blob: 44ed34ebd014d8074e2afa266a646013e9c7f96f [file] [log] [blame]
//===--- SILDeclRef.cpp - Implements SILDeclRef ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILLocation.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ParameterList.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/SILLinkage.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
using namespace swift;
/// Get the method dispatch mechanism for a method.
MethodDispatch
swift::getMethodDispatch(AbstractFunctionDecl *method) {
// Some methods are forced to be statically dispatched.
if (method->hasForcedStaticDispatch())
return MethodDispatch::Static;
// Import-as-member declarations are always statically referenced.
if (method->isImportAsMember())
return MethodDispatch::Static;
auto dc = method->getDeclContext();
if (dc->getSelfClassDecl()) {
if (method->isObjCDynamic()) {
return MethodDispatch::Class;
}
// Final methods can be statically referenced.
if (method->isFinal())
return MethodDispatch::Static;
// Imported class methods are dynamically dispatched.
if (method->isObjC() && method->hasClangNode())
return MethodDispatch::Class;
// Members defined directly inside a class are dynamically dispatched.
if (isa<ClassDecl>(dc)) {
// Native convenience initializers are not dynamically dispatched unless
// required.
if (auto ctor = dyn_cast<ConstructorDecl>(method)) {
if (!ctor->isRequired() && !ctor->isDesignatedInit()
&& !requiresForeignEntryPoint(ctor))
return MethodDispatch::Static;
}
return MethodDispatch::Class;
}
}
// Otherwise, it can be referenced statically.
return MethodDispatch::Static;
}
bool swift::requiresForeignToNativeThunk(ValueDecl *vd) {
// Functions imported from C, Objective-C methods imported from Objective-C,
// as well as methods in @objc protocols (even protocols defined in Swift)
// require a foreign to native thunk.
auto dc = vd->getDeclContext();
if (auto proto = dyn_cast<ProtocolDecl>(dc))
if (proto->isObjC())
return true;
if (auto fd = dyn_cast<FuncDecl>(vd))
return fd->hasClangNode();
return false;
}
bool swift::requiresForeignEntryPoint(ValueDecl *vd) {
assert(!isa<AbstractStorageDecl>(vd));
if (vd->isObjCDynamic()) {
return true;
}
if (vd->isObjC() && isa<ProtocolDecl>(vd->getDeclContext()))
return true;
if (vd->isImportAsMember())
return true;
if (vd->hasClangNode())
return true;
if (auto *accessor = dyn_cast<AccessorDecl>(vd)) {
// Property accessors should be generated alongside the property.
if (accessor->isGetterOrSetter()) {
auto *asd = accessor->getStorage();
if (asd->isObjC() && asd->hasClangNode())
return true;
}
}
return false;
}
SILDeclRef::SILDeclRef(ValueDecl *vd, SILDeclRef::Kind kind,
bool isCurried, bool isForeign)
: loc(vd), kind(kind),
isCurried(isCurried), isForeign(isForeign),
isDirectReference(0), defaultArgIndex(0)
{}
SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc,
bool isCurried, bool asForeign)
: isCurried(isCurried), isDirectReference(0), defaultArgIndex(0)
{
if (auto *vd = baseLoc.dyn_cast<ValueDecl*>()) {
if (auto *fd = dyn_cast<FuncDecl>(vd)) {
// Map FuncDecls directly to Func SILDeclRefs.
loc = fd;
kind = Kind::Func;
}
// Map ConstructorDecls to the Allocator SILDeclRef of the constructor.
else if (auto *cd = dyn_cast<ConstructorDecl>(vd)) {
loc = cd;
kind = Kind::Allocator;
}
// Map EnumElementDecls to the EnumElement SILDeclRef of the element.
else if (auto *ed = dyn_cast<EnumElementDecl>(vd)) {
loc = ed;
kind = Kind::EnumElement;
}
// VarDecl constants require an explicit kind.
else if (isa<VarDecl>(vd)) {
llvm_unreachable("must create SILDeclRef for VarDecl with explicit kind");
}
// Map DestructorDecls to the Deallocator of the destructor.
