.getDebugScope(), SM);
}
SILPrinter(Ctx).print(this);
}
void SILBasicBlock::print(raw_ostream &OS, SILPrintContext &Ctx) const {
SILPrinter(Ctx).print(this);
}
/// Pretty-print the SILFunction to errs.
void SILFunction::dump(bool Verbose) const {
SILPrintContext Ctx(llvm::errs(), Verbose);
print(Ctx);
}
// This is out of line so the debugger can find it.
void SILFunction::dump() const {
dump(false);
}
void SILFunction::dump(const char *FileName) const {
std::error_code EC;
llvm::raw_fd_ostream os(FileName, EC, llvm::sys::fs::OpenFlags::F_None);
print(os);
}
static StringRef getLinkageString(SILLinkage linkage) {
switch (linkage) {
case SILLinkage::Public: return "public ";
case SILLinkage::PublicNonABI: return "non_abi ";
case SILLinkage::Hidden: return "hidden ";
case SILLinkage::Shared: return "shared ";
case SILLinkage::Private: return "private ";
case SILLinkage::PublicExternal: return "public_external ";
case SILLinkage::HiddenExternal: return "hidden_external ";
case SILLinkage::SharedExternal: return "shared_external ";
case SILLinkage::PrivateExternal: return "private_external ";
}
llvm_unreachable("bad linkage");
}
static void printLinkage(llvm::raw_ostream &OS, SILLinkage linkage,
bool isDefinition) {
if ((isDefinition && linkage == SILLinkage::DefaultForDefinition) ||
(!isDefinition && linkage == SILLinkage::DefaultForDeclaration))
return;
OS << getLinkageString(linkage);
}
/// Pretty-print the SILFunction to the designated stream.
void SILFunction::print(SILPrintContext &PrintCtx) const {
llvm::raw_ostream &OS = PrintCtx.OS();
if (PrintCtx.printDebugInfo()) {
auto &SM = getModule().getASTContext().SourceMgr;
for (auto &BB : *this)
for (auto &I : BB) {
SILPrinter P(PrintCtx);
P.printDebugScope(I.getDebugScope(), SM);
}
OS << "\n";
}
if (SILPrintGenericSpecializationInfo) {
if (isSpecialization()) {
printGenericSpecializationInfo(OS, "function", getName(),
getSpecializationInfo());
}
}
OS << "// " << demangleSymbol(getName()) << '\n';
OS << "sil ";
printLinkage(OS, getLinkage(), isDefinition());
if (isTransparent())
OS << "[transparent] ";
switch (isSerialized()) {
case IsNotSerialized: break;
case IsSerializable: OS << "[serializable] "; break;
case IsSerialized: OS << "[serialized] "; break;
}
switch (isThunk()) {
case IsNotThunk: break;
case IsThunk: OS << "[thunk] "; break;
case IsSignatureOptimizedThunk:
OS << "[signature_optimized_thunk] ";
break;
case IsReabstractionThunk: OS << "[reabstraction_thunk] "; break;
}
if (isDynamicallyReplaceable()) {
OS << "[dynamically_replacable] ";
}
if (isWithoutActuallyEscapingThunk())
OS << "[without_actually_escaping] ";
if (isGlobalInit())
OS << "[global_init] ";
if (isWeakLinked())
OS << "[_weakLinked] ";
switch (getInlineStrategy()) {
case NoInline: OS << "[noinline] "; break;
case AlwaysInline: OS << "[always_inline] "; break;
case InlineDefault: break;
}
switch (getOptimizationMode()) {
case OptimizationMode::NoOptimization: OS << "[Onone] "; break;
case OptimizationMode::ForSpeed: OS << "[Ospeed] "; break;
case OptimizationMode::ForSize: OS << "[Osize] "; break;
default: break;
}
if (getEffectsKind() == EffectsKind::ReadOnly)
OS << "[readonly] ";
else if (getEffectsKind() == EffectsKind::ReadNone)
OS << "[readnone] ";
else if (getEffectsKind() == EffectsKind::ReadWrite)
OS << "[readwrite] ";
else if (getEffectsKind() == EffectsKind::ReleaseNone)
OS << "[releasenone] ";
if (auto *replacedFun = getDynamicallyReplacedFunction()) {
OS << "[dynamic_replacement_for \"";
OS << replacedFun->getName();
OS << "\"] ";
}
if (hasObjCReplacement()) {
OS << "[objc_replacement_for \"";
OS << getObjCReplacement().str();
OS << "\"] ";
}
for (auto &Attr : getSemanticsAttrs())
OS << "[_semantics \"" << Attr << "\"] ";
for (auto *Attr : getSpecializeAttrs()) {
OS << "[_specialize "; Attr->print(OS); OS << "] ";
}
// TODO: Handle clang node owners which don't have a name.
