blob: 187593d145543d0ee62b27ea1fc37828aea152c2 [file] [log] [blame]
//===--- Linker.cpp -------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// The SIL linker walks the call graph beginning at a starting function,
/// deserializing functions, vtables and witness tables.
///
/// The behavior of the linker is controlled by a LinkMode value. The LinkMode
/// has three possible values:
///
/// - LinkNone: The linker does not deserialize anything. This is only used for
/// debugging and testing purposes, and never during normal operation.
///
/// - LinkNormal: The linker deserializes bodies for declarations that must be
/// emitted into the client because they do not have definitions available
/// externally. This includes:
///
/// - witness tables for imported conformances
///
/// - functions with shared linkage
///
/// - LinkAll: All reachable functions (including public functions) are
/// deserialized, including public functions.
///
/// The primary entry point into the linker is the SILModule::linkFunction()
/// function, which recursively walks the call graph starting from the given
/// function.
///
/// In the mandatory pipeline (-Onone), the linker is invoked from the mandatory
/// SIL linker pass, which pulls in just enough to allow us to emit code, using
/// LinkNormal mode.
///
/// In the performance pipeline, after guaranteed optimizations but before
/// performance optimizations, the 'performance SILLinker' pass links
/// transitively all reachable functions, to uncover optimization opportunities
/// that might be missed from deserializing late. The performance pipeline uses
/// LinkAll mode.
///
/// *NOTE*: In LinkAll mode, we deserialize all vtables and witness tables,
/// even those with public linkage. This is not strictly necessary, since the
/// devirtualizer deserializes vtables and witness tables as needed. However,
/// doing so early creates more opportunities for optimization.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-linker"
#include "Linker.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/FormalLinkage.h"
#include <functional>
using namespace swift;
using namespace Lowering;
STATISTIC(NumFuncLinked, "Number of SIL functions linked");
//===----------------------------------------------------------------------===//
// Linker Helpers
//===----------------------------------------------------------------------===//
void SILLinkerVisitor::addFunctionToWorklist(SILFunction *F) {
assert(F->isExternalDeclaration());
LLVM_DEBUG(llvm::dbgs() << "Imported function: "
<< F->getName() << "\n");
if (Mod.loadFunction(F)) {
if (F->isExternalDeclaration())
return;
F->setBare(IsBare);
F->verify();
Worklist.push_back(F);
Changed = true;
++NumFuncLinked;
}
}
/// Deserialize a function and add it to the worklist for processing.
void SILLinkerVisitor::maybeAddFunctionToWorklist(SILFunction *F) {
// Don't need to do anything if the function already has a body.
if (!F->isExternalDeclaration())
return;
// In the performance pipeline, we deserialize all reachable functions.
if (isLinkAll())
return addFunctionToWorklist(F);
// Otherwise, make sure to deserialize shared functions; we need to
// emit them into the client binary since they're not available
// externally.
if (hasSharedVisibility(F->getLinkage()))
return addFunctionToWorklist(F);
// Functions with PublicNonABI linkage are deserialized as having
// HiddenExternal linkage when they are declarations, then they
// become SharedExternal after the body has been deserialized.
// So try deserializing HiddenExternal functions too.
if (F->getLinkage() == SILLinkage::HiddenExternal)
return addFunctionToWorklist(F);
}
/// Process F, recursively deserializing any thing F may reference.
bool SILLinkerVisitor::processFunction(SILFunction *F) {
// If F is a declaration, first deserialize it.
if (F->isExternalDeclaration()) {
maybeAddFunctionToWorklist(F);
} else {
Worklist.push_back(F);
}
process();
return Changed;
}
/// Deserialize the given VTable all SIL the VTable transitively references.
void SILLinkerVisitor::linkInVTable(ClassDecl *D) {
// Devirtualization already deserializes vtables as needed in both the
// mandatory and performance pipelines, and we don't support specialized
// vtables that might have shared linkage yet, so this is only needed in
// the performance pipeline to deserialize more functions early, and expose
// optimization opportunities.
assert(isLinkAll());
// Attempt to lookup the Vtbl from the SILModule.