else if (auto dtor = dyn_cast<DestructorDecl>(vd)) {
loc = dtor;
kind = Kind::Deallocator;
}
else {
llvm_unreachable("invalid loc decl for SILDeclRef!");
}
} else if (auto *ACE = baseLoc.dyn_cast<AbstractClosureExpr *>()) {
loc = ACE;
kind = Kind::Func;
} else {
llvm_unreachable("impossible SILDeclRef loc");
}
isForeign = asForeign;
}
Optional<AnyFunctionRef> SILDeclRef::getAnyFunctionRef() const {
if (auto vd = loc.dyn_cast<ValueDecl*>()) {
if (auto afd = dyn_cast<AbstractFunctionDecl>(vd)) {
return AnyFunctionRef(afd);
} else {
return None;
}
}
return AnyFunctionRef(loc.get<AbstractClosureExpr*>());
}
bool SILDeclRef::isThunk() const {
return isCurried || isForeignToNativeThunk() || isNativeToForeignThunk();
}
bool SILDeclRef::isClangImported() const {
if (!hasDecl())
return false;
ValueDecl *d = getDecl();
DeclContext *moduleContext = d->getDeclContext()->getModuleScopeContext();
if (isa<ClangModuleUnit>(moduleContext)) {
if (isClangGenerated())
return true;
if (isa<ConstructorDecl>(d) || isa<EnumElementDecl>(d))
return !isForeign;
if (auto *FD = dyn_cast<FuncDecl>(d))
if (isa<AccessorDecl>(FD) ||
isa<NominalTypeDecl>(d->getDeclContext()))
return !isForeign;
}
return false;
}
bool SILDeclRef::isClangGenerated() const {
if (!hasDecl())
return false;
return isClangGenerated(getDecl()->getClangNode());
}
// FIXME: this is a weird predicate.
bool SILDeclRef::isClangGenerated(ClangNode node) {
if (auto nd = dyn_cast_or_null<clang::NamedDecl>(node.getAsDecl())) {
// ie, 'static inline' functions for which we must ask Clang to emit a body
// for explicitly
if (!nd->isExternallyVisible())
return true;
}
return false;
}
bool SILDeclRef::isImplicit() const {
if (hasDecl())
return getDecl()->isImplicit();
return getAbstractClosureExpr()->isImplicit();
}
SILLinkage SILDeclRef::getLinkage(ForDefinition_t forDefinition) const {
if (getAbstractClosureExpr()) {
return isSerialized() ? SILLinkage::Shared : SILLinkage::Private;
}
// Add External to the linkage (e.g. Public -> PublicExternal) if this is a
// declaration not a definition.
auto maybeAddExternal = [&](SILLinkage linkage) {
return forDefinition ? linkage : addExternalToLinkage(linkage);
};
// Native function-local declarations have shared linkage.
// FIXME: @objc declarations should be too, but we currently have no way
// of marking them "used" other than making them external.
ValueDecl *d = getDecl();
DeclContext *moduleContext = d->getDeclContext();
while (!moduleContext->isModuleScopeContext()) {
if (!isForeign && moduleContext->isLocalContext()) {
return isSerialized() ? SILLinkage::Shared : SILLinkage::Private;
}
moduleContext = moduleContext->getParent();
}
// Enum constructors and curry thunks either have private or shared
// linkage, dependings are essentially the same as thunks, they are
// emitted by need and have shared linkage.
if (isEnumElement() || isCurried) {
switch (d->getEffectiveAccess()) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return maybeAddExternal(SILLinkage::Private);
case AccessLevel::Internal:
case AccessLevel::Public:
case AccessLevel::Open:
return SILLinkage::Shared;
}
}
// Calling convention thunks have shared linkage.
if (isForeignToNativeThunk())
return SILLinkage::Shared;
// If a function declares a @_cdecl name, its native-to-foreign thunk
// is exported with the visibility of the function.
if (isNativeToForeignThunk() && !d->getAttrs().hasAttribute<CDeclAttr>())
return SILLinkage::Shared;
// Declarations imported from Clang modules have shared linkage.
if (isClangImported())
return SILLinkage::Shared;
// Default argument generators of Public functions have PublicNonABI linkage
// if the function was type-checked in Swift 4 mode.
if (kind == SILDeclRef::Kind::DefaultArgGenerator) {
if (isSerialized())
return maybeAddExternal(SILLinkage::PublicNonABI);
}
enum class Limit {
/// No limit.