if (hasClangNode() && getClangNodeOwner()->hasName()) {
OS << "[clang ";
printValueDecl(getClangNodeOwner(), OS);
OS << "] ";
}
// Handle functions that are deserialized from canonical SIL. Normally, we
// should emit SIL with the correct SIL stage, so preserving this attribute
// won't be necessary. But consider serializing raw SIL (either textual SIL or
// SIB) after importing canonical SIL from another module. If the imported
// functions are reserialized (e.g. shared linkage), then we must preserve
// this attribute.
if (WasDeserializedCanonical && getModule().getStage() == SILStage::Raw)
OS << "[canonical] ";
// If this function is not an external declaration /and/ is in ownership ssa
// form, print [ossa].
if (!isExternalDeclaration() && hasOwnership())
OS << "[ossa] ";
printName(OS);
OS << " : $";
// Print the type by substituting our context parameter names for the dependent
// parameters. In SIL, we may end up with multiple generic parameters that
// have the same name from different contexts, for instance, a generic
// protocol requirement with a generic method parameter <T>, which is
// witnessed by a generic type that has a generic type parameter also named
// <T>, so we may need to introduce disambiguating aliases.
llvm::DenseMap<CanType, Identifier> Aliases;
llvm::DenseSet<Identifier> UsedNames;
auto sig = getLoweredFunctionType()->getGenericSignature();
auto *env = getGenericEnvironment();
if (sig && env) {
llvm::SmallString<16> disambiguatedNameBuf;
unsigned disambiguatedNameCounter = 1;
for (auto *paramTy : sig->getGenericParams()) {
auto sugaredTy = env->getSugaredType(paramTy);
Identifier name = sugaredTy->getName();
while (!UsedNames.insert(name).second) {
disambiguatedNameBuf.clear();
{
llvm::raw_svector_ostream names(disambiguatedNameBuf);
names << sugaredTy->getName() << disambiguatedNameCounter++;
}
name = getASTContext().getIdentifier(disambiguatedNameBuf);
}
if (name != sugaredTy->getName()) {
Aliases[paramTy->getCanonicalType()] = name;
// Also for the archetype
auto archetypeTy = env->mapTypeIntoContext(paramTy)
->getAs<ArchetypeType>();
if (archetypeTy)
Aliases[archetypeTy->getCanonicalType()] = name;
}
}
}
{
PrintOptions withGenericEnvironment = PrintOptions::printSIL();
withGenericEnvironment.GenericEnv = env;
withGenericEnvironment.AlternativeTypeNames =
Aliases.empty() ? nullptr : &Aliases;
LoweredType->print(OS, withGenericEnvironment);
}
if (!isExternalDeclaration()) {
if (auto eCount = getEntryCount()) {
OS << " !function_entry_count(" << eCount.getValue() << ")";
}
OS << " {\n";
SILPrinter(PrintCtx, (Aliases.empty() ? nullptr : &Aliases))
.print(this);
OS << "} // end sil function '" << getName() << '\'';
}
OS << "\n\n";
}
/// Pretty-print the SILFunction's name using SIL syntax,
/// '@function_mangled_name'.
