blob: 463e926154695c88b6afed4c667a8871c6ceb8dd [file] [log] [blame]
//===--- SILBasicBlock.cpp - Basic blocks for high-level SIL code ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the high-level BasicBlocks used for Swift SIL code.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/STLExtras.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/Strings.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// SILBasicBlock Implementation
//===----------------------------------------------------------------------===//
SILBasicBlock::SILBasicBlock(SILFunction *parent, SILBasicBlock *relativeToBB,
bool after)
: Parent(parent), PredList(nullptr) {
if (!relativeToBB) {
parent->getBlocks().push_back(this);
} else if (after) {
parent->getBlocks().insertAfter(relativeToBB->getIterator(), this);
} else {
parent->getBlocks().insert(relativeToBB->getIterator(), this);
}
}
SILBasicBlock::~SILBasicBlock() {
// Invalidate all of the basic block arguments.
for (auto *Arg : ArgumentList) {
getModule().notifyDeleteHandlers(Arg);
}
dropAllReferences();
SILModule *M = nullptr;
if (getParent())
M = &getParent()->getModule();
for (auto I = begin(), E = end(); I != E;) {
auto Inst = &*I;
++I;
if (M) {
// Notify the delete handlers that the instructions in this block are
// being deleted.
M->notifyDeleteHandlers(Inst);
}
erase(Inst);
}
// iplist's destructor is going to destroy the InstList.
InstList.clearAndLeakNodesUnsafely();
}
int SILBasicBlock::getDebugID() const {
if (!getParent())
return -1;
int idx = 0;
for (const SILBasicBlock &B : *getParent()) {
if (&B == this)
return idx;
idx++;
}
llvm_unreachable("block not in function's block list");
}
SILModule &SILBasicBlock::getModule() const {
return getParent()->getModule();
}
void SILBasicBlock::insert(iterator InsertPt, SILInstruction *I) {
InstList.insert(InsertPt, I);
}
void SILBasicBlock::push_back(SILInstruction *I) {
InstList.push_back(I);
}
void SILBasicBlock::push_front(SILInstruction *I) {
InstList.push_front(I);
}
void SILBasicBlock::remove(SILInstruction *I) {
InstList.remove(I);
}
void SILBasicBlock::eraseInstructions() {
for (auto It = begin(); It != end();) {
auto *Inst = &*It++;
Inst->replaceAllUsesOfAllResultsWithUndef();
Inst->eraseFromParent();
}
}
/// Returns the iterator following the erased instruction.
SILBasicBlock::iterator SILBasicBlock::erase(SILInstruction *I) {
// Notify the delete handlers that this instruction is going away.
getModule().notifyDeleteHandlers(&*I);
auto *F = getParent();
auto nextIter = InstList.erase(I);
F->getModule().deallocateInst(I);
return nextIter;
}
/// This method unlinks 'self' from the containing SILFunction and deletes it.
void SILBasicBlock::eraseFromParent() {
getParent()->getBlocks().erase(this);
}
void SILBasicBlock::cloneArgumentList(SILBasicBlock *Other) {
assert(Other->isEntry() == isEntry() &&
"Expected to both blocks to be entries or not");
if (isEntry()) {
assert(args_empty() && "Expected to have no arguments");
for (auto *FuncArg : Other->getFunctionArguments()) {
createFunctionArgument(FuncArg->getType(),
FuncArg->getDecl());
}
return;
}
for (auto *PHIArg : Other->getPhiArguments()) {
createPhiArgument(PHIArg->getType(), PHIArg->getOwnershipKind(),
PHIArg->getDecl());
}
}
SILFunctionArgument *SILBasicBlock::createFunctionArgument(SILType Ty,
const ValueDecl *D) {
assert(isEntry() && "Function Arguments can only be in the entry block");
const SILFunction *Parent = getParent();
auto OwnershipKind = ValueOwnershipKind(
*Parent, Ty,
Parent->getConventions().getSILArgumentConvention(getNumArguments()));
return new (getModule()) SILFunctionArgument(this, Ty, OwnershipKind, D);
}
SILFunctionArgument *SILBasicBlock::insertFunctionArgument(arg_iterator Iter,
SILType Ty,
ValueOwnershipKind OwnershipKind,
const ValueDecl *D) {
assert(isEntry() && "Function Arguments can only be in the entry block");
return new (getModule()) SILFunctionArgument(this, Iter, Ty, OwnershipKind, D);
}
SILFunctionArgument *SILBasicBlock::replaceFunctionArgument(
unsigned i, SILType Ty, ValueOwnershipKind Kind, const ValueDecl *D) {
assert(isEntry() && "Function Arguments can only be in the entry block");
SILFunction *F = getParent();
SILModule &M = F->getModule();
if (Ty.isTrivial(*F))
Kind = ValueOwnershipKind::Any;
assert(ArgumentList[i]->use_empty() && "Expected no uses of the old arg!");
// Notify the delete handlers that this argument is being deleted.