None,
/// The declaration is emitted on-demand; it should end up with internal
/// or shared linkage.
OnDemand,
/// The declaration should never be made public.
NeverPublic,
/// The declaration should always be emitted into the client,
AlwaysEmitIntoClient,
};
auto limit = Limit::None;
// @_alwaysEmitIntoClient declarations are like the default arguments of
// public functions; they are roots for dead code elimination and have
// serialized bodies, but no public symbol in the generated binary.
if (d->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
limit = Limit::AlwaysEmitIntoClient;
// ivar initializers and destroyers are completely contained within the class
// from which they come, and never get seen externally.
if (isIVarInitializerOrDestroyer()) {
limit = Limit::NeverPublic;
}
// Stored property initializers get the linkage of their containing type.
if (isStoredPropertyInitializer()) {
// Three cases:
//
// 1) Type is formally @_fixed_layout. Root initializers can be declared
// @inlinable. The property initializer must only reference
// public symbols, and is serialized, so we give it PublicNonABI linkage.
//
// 2) Type is not formally @_fixed_layout and the module is not resilient.
// Root initializers can be declared @inlinable. This is the annoying
// case. We give the initializer public linkage if the type is public.
//
// 3) Type is resilient. The property initializer is never public because
// root initializers cannot be @inlinable.
//
// FIXME: Get rid of case 2 somehow.
if (isSerialized())
return maybeAddExternal(SILLinkage::PublicNonABI);
d = cast<NominalTypeDecl>(d->getDeclContext());
// FIXME: This should always be true.
if (d->getModuleContext()->isResilient())
limit = Limit::NeverPublic;
}
// The global addressor is never public for resilient globals.
if (kind == Kind::GlobalAccessor) {
if (cast<VarDecl>(d)->isResilient()) {
limit = Limit::NeverPublic;
}
}
// Forced-static-dispatch functions are created on-demand and have
// at best shared linkage.
if (auto fn = dyn_cast<FuncDecl>(d)) {
if (fn->hasForcedStaticDispatch()) {
limit = Limit::OnDemand;
}
}
auto effectiveAccess = d->getEffectiveAccess();
// Private setter implementations for an internal storage declaration should
// be internal as well, so that a dynamically-writable
// keypath can be formed from other files.
if (auto accessor = dyn_cast<AccessorDecl>(d)) {
if (accessor->isSetter()
&& accessor->getStorage()->getEffectiveAccess() == AccessLevel::Internal)
effectiveAccess = AccessLevel::Internal;
}
switch (effectiveAccess) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return maybeAddExternal(SILLinkage::Private);
case AccessLevel::Internal:
if (limit == Limit::OnDemand)
return SILLinkage::Shared;
return maybeAddExternal(SILLinkage::Hidden);
case AccessLevel::Public:
case AccessLevel::Open:
if (limit == Limit::OnDemand)
return SILLinkage::Shared;
if (limit == Limit::NeverPublic)
return maybeAddExternal(SILLinkage::Hidden);
if (limit == Limit::AlwaysEmitIntoClient)
return maybeAddExternal(SILLinkage::PublicNonABI);
return maybeAddExternal(SILLinkage::Public);
}
llvm_unreachable("unhandled access");
}
SILDeclRef SILDeclRef::getDefaultArgGenerator(Loc loc,
unsigned defaultArgIndex) {
SILDeclRef result;
result.loc = loc;
result.kind = Kind::DefaultArgGenerator;
result.defaultArgIndex = defaultArgIndex;
return result;
}
bool SILDeclRef::hasClosureExpr() const {
return loc.is<AbstractClosureExpr *>()
&& isa<ClosureExpr>(getAbstractClosureExpr());
}
bool SILDeclRef::hasAutoClosureExpr() const {
return loc.is<AbstractClosureExpr *>()
&& isa<AutoClosureExpr>(getAbstractClosureExpr());
}
bool SILDeclRef::hasFuncDecl() const {
return loc.is<ValueDecl *>() && isa<FuncDecl>(getDecl());
}
ClosureExpr *SILDeclRef::getClosureExpr() const {
return dyn_cast<ClosureExpr>(getAbstractClosureExpr());
}
AutoClosureExpr *SILDeclRef::getAutoClosureExpr() const {
return dyn_cast<AutoClosureExpr>(getAbstractClosureExpr());
}
FuncDecl *SILDeclRef::getFuncDecl() const {
return dyn_cast<FuncDecl>(getDecl());
}
bool SILDeclRef::isSetter() const {
if (!hasDecl())
return false;
if (auto accessor = dyn_cast<AccessorDecl>(getDecl()))
return accessor->isSetter();
return false;
}
AbstractFunctionDecl *SILDeclRef::getAbstractFunctionDecl() const {
return dyn_cast<AbstractFunctionDecl>(getDecl());
}
/// True if the function should be treated as transparent.