void SILFunction::printName(raw_ostream &OS) const {
OS << "@" << Name;
}
/// Pretty-print a global variable to the designated stream.
void SILGlobalVariable::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "// " << demangleSymbol(getName()) << '\n';
OS << "sil_global ";
printLinkage(OS, getLinkage(), isDefinition());
if (isSerialized())
OS << "[serialized] ";
if (isLet())
OS << "[let] ";
printName(OS);
OS << " : " << LoweredType;
if (!StaticInitializerBlock.empty()) {
OS << " = {\n";
{
SILPrintContext Ctx(OS);
SILPrinter Printer(Ctx);
for (const SILInstruction &I : StaticInitializerBlock) {
Printer.print(&I);
}
}
OS << "}\n";
}
OS << "\n\n";
}
void SILGlobalVariable::dump(bool Verbose) const {
print(llvm::errs(), Verbose);
}
void SILGlobalVariable::dump() const {
dump(false);
}
void SILGlobalVariable::printName(raw_ostream &OS) const {
OS << "@" << Name;
}
/// Pretty-print the SILModule to errs.
void SILModule::dump(bool Verbose) const {
SILPrintContext Ctx(llvm::errs(), Verbose);
print(Ctx);
}
void SILModule::dump(const char *FileName, bool Verbose,
bool PrintASTDecls) const {
std::error_code EC;
llvm::raw_fd_ostream os(FileName, EC, llvm::sys::fs::OpenFlags::F_None);
SILPrintContext Ctx(os, Verbose);
print(Ctx, getSwiftModule(), PrintASTDecls);
}
static void printSILGlobals(SILPrintContext &Ctx,
const SILModule::GlobalListType &Globals) {
if (!Ctx.sortSIL()) {
for (const SILGlobalVariable &g : Globals)
g.print(Ctx.OS(), Ctx.printVerbose());
return;
}
std::vector<const SILGlobalVariable *> globals;
globals.reserve(Globals.size());
for (const SILGlobalVariable &g : Globals)
globals.push_back(&g);
std::sort(globals.begin(), globals.end(),
[] (const SILGlobalVariable *g1, const SILGlobalVariable *g2) -> bool {
return g1->getName().compare(g2->getName()) == -1;
}
);
for (const SILGlobalVariable *g : globals)
g->print(Ctx.OS(), Ctx.printVerbose());
}
static void printSILFunctions(SILPrintContext &Ctx,
const SILModule::FunctionListType &Functions) {
if (!Ctx.sortSIL()) {
for (const SILFunction &f : Functions)
f.print(Ctx);
return;
}
std::vector<const SILFunction *> functions;
functions.reserve(Functions.size());
for (const SILFunction &f : Functions)
functions.push_back(&f);
std::sort(functions.begin(), functions.end(),
[] (const SILFunction *f1, const SILFunction *f2) -> bool {
return f1->getName().compare(f2->getName()) == -1;
}
);
for (const SILFunction *f : functions)
f->print(Ctx);
}
static void printSILVTables(SILPrintContext &Ctx,
const SILModule::VTableListType &VTables) {
if (!Ctx.sortSIL()) {
for (const SILVTable &vt : VTables)
vt.print(Ctx.OS(), Ctx.printVerbose());
return;
}
std::vector<const SILVTable *> vtables;
vtables.reserve(VTables.size());
for (const SILVTable &vt : VTables)
vtables.push_back(&vt);
std::sort(vtables.begin(), vtables.end(),
[] (const SILVTable *v1, const SILVTable *v2) -> bool {
StringRef Name1 = v1->getClass()->getName().str();
StringRef Name2 = v2->getClass()->getName().str();
return Name1.compare(Name2) == -1;
}
);
for (const SILVTable *vt : vtables)
vt->print(Ctx.OS(), Ctx.printVerbose());
}
static void
printSILWitnessTables(SILPrintContext &Ctx,
const SILModule::WitnessTableListType &WTables) {
if (!Ctx.sortSIL()) {
for (const SILWitnessTable &wt : WTables)
wt.print(Ctx.OS(), Ctx.printVerbose());