M.notifyDeleteHandlers(ArgumentList[i]);
SILFunctionArgument *NewArg = new (M) SILFunctionArgument(Ty, Kind, D);
NewArg->setParent(this);
// TODO: When we switch to malloc/free allocation we'll be leaking memory
// here.
ArgumentList[i] = NewArg;
return NewArg;
}
/// Replace the ith BB argument with a new one with type Ty (and optional
/// ValueDecl D).
SILPhiArgument *SILBasicBlock::replacePhiArgument(unsigned i, SILType Ty,
ValueOwnershipKind Kind,
const ValueDecl *D) {
assert(!isEntry() && "PHI Arguments can not be in the entry block");
SILFunction *F = getParent();
SILModule &M = F->getModule();
if (Ty.isTrivial(*F))
Kind = ValueOwnershipKind::Any;
assert(ArgumentList[i]->use_empty() && "Expected no uses of the old BB arg!");
// Notify the delete handlers that this argument is being deleted.
M.notifyDeleteHandlers(ArgumentList[i]);
SILPhiArgument *NewArg = new (M) SILPhiArgument(Ty, Kind, D);
NewArg->setParent(this);
// TODO: When we switch to malloc/free allocation we'll be leaking memory
// here.
ArgumentList[i] = NewArg;
return NewArg;
}
SILPhiArgument *SILBasicBlock::createPhiArgument(SILType Ty,
ValueOwnershipKind Kind,
const ValueDecl *D) {
assert(!isEntry() && "PHI Arguments can not be in the entry block");
if (Ty.isTrivial(*getParent()))
Kind = ValueOwnershipKind::Any;
return new (getModule()) SILPhiArgument(this, Ty, Kind, D);
}
SILPhiArgument *SILBasicBlock::insertPhiArgument(arg_iterator Iter, SILType Ty,
ValueOwnershipKind Kind,
const ValueDecl *D) {
assert(!isEntry() && "PHI Arguments can not be in the entry block");
if (Ty.isTrivial(*getParent()))
Kind = ValueOwnershipKind::Any;
return new (getModule()) SILPhiArgument(this, Iter, Ty, Kind, D);
}
void SILBasicBlock::eraseArgument(int Index) {
assert(getArgument(Index)->use_empty() &&
"Erasing block argument that has uses!");
// Notify the delete handlers that this BB argument is going away.
getModule().notifyDeleteHandlers(getArgument(Index));
ArgumentList.erase(ArgumentList.begin() + Index);
}
/// Splits a basic block into two at the specified instruction.
///
/// Note that all the instructions BEFORE the specified iterator
/// stay as part of the original basic block. The old basic block is left
/// without a terminator.
SILBasicBlock *SILBasicBlock::split(iterator I) {
SILBasicBlock *New =
new (Parent->getModule()) SILBasicBlock(Parent, this, /*after*/true);
// Move all of the specified instructions from the original basic block into
// the new basic block.
New->InstList.splice(New->end(), InstList, I, end());
return New;
}
/// Move the basic block to after the specified basic block in the IR.
void SILBasicBlock::moveAfter(SILBasicBlock *After) {
assert(getParent() && getParent() == After->getParent() &&
"Blocks must be in the same function");
auto InsertPt = std::next(SILFunction::iterator(After));
auto &BlkList = getParent()->getBlocks();
BlkList.splice(InsertPt, BlkList, this);
}
void SILBasicBlock::moveTo(SILBasicBlock::iterator To, SILInstruction *I) {
assert(I->getParent() != this && "Must move from different basic block");
InstList.splice(To, I->getParent()->InstList, I);
ScopeCloner ScopeCloner(*Parent);
I->setDebugScope(ScopeCloner.getOrCreateClonedScope(I->getDebugScope()));
}
void
llvm::ilist_traits<swift::SILBasicBlock>::
transferNodesFromList(llvm::ilist_traits<SILBasicBlock> &SrcTraits,
block_iterator First, block_iterator Last) {
assert(&Parent->getModule() == &SrcTraits.Parent->getModule() &&
"Module mismatch!");
// If we are asked to splice into the same function, don't update parent
// pointers.