bool SILDeclRef::isTransparent() const {
if (isEnumElement())
return true;
if (isStoredPropertyInitializer())
return true;
if (hasAutoClosureExpr())
return true;
if (hasDecl()) {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(getDecl()))
return AFD->isTransparent();
if (auto *ASD = dyn_cast<AbstractStorageDecl>(getDecl()))
return ASD->isTransparent();
}
return false;
}
/// True if the function should have its body serialized.
IsSerialized_t SILDeclRef::isSerialized() const {
DeclContext *dc;
if (auto closure = getAbstractClosureExpr()) {
dc = closure->getLocalContext();
// Otherwise, ask the AST if we're inside an @inlinable context.
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal) {
if (isForeign)
return IsSerializable;
return IsSerialized;
}
return IsNotSerialized;
}
if (isIVarInitializerOrDestroyer())
return IsNotSerialized;
auto *d = getDecl();
// Default argument generators are serialized if the containing
// declaration is public.
if (isDefaultArgGenerator()) {
auto scope =
d->getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
if (scope.isPublic())
return IsSerialized;
return IsNotSerialized;
}
// Stored property initializers are inlinable if the type is explicitly
// marked as @_fixed_layout.
if (isStoredPropertyInitializer()) {
auto *nominal = cast<NominalTypeDecl>(d->getDeclContext());
auto scope =
nominal->getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
if (!scope.isPublic())
return IsNotSerialized;
if (nominal->isFormallyResilient())
return IsNotSerialized;
return IsSerialized;
}
// Note: if 'd' is a function, then 'dc' is the function itself, not
// its parent context.
dc = d->getInnermostDeclContext();
// Local functions are serializable if their parent function is
// serializable.
if (d->getDeclContext()->isLocalContext()) {
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
return IsSerializable;
return IsNotSerialized;
}
// Anything else that is not public is not serializable.
if (d->getEffectiveAccess() < AccessLevel::Public)
return IsNotSerialized;
// 'read' and 'modify' accessors synthesized on-demand are serialized if
// visible outside the module.
if (auto fn = dyn_cast<FuncDecl>(d))
if (!isClangImported() &&
fn->hasForcedStaticDispatch())
return IsSerialized;
// Enum element constructors are serializable if the enum is
// @usableFromInline or public.
if (isEnumElement())
return IsSerializable;
// Currying thunks are serialized if referenced from an inlinable
// context -- Sema's semantic checks ensure the serialization of
// such a thunk is valid, since it must in turn reference a public
// symbol, or dispatch via class_method or witness_method.
if (isCurried)
return IsSerializable;
if (isForeignToNativeThunk())
return IsSerializable;
// The allocating entry point for designated initializers are serialized
// if the class is @usableFromInline or public.
if (kind == SILDeclRef::Kind::Allocator) {
auto *ctor = cast<ConstructorDecl>(d);
if (ctor->isDesignatedInit() &&
ctor->getDeclContext()->getSelfClassDecl()) {
if (!ctor->hasClangNode())
return IsSerialized;
}
}
if (isForeign) {
// @objc thunks for methods are not serializable since they're only
// referenced from the method table.
if (d->getDeclContext()->isTypeContext())
return IsNotSerialized;
// @objc thunks for top-level functions are serializable since they're
// referenced from @convention(c) conversions inside inlinable
// functions.
return IsSerializable;
}
// Declarations imported from Clang modules are serialized if
// referenced from an inlinable context.
if (isClangImported())
return IsSerializable;
// Otherwise, ask the AST if we're inside an @inlinable context.