return;
}
std::vector<const SILWitnessTable *> witnesstables;
witnesstables.reserve(WTables.size());
for (const SILWitnessTable &wt : WTables)
witnesstables.push_back(&wt);
std::sort(witnesstables.begin(), witnesstables.end(),
[] (const SILWitnessTable *w1, const SILWitnessTable *w2) -> bool {
return w1->getName().compare(w2->getName()) == -1;
}
);
for (const SILWitnessTable *wt : witnesstables)
wt->print(Ctx.OS(), Ctx.printVerbose());
}
static void
printSILDefaultWitnessTables(SILPrintContext &Ctx,
const SILModule::DefaultWitnessTableListType &WTables) {
if (!Ctx.sortSIL()) {
for (const SILDefaultWitnessTable &wt : WTables)
wt.print(Ctx.OS(), Ctx.printVerbose());
return;
}
std::vector<const SILDefaultWitnessTable *> witnesstables;
witnesstables.reserve(WTables.size());
for (const SILDefaultWitnessTable &wt : WTables)
witnesstables.push_back(&wt);
std::sort(witnesstables.begin(), witnesstables.end(),
[] (const SILDefaultWitnessTable *w1,
const SILDefaultWitnessTable *w2) -> bool {
return w1->getProtocol()->getName()
.compare(w2->getProtocol()->getName()) == -1;
}
);
for (const SILDefaultWitnessTable *wt : witnesstables)
wt->print(Ctx.OS(), Ctx.printVerbose());
}
static void
printSILCoverageMaps(SILPrintContext &Ctx,
const SILModule::CoverageMapCollectionType &CoverageMaps) {
if (!Ctx.sortSIL()) {
for (const auto &M : CoverageMaps)
M.second->print(Ctx);
return;
}
std::vector<const SILCoverageMap *> Maps;
Maps.reserve(CoverageMaps.size());
for (const auto &M : CoverageMaps)
Maps.push_back(M.second);
std::sort(Maps.begin(), Maps.end(),
[](const SILCoverageMap *LHS, const SILCoverageMap *RHS) -> bool {
return LHS->getName().compare(RHS->getName()) == -1;
});
for (const SILCoverageMap *M : Maps)
M->print(Ctx);
}
void SILProperty::print(SILPrintContext &Ctx) const {
PrintOptions Options = PrintOptions::printSIL();
auto &OS = Ctx.OS();
OS << "sil_property ";
if (isSerialized())
OS << "[serialized] ";
OS << '#';
printValueDecl(getDecl(), OS);
if (auto sig = getDecl()->getInnermostDeclContext()
->getGenericSignatureOfContext()) {
sig->getCanonicalSignature()->print(OS, Options);
}
OS << " (";
if (auto component = getComponent())
SILPrinter(Ctx).printKeyPathPatternComponent(*component);
OS << ")\n";
}
void SILProperty::dump() const {
SILPrintContext context(llvm::errs());
print(context);
}
static void printSILProperties(SILPrintContext &Ctx,
const SILModule::PropertyListType &Properties) {
for (const SILProperty &P : Properties) {
P.print(Ctx);
}
}
/// Pretty-print the SILModule to the designated stream.
void SILModule::print(SILPrintContext &PrintCtx, ModuleDecl *M,
bool PrintASTDecls) const {
llvm::raw_ostream &OS = PrintCtx.OS();
OS << "sil_stage ";
switch (Stage) {
case SILStage::Raw:
OS << "raw";
break;
case SILStage::Canonical:
OS << "canonical";
break;
case SILStage::Lowered:
OS << "lowered";
break;
}
OS << "\n\nimport " << BUILTIN_NAME
<< "\nimport " << STDLIB_NAME
<< "\nimport " << SWIFT_SHIMS_NAME << "\n\n";
// Print the declarations and types from the associated context (origin module or
// current file).
if (M && PrintASTDecls) {
PrintOptions Options = PrintOptions::printSIL();
Options.TypeDefinitions = true;
Options.VarInitializers = true;
// FIXME: ExplodePatternBindingDecls is incompatible with VarInitializers!