SILVTable *Vtbl = Mod.lookUpVTable(D);
if (!Vtbl)
return;
// Ok we found our VTable. Visit each function referenced by the VTable. If
// any of the functions are external declarations, add them to the worklist
// for processing.
for (auto P : Vtbl->getEntries()) {
// Deserialize and recursively walk any vtable entries that do not have
// bodies yet.
maybeAddFunctionToWorklist(P.Implementation);
}
}
//===----------------------------------------------------------------------===//
// Visitors
//===----------------------------------------------------------------------===//
void SILLinkerVisitor::visitApplyInst(ApplyInst *AI) {
visitApplySubstitutions(AI->getSubstitutionMap());
}
void SILLinkerVisitor::visitTryApplyInst(TryApplyInst *TAI) {
visitApplySubstitutions(TAI->getSubstitutionMap());
}
void SILLinkerVisitor::visitPartialApplyInst(PartialApplyInst *PAI) {
visitApplySubstitutions(PAI->getSubstitutionMap());
}
void SILLinkerVisitor::visitFunctionRefInst(FunctionRefInst *FRI) {
maybeAddFunctionToWorklist(FRI->getReferencedFunction());
}
void SILLinkerVisitor::visitDynamicFunctionRefInst(
DynamicFunctionRefInst *FRI) {
maybeAddFunctionToWorklist(FRI->getReferencedFunction());
}
void SILLinkerVisitor::visitPreviousDynamicFunctionRefInst(
PreviousDynamicFunctionRefInst *FRI) {
maybeAddFunctionToWorklist(FRI->getReferencedFunction());
}
// Eagerly visiting all used conformances leads to a large blowup
// in the amount of SIL we read in. For optimization purposes we can defer
// reading in most conformances until we need them for devirtualization.
// However, we *must* pull in shared clang-importer-derived conformances
// we potentially use, since we may not otherwise have a local definition.
static bool mustDeserializeProtocolConformance(SILModule &M,
ProtocolConformanceRef c) {
if (!c.isConcrete())
return false;
auto conformance = c.getConcrete()->getRootNormalConformance();
return M.Types.protocolRequiresWitnessTable(conformance->getProtocol())
&& isa<ClangModuleUnit>(conformance->getDeclContext()
->getModuleScopeContext());
}
void SILLinkerVisitor::visitProtocolConformance(
ProtocolConformanceRef ref, const Optional<SILDeclRef> &Member) {
// If an abstract protocol conformance was passed in, do nothing.
if (ref.isAbstract())
return;
bool mustDeserialize = mustDeserializeProtocolConformance(Mod, ref);
// Otherwise try and lookup a witness table for C.
auto C = ref.getConcrete();
if (!VisitedConformances.insert(C).second)
return;
auto *WT = Mod.lookUpWitnessTable(C, mustDeserialize);
// If the looked up witness table is a declaration, there is nothing we can
// do here.
if (WT == nullptr || WT->isDeclaration()) {
assert(!mustDeserialize &&
"unable to deserialize witness table when we must?!");
return;
}
auto maybeVisitRelatedConformance = [&](ProtocolConformanceRef c) {
// Formally all conformances referenced by a used conformance are used.
// However, eagerly visiting them all at this point leads to a large blowup
// in the amount of SIL we read in. For optimization purposes we can defer
// reading in most conformances until we need them for devirtualization.
// However, we *must* pull in shared clang-importer-derived conformances
// we potentially use, since we may not otherwise have a local definition.
if (mustDeserializeProtocolConformance(Mod, c))
visitProtocolConformance(c, None);
};
// For each entry in the witness table...
for (auto &E : WT->getEntries()) {
switch (E.getKind()) {
// If the entry is a witness method...
case SILWitnessTable::WitnessKind::Method: {
// And we are only interested in deserializing a specific requirement
// and don't have that requirement, don't deserialize this method.
if (Member.hasValue() && E.getMethodWitness().Requirement != *Member)
continue;
// The witness could be removed by dead function elimination.
if (!E.getMethodWitness().Witness)
continue;
// Otherwise, deserialize the witness if it has shared linkage, or if
// we were asked to deserialize everything.