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
return IsSerialized;
return IsNotSerialized;
}
/// True if the function has an @inline(never) attribute.
bool SILDeclRef::isNoinline() const {
if (!hasDecl())
return false;
auto *decl = getDecl();
if (auto *attr = decl->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Never)
return true;
if (auto *accessorDecl = dyn_cast<AccessorDecl>(decl)) {
auto *storage = accessorDecl->getStorage();
if (auto *attr = storage->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Never)
return true;
}
return false;
}
/// True if the function has the @inline(__always) attribute.
bool SILDeclRef::isAlwaysInline() const {
if (!hasDecl())
return false;
auto *decl = getDecl();
if (auto attr = decl->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Always)
return true;
if (auto *accessorDecl = dyn_cast<AccessorDecl>(decl)) {
auto *storage = accessorDecl->getStorage();
if (auto *attr = storage->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Always)
return true;
}
return false;
}
bool SILDeclRef::hasEffectsAttribute() const {
if (!hasDecl())
return false;
return getDecl()->getAttrs().hasAttribute<EffectsAttr>();
}
EffectsKind SILDeclRef::getEffectsAttribute() const {
assert(hasEffectsAttribute());
EffectsAttr *MA = getDecl()->getAttrs().getAttribute<EffectsAttr>();
return MA->getKind();
}
bool SILDeclRef::isForeignToNativeThunk() const {
// Non-decl entry points are never natively foreign, so they would never
// have a foreign-to-native thunk.
if (!hasDecl())
return false;
if (requiresForeignToNativeThunk(getDecl()))
return !isForeign;
// ObjC initializing constructors and factories are foreign.
// We emit a special native allocating constructor though.
if (isa<ConstructorDecl>(getDecl())
&& (kind == Kind::Initializer
|| cast<ConstructorDecl>(getDecl())->isFactoryInit())
&& getDecl()->hasClangNode())
return !isForeign;
return false;
}
bool SILDeclRef::isNativeToForeignThunk() const {
// We can have native-to-foreign thunks over closures.
if (!hasDecl())
return isForeign;
// We can have native-to-foreign thunks over global or local native functions.
// TODO: Static functions too.
if (auto func = dyn_cast<FuncDecl>(getDecl())) {
if (!func->getDeclContext()->isTypeContext()
&& !func->hasClangNode())
return isForeign;
}
return false;
}
/// Use the Clang importer to mangle a Clang declaration.
static void mangleClangDecl(raw_ostream &buffer,
const clang::NamedDecl *clangDecl,
ASTContext &ctx) {
auto *importer = static_cast<ClangImporter *>(ctx.getClangModuleLoader());
importer->getMangledName(buffer, clangDecl);
}
std::string SILDeclRef::mangle(ManglingKind MKind) const {
using namespace Mangle;
ASTMangler mangler;
// As a special case, Clang functions and globals don't get mangled at all.
if (hasDecl()) {
if (auto clangDecl = getDecl()->getClangDecl()) {
if (!isForeignToNativeThunk() && !isNativeToForeignThunk()
&& !isCurried) {
if (auto namedClangDecl = dyn_cast<clang::DeclaratorDecl>(clangDecl)) {
if (auto asmLabel = namedClangDecl->getAttr<clang::AsmLabelAttr>()) {
std::string s(1, '\01');
s += asmLabel->getLabel();
return s;
} else if (namedClangDecl->hasAttr<clang::OverloadableAttr>()) {
std::string storage;
llvm::raw_string_ostream SS(storage);
// FIXME: When we can import C++, use Clang's mangler all the time.