Options.ExplodePatternBindingDecls = true;
Options.SkipImplicit = false;
Options.PrintGetSetOnRWProperties = true;
Options.PrintInSILBody = false;
bool WholeModuleMode = (M == AssociatedDeclContext);
SmallVector<Decl *, 32> topLevelDecls;
M->getTopLevelDecls(topLevelDecls);
for (const Decl *D : topLevelDecls) {
if (!WholeModuleMode && !(D->getDeclContext() == AssociatedDeclContext))
continue;
if ((isa<ValueDecl>(D) || isa<OperatorDecl>(D) ||
isa<ExtensionDecl>(D) || isa<ImportDecl>(D)) &&
!D->isImplicit()) {
if (isa<AccessorDecl>(D))
continue;
// skip to visit ASTPrinter to avoid sil-opt prints duplicated import declarations
if (auto importDecl = dyn_cast<ImportDecl>(D)) {
StringRef importName = importDecl->getModule()->getName().str();
if (importName == BUILTIN_NAME ||
importName == STDLIB_NAME ||
importName == SWIFT_SHIMS_NAME)
continue;
}
D->print(OS, Options);
OS << "\n\n";
}
}
}
printSILGlobals(PrintCtx, getSILGlobalList());
printSILFunctions(PrintCtx, getFunctionList());
printSILVTables(PrintCtx, getVTableList());
printSILWitnessTables(PrintCtx, getWitnessTableList());
printSILDefaultWitnessTables(PrintCtx, getDefaultWitnessTableList());
printSILCoverageMaps(PrintCtx, getCoverageMaps());
printSILProperties(PrintCtx, getPropertyList());
OS << "\n\n";
}
void SILNode::dumpInContext() const {
printInContext(llvm::errs());
}
void SILNode::printInContext(llvm::raw_ostream &OS) const {
SILPrintContext Ctx(OS);
SILPrinter(Ctx).printInContext(this);
}
void SILInstruction::dumpInContext() const {
printInContext(llvm::errs());
}
void SILInstruction::printInContext(llvm::raw_ostream &OS) const {
SILPrintContext Ctx(OS);
SILPrinter(Ctx).printInContext(this);
}
void SILVTable::print(llvm::raw_ostream &OS, bool Verbose) const {
OS << "sil_vtable ";
if (isSerialized())
OS << "[serialized] ";
OS << getClass()->getName() << " {\n";
PrintOptions QualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
for (auto &entry : getEntries()) {
OS << " ";
entry.Method.print(OS);
OS << ": ";
bool HasSingleImplementation = false;
switch (entry.Method.kind) {
default:
break;
case SILDeclRef::Kind::IVarDestroyer:
case SILDeclRef::Kind::Destroyer:
case SILDeclRef::Kind::Deallocator:
HasSingleImplementation = true;
}
// No need to emit the signature for methods that may have only
// single implementation, e.g. for destructors.
if (!HasSingleImplementation) {
QualifiedSILTypeOptions.CurrentModule =
entry.Method.getDecl()->getDeclContext()->getParentModule();
entry.Method.getDecl()->getInterfaceType().print(OS,
QualifiedSILTypeOptions);
OS << " : ";
}
if (entry.Linkage !=
stripExternalFromLinkage(entry.Implementation->getLinkage())) {
OS << getLinkageString(entry.Linkage);
}
OS << '@' << entry.Implementation->getName();
switch (entry.TheKind) {
case SILVTable::Entry::Kind::Normal:
break;
case SILVTable::Entry::Kind::Inherited:
OS << " [inherited]";
break;
case SILVTable::Entry::Kind::Override:
OS << " [override]";
break;
}
OS << "\t// " << demangleSymbol(entry.Implementation->getName());
OS << "\n";
}
OS << "}\n\n";
}
void SILVTable::dump() const {
print(llvm::errs());
}
/// Returns true if anything was printed.