if (Parent == SrcTraits.Parent)
return;
ScopeCloner ScopeCloner(*Parent);
// If splicing blocks not in the same function, update the parent pointers.
for (; First != Last; ++First) {
First->Parent = Parent;
for (auto &II : *First)
II.setDebugScope(ScopeCloner.getOrCreateClonedScope(II.getDebugScope()));
}
}
/// ScopeCloner expects NewFn to be a clone of the original
/// function, with all debug scopes and locations still pointing to
/// the original function.
ScopeCloner::ScopeCloner(SILFunction &NewFn) : NewFn(NewFn) {
// Some clients of SILCloner copy over the original function's
// debug scope. Create a new one here.
// FIXME: Audit all call sites and make them create the function
// debug scope.
auto *SILFn = NewFn.getDebugScope()->Parent.get<SILFunction *>();
if (SILFn != &NewFn) {
SILFn->setInlined();
NewFn.setDebugScope(getOrCreateClonedScope(NewFn.getDebugScope()));
}
}
const SILDebugScope *
ScopeCloner::getOrCreateClonedScope(const SILDebugScope *OrigScope) {
if (!OrigScope)
return nullptr;
auto it = ClonedScopeCache.find(OrigScope);
if (it != ClonedScopeCache.end())
return it->second;
auto ClonedScope = new (NewFn.getModule()) SILDebugScope(*OrigScope);
if (OrigScope->InlinedCallSite) {
// For inlined functions, we need to rewrite the inlined call site.
ClonedScope->InlinedCallSite =
getOrCreateClonedScope(OrigScope->InlinedCallSite);
} else {
if (auto *ParentScope = OrigScope->Parent.dyn_cast<const SILDebugScope *>())
ClonedScope->Parent = getOrCreateClonedScope(ParentScope);
else
ClonedScope->Parent = &NewFn;
}
// Create an inline scope for the cloned instruction.
assert(ClonedScopeCache.find(OrigScope) == ClonedScopeCache.end());
ClonedScopeCache.insert({OrigScope, ClonedScope});
return ClonedScope;
}
bool SILBasicBlock::isEntry() const {
return this == &*getParent()->begin();
}
/// Declared out of line so we can have a declaration of SILArgument.
PhiArgumentArrayRef SILBasicBlock::getPhiArguments() const {
return PhiArgumentArrayRef(getArguments(), [](SILArgument *arg) {
return cast<SILPhiArgument>(arg);
});
}
/// Declared out of line so we can have a declaration of SILArgument.
FunctionArgumentArrayRef SILBasicBlock::getFunctionArguments() const {
return FunctionArgumentArrayRef(getArguments(), [](SILArgument *arg) {
return cast<SILFunctionArgument>(arg);
});
}
/// Returns true if this block ends in an unreachable or an apply of a
/// no-return apply or builtin.
bool SILBasicBlock::isNoReturn() const {
if (isa<UnreachableInst>(getTerminator()))
return true;
auto Iter = prev_or_begin(getTerminator()->getIterator(), begin());
FullApplySite FAS = FullApplySite::isa(const_cast<SILInstruction *>(&*Iter));
if (FAS && FAS.isCalleeNoReturn()) {
return true;
}
if (auto *BI = dyn_cast<BuiltinInst>(&*Iter)) {
return BI->getModule().isNoReturnBuiltinOrIntrinsic(BI->getName());
}
return false;
}
bool SILBasicBlock::isTrampoline() const {
auto *Branch = dyn_cast<BranchInst>(getTerminator());
if (!Branch)
return false;
return begin() == Branch->getIterator();
}
bool SILBasicBlock::isLegalToHoistInto() const {
return true;
}
const SILDebugScope *SILBasicBlock::getScopeOfFirstNonMetaInstruction() {
for (auto &Inst : *this)
if (Inst.isMetaInstruction())
return Inst.getDebugScope();
return begin()->getDebugScope();
}