mangleClangDecl(SS, namedClangDecl, getDecl()->getASTContext());
return SS.str();
}
return namedClangDecl->getName();
}
}
}
}
ASTMangler::SymbolKind SKind = ASTMangler::SymbolKind::Default;
switch (MKind) {
case SILDeclRef::ManglingKind::Default:
if (isForeign) {
SKind = ASTMangler::SymbolKind::SwiftAsObjCThunk;
} else if (isDirectReference) {
SKind = ASTMangler::SymbolKind::DirectMethodReferenceThunk;
} else if (isForeignToNativeThunk()) {
SKind = ASTMangler::SymbolKind::ObjCAsSwiftThunk;
}
break;
case SILDeclRef::ManglingKind::DynamicThunk:
SKind = ASTMangler::SymbolKind::DynamicThunk;
break;
}
switch (kind) {
case SILDeclRef::Kind::Func:
if (!hasDecl())
return mangler.mangleClosureEntity(getAbstractClosureExpr(), SKind);
// As a special case, functions can have manually mangled names.
// Use the SILGen name only for the original non-thunked, non-curried entry
// point.
if (auto NameA = getDecl()->getAttrs().getAttribute<SILGenNameAttr>())
if (!NameA->Name.empty() &&
!isForeignToNativeThunk() && !isNativeToForeignThunk()
&& !isCurried) {
return NameA->Name;
}
// Use a given cdecl name for native-to-foreign thunks.
if (auto CDeclA = getDecl()->getAttrs().getAttribute<CDeclAttr>())
if (isNativeToForeignThunk()) {
return CDeclA->Name;
}
// Otherwise, fall through into the 'other decl' case.
LLVM_FALLTHROUGH;
case SILDeclRef::Kind::EnumElement:
return mangler.mangleEntity(getDecl(), isCurried, SKind);
case SILDeclRef::Kind::Deallocator:
assert(!isCurried);
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
/*isDeallocating*/ true,
SKind);
case SILDeclRef::Kind::Destroyer:
assert(!isCurried);
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
/*isDeallocating*/ false,
SKind);
case SILDeclRef::Kind::Allocator:
return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
/*allocating*/ true,
isCurried,
SKind);
case SILDeclRef::Kind::Initializer:
return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
/*allocating*/ false,
isCurried,
SKind);
case SILDeclRef::Kind::IVarInitializer:
case SILDeclRef::Kind::IVarDestroyer:
assert(!isCurried);
return mangler.mangleIVarInitDestroyEntity(cast<ClassDecl>(getDecl()),
kind == SILDeclRef::Kind::IVarDestroyer,
SKind);
case SILDeclRef::Kind::GlobalAccessor:
assert(!isCurried);
return mangler.mangleAccessorEntity(AccessorKind::MutableAddress,
cast<AbstractStorageDecl>(getDecl()),
/*isStatic*/ false,
SKind);
case SILDeclRef::Kind::DefaultArgGenerator:
assert(!isCurried);
return mangler.mangleDefaultArgumentEntity(
cast<DeclContext>(getDecl()),
defaultArgIndex,
SKind);
case SILDeclRef::Kind::StoredPropertyInitializer:
assert(!isCurried);
return mangler.mangleInitializerEntity(cast<VarDecl>(getDecl()), SKind);
}
llvm_unreachable("bad entity kind!");
}
bool SILDeclRef::requiresNewVTableEntry() const {
if (cast<AbstractFunctionDecl>(getDecl())->needsNewVTableEntry())
return true;
return false;
}
bool SILDeclRef::requiresNewWitnessTableEntry() const {
return requiresNewWitnessTableEntry(cast<AbstractFunctionDecl>(getDecl()));
}
bool SILDeclRef::requiresNewWitnessTableEntry(AbstractFunctionDecl *func) {
return func->getOverriddenDecls().empty();
}
SILDeclRef SILDeclRef::getOverridden() const {
if (!hasDecl())
return SILDeclRef();
auto overridden = getDecl()->getOverriddenDecl();
if (!overridden)
return SILDeclRef();
return SILDeclRef(overridden, kind, isCurried);
}
SILDeclRef SILDeclRef::getNextOverriddenVTableEntry() const {
if (auto overridden = getOverridden()) {
// If we overrode a foreign decl or dynamic method, if this is an
// accessor for a property that overrides an ObjC decl, or if it is an
// @NSManaged property, then it won't be in the vtable.