static bool printAssociatedTypePath(llvm::raw_ostream &OS, CanType path) {
if (auto memberType = dyn_cast<DependentMemberType>(path)) {
if (printAssociatedTypePath(OS, memberType.getBase()))
OS << '.';
OS << memberType->getName().str();
return true;
} else {
assert(isa<GenericTypeParamType>(path));
return false;
}
}
void SILWitnessTable::Entry::print(llvm::raw_ostream &out, bool verbose,
const PrintOptions &options) const {
PrintOptions QualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
out << " ";
switch (getKind()) {
case WitnessKind::Invalid:
out << "no_default";
break;
case WitnessKind::Method: {
// method #declref: @function
auto &methodWitness = getMethodWitness();
out << "method ";
methodWitness.Requirement.print(out);
out << ": ";
QualifiedSILTypeOptions.CurrentModule =
methodWitness.Requirement.getDecl()
->getDeclContext()
->getParentModule();
methodWitness.Requirement.getDecl()->getInterfaceType().print(
out, QualifiedSILTypeOptions);
out << " : ";
if (methodWitness.Witness) {
methodWitness.Witness->printName(out);
out << "\t// "
<< demangleSymbol(methodWitness.Witness->getName());
} else {
out << "nil";
}
break;
}
case WitnessKind::AssociatedType: {
// associated_type AssociatedTypeName: ConformingType
auto &assocWitness = getAssociatedTypeWitness();
out << "associated_type ";
out << assocWitness.Requirement->getName() << ": ";
assocWitness.Witness->print(out, options);
break;
}
case WitnessKind::AssociatedTypeProtocol: {
// associated_type_protocol (AssociatedTypeName: Protocol): <conformance>
auto &assocProtoWitness = getAssociatedTypeProtocolWitness();
out << "associated_type_protocol (";
(void) printAssociatedTypePath(out, assocProtoWitness.Requirement);
out << ": " << assocProtoWitness.Protocol->getName() << "): ";
if (assocProtoWitness.Witness.isConcrete())
assocProtoWitness.Witness.getConcrete()->printName(out, options);
else
out << "dependent";
break;
}
case WitnessKind::BaseProtocol: {
// base_protocol Protocol: <conformance>
auto &baseProtoWitness = getBaseProtocolWitness();
out << "base_protocol "
<< baseProtoWitness.Requirement->getName() << ": ";
baseProtoWitness.Witness->printName(out, options);
break;
}
}
out << '\n';
}
void SILWitnessTable::print(llvm::raw_ostream &OS, bool Verbose) const {
PrintOptions Options = PrintOptions::printSIL();
PrintOptions QualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
OS << "sil_witness_table ";
printLinkage(OS, getLinkage(), /*isDefinition*/ isDefinition());
if (isSerialized())
OS << "[serialized] ";
getConformance()->printName(OS, Options);
Options.GenericEnv =
getConformance()->getDeclContext()->getGenericEnvironmentOfContext();
if (isDeclaration()) {
OS << "\n\n";
return;
}
OS << " {\n";
for (auto &witness : getEntries()) {
witness.print(OS, Verbose, Options);
}
for (auto conditionalConformance : getConditionalConformances()) {
// conditional_conformance (TypeName: Protocol):
// <conformance>
OS << " conditional_conformance (";
conditionalConformance.Requirement.print(OS, Options);
OS << ": " << conditionalConformance.Conformance.getRequirement()->getName()