maybeAddFunctionToWorklist(E.getMethodWitness().Witness);
break;
}
// If the entry is a related witness table, see whether we need to
// eagerly deserialize it.
case SILWitnessTable::WitnessKind::BaseProtocol: {
auto baseConformance = E.getBaseProtocolWitness().Witness;
maybeVisitRelatedConformance(ProtocolConformanceRef(baseConformance));
break;
}
case SILWitnessTable::WitnessKind::AssociatedTypeProtocol: {
auto assocConformance = E.getAssociatedTypeProtocolWitness().Witness;
maybeVisitRelatedConformance(assocConformance);
break;
}
case SILWitnessTable::WitnessKind::AssociatedType:
case SILWitnessTable::WitnessKind::Invalid:
break;
}
}
}
void SILLinkerVisitor::visitApplySubstitutions(SubstitutionMap subs) {
for (auto conformance : subs.getConformances()) {
// Formally all conformances referenced in a function application are
// used. However, eagerly visiting them all at this point leads to a
// large blowup in the amount of SIL we read in, and we aren't very
// systematic about laziness. For optimization purposes we can defer
// reading in most conformances until we need them for devirtualization.
// However, we *must* pull in shared clang-importer-derived conformances
// we potentially use, since we may not otherwise have a local definition.
if (mustDeserializeProtocolConformance(Mod, conformance)) {
visitProtocolConformance(conformance, None);
}
}
}
void SILLinkerVisitor::visitInitExistentialAddrInst(
InitExistentialAddrInst *IEI) {
// Link in all protocol conformances that this touches.
//
// TODO: There might be a two step solution where the init_existential_inst
// causes the witness table to be brought in as a declaration and then the
// protocol method inst causes the actual deserialization. For now we are
// not going to be smart about this to enable avoiding any issues with
// visiting the open_existential_addr/witness_method before the
// init_existential_inst.
for (ProtocolConformanceRef C : IEI->getConformances()) {
visitProtocolConformance(C, Optional<SILDeclRef>());
}
}
void SILLinkerVisitor::visitInitExistentialRefInst(
InitExistentialRefInst *IERI) {
// Link in all protocol conformances that this touches.
//
// TODO: There might be a two step solution where the init_existential_inst
// causes the witness table to be brought in as a declaration and then the
// protocol method inst causes the actual deserialization. For now we are
// not going to be smart about this to enable avoiding any issues with
// visiting the protocol_method before the init_existential_inst.
for (ProtocolConformanceRef C : IERI->getConformances()) {
visitProtocolConformance(C, Optional<SILDeclRef>());
}
}
void SILLinkerVisitor::visitAllocRefInst(AllocRefInst *ARI) {
if (!isLinkAll())
return;
// Grab the class decl from the alloc ref inst.
ClassDecl *D = ARI->getType().getClassOrBoundGenericClass();
if (!D)
return;
linkInVTable(D);
}
void SILLinkerVisitor::visitMetatypeInst(MetatypeInst *MI) {
if (!isLinkAll())
return;
CanType instTy = MI->getType().castTo<MetatypeType>().getInstanceType();
ClassDecl *C = instTy.getClassOrBoundGenericClass();
if (!C)
return;
linkInVTable(C);
}
//===----------------------------------------------------------------------===//
// Top Level Routine
//===----------------------------------------------------------------------===//
// Main loop of the visitor. Called by one of the other *visit* methods.
void SILLinkerVisitor::process() {
// Process everything transitively referenced by one of the functions in the
// worklist.
while (!Worklist.empty()) {
auto *Fn = Worklist.pop_back_val();
if (Fn->getModule().isSerialized()) {
// If the containing module has been serialized,
// Remove The Serialized state (if any)
// This allows for more optimizations
Fn->setSerialized(IsSerialized_t::IsNotSerialized);
}
LLVM_DEBUG(llvm::dbgs() << "Process imports in function: "
<< Fn->getName() << "\n");
for (auto &BB : *Fn) {
for (auto &I : BB) {
visit(&I);
}
}
}
}