if (overridden.getDecl()->hasClangNode())
return SILDeclRef();
// An @objc convenience initializer can be "overridden" in the sense that
// its selector is reclaimed by a subclass's convenience init with the
// same name. The AST models this as an override for the purposes of
// ObjC selector validation, but it isn't for Swift method dispatch
// purposes.
if (overridden.kind == SILDeclRef::Kind::Allocator) {
auto overriddenCtor = cast<ConstructorDecl>(overridden.getDecl());
if (!overriddenCtor->isDesignatedInit()
&& !overriddenCtor->isRequired())
return SILDeclRef();
}
// Initializing entry points for initializers won't be in the vtable.
// For Swift designated initializers, they're only used in super.init
// chains, which can always be statically resolved. Other native Swift
// initializers only have allocating entry points. ObjC initializers always
// have the initializing entry point (corresponding to the -init method)
// but those are never in the vtable.
if (overridden.kind == SILDeclRef::Kind::Initializer) {
return SILDeclRef();
}
if (overridden.getDecl()->isObjCDynamic()) {
return SILDeclRef();
}
if (auto *accessor = dyn_cast<AccessorDecl>(overridden.getDecl())) {
auto *asd = accessor->getStorage();
if (asd->hasClangNode())
return SILDeclRef();
if (asd->isObjCDynamic()) {
return SILDeclRef();
}
}
// If we overrode a decl from an extension, it won't be in a vtable
// either. This can occur for extensions to ObjC classes.
if (isa<ExtensionDecl>(overridden.getDecl()->getDeclContext()))
return SILDeclRef();
return overridden;
}
return SILDeclRef();
}
SILDeclRef SILDeclRef::getOverriddenWitnessTableEntry() const {
auto bestOverridden =
getOverriddenWitnessTableEntry(cast<AbstractFunctionDecl>(getDecl()));
return SILDeclRef(bestOverridden, kind, isCurried);
}
AbstractFunctionDecl *SILDeclRef::getOverriddenWitnessTableEntry(
AbstractFunctionDecl *func) {
if (!isa<ProtocolDecl>(func->getDeclContext()))
return func;
AbstractFunctionDecl *bestOverridden = nullptr;
SmallVector<AbstractFunctionDecl *, 4> stack;
SmallPtrSet<AbstractFunctionDecl *, 4> visited;
stack.push_back(func);
visited.insert(func);
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
auto overriddenDecls = current->getOverriddenDecls();
if (overriddenDecls.empty()) {
// This entry introduced a witness table entry. Determine whether it is
// better than the best entry we've seen thus far.
if (!bestOverridden ||
ProtocolDecl::compare(
cast<ProtocolDecl>(current->getDeclContext()),
cast<ProtocolDecl>(bestOverridden->getDeclContext()))
< 0) {
bestOverridden = cast<AbstractFunctionDecl>(current);
}
continue;
}
// Add overridden declarations to the stack.
for (auto overridden : overriddenDecls) {
auto overriddenFunc = cast<AbstractFunctionDecl>(overridden);
if (visited.insert(overriddenFunc).second)
stack.push_back(overriddenFunc);
}
}
return bestOverridden;
}
SILDeclRef SILDeclRef::getOverriddenVTableEntry() const {
SILDeclRef cur = *this, next = *this;
do {
cur = next;
if (cur.requiresNewVTableEntry())
return cur;
next = cur.getNextOverriddenVTableEntry();
} while (next);
return cur;
}
SILLocation SILDeclRef::getAsRegularLocation() const {
if (hasDecl())
return RegularLocation(getDecl());
return RegularLocation(getAbstractClosureExpr());
}
SubclassScope SILDeclRef::getSubclassScope() const {
if (!hasDecl())
return SubclassScope::NotApplicable;
auto *decl = getDecl();
if (!isa<AbstractFunctionDecl>(decl))
return SubclassScope::NotApplicable;
// If this declaration is a function which goes into a vtable, then it's
// symbol must be as visible as its class, because derived classes have to put
// all less visible methods of the base class into their vtables.