<< "): ";
if (conditionalConformance.Conformance.isConcrete())
conditionalConformance.Conformance.getConcrete()->printName(OS, Options);
else
OS << "dependent";
OS << '\n';
}
OS << "}\n\n";
}
void SILWitnessTable::dump() const {
print(llvm::errs());
}
void SILDefaultWitnessTable::print(llvm::raw_ostream &OS, bool Verbose) const {
// sil_default_witness_table [<Linkage>] <Protocol> <MinSize>
PrintOptions QualifiedSILTypeOptions = PrintOptions::printQualifiedSILType();
OS << "sil_default_witness_table ";
printLinkage(OS, getLinkage(), ForDefinition);
OS << getProtocol()->getName() << " {\n";
PrintOptions options = PrintOptions::printSIL();
options.GenericEnv = Protocol->getGenericEnvironmentOfContext();
for (auto &witness : getEntries()) {
witness.print(OS, Verbose, options);
}
OS << "}\n\n";
}
void SILDefaultWitnessTable::dump() const {
print(llvm::errs());
}
void SILCoverageMap::print(SILPrintContext &PrintCtx) const {
llvm::raw_ostream &OS = PrintCtx.OS();
OS << "sil_coverage_map " << QuotedString(getFile()) << " "
<< QuotedString(getName()) << " " << QuotedString(getPGOFuncName()) << " "
<< getHash() << " {\t// " << demangleSymbol(getName()) << "\n";
if (PrintCtx.sortSIL())
std::sort(MappedRegions.begin(), MappedRegions.end(),
[](const MappedRegion &LHS, const MappedRegion &RHS) {
return std::tie(LHS.StartLine, LHS.StartCol, LHS.EndLine, LHS.EndCol) <
std::tie(RHS.StartLine, RHS.StartCol, RHS.EndLine, RHS.EndCol);
});
for (auto &MR : getMappedRegions()) {
OS << " " << MR.StartLine << ":" << MR.StartCol << " -> " << MR.EndLine
<< ":" << MR.EndCol << " : ";
printCounter(OS, MR.Counter);
OS << "\n";
}
OS << "}\n\n";
}
void SILCoverageMap::dump() const {
print(llvm::errs());
}
#ifndef NDEBUG
void SILDebugScope::dump(SourceManager &SM, llvm::raw_ostream &OS,
unsigned Indent) const {
OS << "{\n";
OS.indent(Indent);
if (Loc.isASTNode())
Loc.getSourceLoc().print(OS, SM);
OS << "\n";
OS.indent(Indent + 2);
OS << " parent: ";
if (auto *P = Parent.dyn_cast<const SILDebugScope *>()) {
P->dump(SM, OS, Indent + 2);
OS.indent(Indent + 2);
}
else if (auto *F = Parent.dyn_cast<SILFunction *>())
OS << "@" << F->getName();
else
OS << "nullptr";
OS << "\n";
OS.indent(Indent + 2);
if (auto *CS = InlinedCallSite) {
OS << "inlinedCallSite: ";
CS->dump(SM, OS, Indent + 2);
OS.indent(Indent + 2);
}
OS << "}\n";
}
#endif
void SILSpecializeAttr::print(llvm::raw_ostream &OS) const {
SILPrintContext Ctx(OS);
// Print other types as their Swift representation.
PrintOptions SubPrinter = PrintOptions::printSIL();
auto exported = isExported() ? "true" : "false";
auto kind = isPartialSpecialization() ? "partial" : "full";
OS << "exported: " << exported << ", ";
OS << "kind: " << kind << ", ";
if (!getRequirements().empty()) {
OS << "where ";
SILFunction *F = getFunction();
assert(F);
auto GenericEnv = F->getGenericEnvironment();
interleave(getRequirements(),
[&](Requirement req) {
if (!GenericEnv) {
req.print(OS, SubPrinter);
return;
}
// Use GenericEnvironment to produce user-friendly
// names instead of something like t_0_0.
auto FirstTy = GenericEnv->getSugaredType(req.getFirstType());
if (req.getKind() != RequirementKind::Layout) {
auto SecondTy =
GenericEnv->getSugaredType(req.getSecondType());
Requirement ReqWithDecls(req.getKind(), FirstTy, SecondTy);
ReqWithDecls.print(OS, SubPrinter);
} else {
Requirement ReqWithDecls(req.getKind(), FirstTy,
req.getLayoutConstraint());
ReqWithDecls.print(OS, SubPrinter);
}
},
[&] { OS << ", "; });
}
}
//===----------------------------------------------------------------------===//
// SILPrintContext members
//===----------------------------------------------------------------------===//
SILPrintContext::SILPrintContext(llvm::raw_ostream &OS, bool Verbose,
bool SortedSIL) :
OutStream(OS), Verbose(Verbose), SortedSIL(SortedSIL),
DebugInfo(SILPrintDebugInfo) { }
SILPrintContext::SILPrintContext(llvm::raw_ostream &OS, bool Verbose,
bool SortedSIL, bool DebugInfo) :
OutStream(OS), Verbose(Verbose), SortedSIL(SortedSIL),
DebugInfo(DebugInfo) { }
void SILPrintContext::setContext(const void *FunctionOrBlock) {
if (FunctionOrBlock != ContextFunctionOrBlock) {
BlocksToIDMap.clear();
ValueToIDMap.clear();
ContextFunctionOrBlock = FunctionOrBlock;
}
}
SILPrintContext::~SILPrintContext() {
}
void SILPrintContext::printInstructionCallBack(const SILInstruction *I) {
}
void SILPrintContext::initBlockIDs(ArrayRef<const SILBasicBlock *> Blocks) {
if (Blocks.empty())
return;
setContext(Blocks[0]->getParent());
// Initialize IDs so our IDs are in RPOT as well. This is a hack.
for (unsigned Index : indices(Blocks))
BlocksToIDMap[Blocks[Index]] = Index;
}
ID SILPrintContext::getID(const SILBasicBlock *Block) {
setContext(Block->getParent());
// Lazily initialize the Blocks-to-IDs mapping.
// If we are asked to emit sorted SIL, print out our BBs in RPOT order.
if (BlocksToIDMap.empty()) {
if (sortSIL()) {
std::vector<SILBasicBlock *> RPOT;
auto *UnsafeF = const_cast<SILFunction *>(Block->getParent());
std::copy(po_begin(UnsafeF), po_end(UnsafeF), std::back_inserter(RPOT));
std::reverse(RPOT.begin(), RPOT.end());
// Initialize IDs so our IDs are in RPOT as well. This is a hack.
for (unsigned Index : indices(RPOT))
BlocksToIDMap[RPOT[Index]] = Index;
} else {
unsigned idx = 0;
for (const SILBasicBlock &B : *Block->getParent())
BlocksToIDMap[&B] = idx++;
}
}
ID R = {ID::SILBasicBlock, BlocksToIDMap[Block]};
return R;
}
ID SILPrintContext::getID(const SILNode *node) {
if (node == nullptr)
return {ID::Null, ~0U};
if (isa<SILUndef>(node))
return {ID::SILUndef, 0};
SILBasicBlock *BB = node->getParentBlock();
if (SILFunction *F = BB->getParent()) {
setContext(F);
// Lazily initialize the instruction -> ID mapping.
if (ValueToIDMap.empty())
F->numberValues(ValueToIDMap);
ID R = {ID::SSAValue, ValueToIDMap[node]};
return R;
}
setContext(BB);
// Check if we have initialized our ValueToIDMap yet. If we have, just use
// that.
if (!ValueToIDMap.empty()) {
ID R = {ID::SSAValue, ValueToIDMap[node]};
return R;
}
// Otherwise, initialize the instruction -> ID mapping cache.
unsigned idx = 0;
for (auto &I : *BB) {
// Give the instruction itself the next ID.
ValueToIDMap[&I] = idx;
// If there are no results, make sure we don't reuse that ID.
auto results = I.getResults();
if (results.empty()) {
idx++;
continue;
}
// Otherwise, assign all of the results an index. Note that
// we'll assign the same ID to both the instruction and the
// first result.
for (auto result : results) {
ValueToIDMap[result] = idx++;
}
}
ID R = {ID::SSAValue, ValueToIDMap[node]};
return R;
}