if (auto *CD = dyn_cast<ConstructorDecl>(decl)) {
// Initializing entry points do not appear in the vtable.
if (kind == SILDeclRef::Kind::Initializer)
return SubclassScope::NotApplicable;
// Non-required convenience inits do not apper in the vtable.
if (!CD->isRequired() && !CD->isDesignatedInit())
return SubclassScope::NotApplicable;
} else if (isa<DestructorDecl>(decl)) {
// Detructors do not appear in the vtable.
return SubclassScope::NotApplicable;
} else {
assert(isa<FuncDecl>(decl));
}
DeclContext *context = decl->getDeclContext();
// Methods from extensions don't go in the vtable.
if (isa<ExtensionDecl>(context))
return SubclassScope::NotApplicable;
// Various forms of thunks don't either.
if (isThunk() || isForeign)
return SubclassScope::NotApplicable;
// Default arg generators don't go in the vtable.
if (isDefaultArgGenerator())
return SubclassScope::NotApplicable;
// Only non-final methods in non-final classes go in the vtable.
auto *classType = context->getSelfClassDecl();
if (!classType || classType->isFinal())
return SubclassScope::NotApplicable;
if (decl->isFinal())
return SubclassScope::NotApplicable;
assert(decl->getEffectiveAccess() <= classType->getEffectiveAccess() &&
"class must be as visible as its members");
// FIXME: This is too narrow. Any class with resilient metadata should
// probably have this, at least for method overrides that don't add new
// vtable entries.
if (classType->isResilient()) {
if (isa<ConstructorDecl>(decl))
return SubclassScope::NotApplicable;
return SubclassScope::Resilient;
}
switch (classType->getEffectiveAccess()) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return SubclassScope::NotApplicable;
case AccessLevel::Internal:
case AccessLevel::Public:
return SubclassScope::Internal;
case AccessLevel::Open:
return SubclassScope::External;
}
llvm_unreachable("Unhandled access level in switch.");
}
unsigned SILDeclRef::getParameterListCount() const {
if (isCurried || !hasDecl() || kind == Kind::DefaultArgGenerator)
return 1;
auto *vd = getDecl();
if (auto *func = dyn_cast<AbstractFunctionDecl>(vd)) {
return func->hasImplicitSelfDecl() ? 2 : 1;
} else if (auto *ed = dyn_cast<EnumElementDecl>(vd)) {
return ed->hasAssociatedValues() ? 2 : 1;
} else if (isa<ClassDecl>(vd)) {
return 2;
} else if (isa<VarDecl>(vd)) {
return 1;
} else {
llvm_unreachable("Unhandled ValueDecl for SILDeclRef");
}
}
static bool isDesignatedConstructorForClass(ValueDecl *decl) {
if (auto *ctor = dyn_cast_or_null<ConstructorDecl>(decl))
if (ctor->getDeclContext()->getSelfClassDecl())
return ctor->isDesignatedInit();
return false;
}
bool SILDeclRef::canBeDynamicReplacement() const {
if (kind == SILDeclRef::Kind::Destroyer ||
kind == SILDeclRef::Kind::DefaultArgGenerator)
return false;
if (kind == SILDeclRef::Kind::Initializer)
return isDesignatedConstructorForClass(getDecl());
if (kind == SILDeclRef::Kind::Allocator)
return !isDesignatedConstructorForClass(getDecl());
return true;
}
bool SILDeclRef::isDynamicallyReplaceable() const {
if (kind == SILDeclRef::Kind::DefaultArgGenerator)
return false;
if (isStoredPropertyInitializer())
return false;
// Class allocators are not dynamic replaceable.
if (kind == SILDeclRef::Kind::Allocator &&
isDesignatedConstructorForClass(getDecl()))
return false;
if (kind == SILDeclRef::Kind::Destroyer ||
(kind == SILDeclRef::Kind::Initializer &&
!isDesignatedConstructorForClass(getDecl())) ||
kind == SILDeclRef::Kind::GlobalAccessor) {
return false;
}
if (!hasDecl())
return false;
auto decl = getDecl();
return decl->isNativeDynamic();
}