blob: 525d5f8e143b0e5206e362a664f663fe703251a8 [file] [log] [blame]
//===--- SubstitutionMap.cpp - Type substitution map ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the SubstitutionMap class. A SubstitutionMap packages
// together a set of replacement types and protocol conformances for
// specializing generic types.
//
// SubstitutionMaps either have type parameters or archetypes as keys,
// based on whether they were built from a GenericSignature or a
// GenericEnvironment.
//
// To specialize a type, call Type::subst() with the right SubstitutionMap.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/SubstitutionMap.h"
#include "SubstitutionMapStorage.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Types.h"
#include "llvm/Support/Debug.h"
using namespace swift;
SubstitutionMap::Storage::Storage(
GenericSignature *genericSig,
ArrayRef<Type> replacementTypes,
ArrayRef<ProtocolConformanceRef> conformances)
: genericSig(genericSig),
numConformanceRequirements(genericSig->getNumConformanceRequirements())
{
assert(replacementTypes.size() == getNumReplacementTypes());
assert(conformances.size() == numConformanceRequirements);
std::copy(replacementTypes.begin(), replacementTypes.end(),
getReplacementTypes().data());
std::copy(conformances.begin(), conformances.end(),
getConformances().data());
populatedAllReplacements = false;
}
SubstitutionMap::SubstitutionMap(
GenericSignature *genericSig,
ArrayRef<Type> replacementTypes,
ArrayRef<ProtocolConformanceRef> conformances)
: storage(Storage::get(genericSig, replacementTypes, conformances)) { }
ArrayRef<Type> SubstitutionMap::getReplacementTypesBuffer() const {
return storage ? storage->getReplacementTypes() : ArrayRef<Type>();
}
MutableArrayRef<Type> SubstitutionMap::getReplacementTypesBuffer() {
return storage ? storage->getReplacementTypes() : MutableArrayRef<Type>();
}
MutableArrayRef<ProtocolConformanceRef>
SubstitutionMap::getConformancesBuffer() {
return storage ? storage->getConformances()
: MutableArrayRef<ProtocolConformanceRef>();
}
ArrayRef<ProtocolConformanceRef> SubstitutionMap::getConformances() const {
return storage ? storage->getConformances()
: ArrayRef<ProtocolConformanceRef>();
}
ArrayRef<Type> SubstitutionMap::getReplacementTypes() const {
if (empty()) return { };
// Make sure we've filled in all of the replacement types.
if (!storage->populatedAllReplacements) {
for (auto gp : getGenericSignature()->getGenericParams()) {
(void)lookupSubstitution(cast<SubstitutableType>(gp->getCanonicalType()));
}
storage->populatedAllReplacements = true;
}
return getReplacementTypesBuffer();
}
GenericSignature *SubstitutionMap::getGenericSignature() const {
return storage ? storage->getGenericSignature() : nullptr;
}
bool SubstitutionMap::empty() const {
return getGenericSignature() == nullptr;
}
bool SubstitutionMap::hasAnySubstitutableParams() const {
auto genericSig = getGenericSignature();
if (!genericSig) return false;
return !genericSig->areAllParamsConcrete();
}
bool SubstitutionMap::hasArchetypes() const {
for (Type replacementTy : getReplacementTypesBuffer()) {
if (replacementTy && replacementTy->hasArchetype())
return true;
}
return false;
}
bool SubstitutionMap::hasOpenedExistential() const {
for (Type replacementTy : getReplacementTypesBuffer()) {
if (replacementTy && replacementTy->hasOpenedExistential())
return true;
}
return false;
}
bool SubstitutionMap::hasDynamicSelf() const {
for (Type replacementTy : getReplacementTypesBuffer()) {
if (replacementTy && replacementTy->hasDynamicSelfType())
return true;
}
return false;
}
bool SubstitutionMap::isCanonical() const {
if (empty()) return true;
if (!getGenericSignature()->isCanonical()) return false;
for (Type replacementTy : getReplacementTypesBuffer()) {
if (replacementTy && !replacementTy->isCanonical())
return false;
}
for (auto conf : getConformances()) {
if (!conf.isCanonical())
return false;
}
return true;
}
SubstitutionMap SubstitutionMap::getCanonical() const {
if (empty()) return *this;
auto canonicalSig = getGenericSignature()->getCanonicalSignature();
SmallVector<Type, 4> replacementTypes;
for (Type replacementType : getReplacementTypesBuffer()) {
if (replacementType)
replacementTypes.push_back(replacementType->getCanonicalType());
else
replacementTypes.push_back(nullptr);
}
SmallVector<ProtocolConformanceRef, 4> conformances;
for (auto conf : getConformances()) {
conformances.push_back(conf.getCanonicalConformanceRef());
}
return SubstitutionMap::get(canonicalSig,
ArrayRef<Type>(replacementTypes),
ArrayRef<ProtocolConformanceRef>(conformances));
}
SubstitutionMap SubstitutionMap::get(GenericSignature *genericSig,
SubstitutionMap substitutions) {
if (!genericSig) {
assert(!substitutions.hasAnySubstitutableParams() &&
"Shouldn't have substitutions here");
return SubstitutionMap();
}
return SubstitutionMap::get(genericSig,
[&](SubstitutableType *type) -> Type {
return substitutions.lookupSubstitution(
CanSubstitutableType(type));
},
LookUpConformanceInSubstitutionMap(substitutions));
}
/// Build an interface type substitution map for the given generic signature
/// from a type substitution function and conformance lookup function.
SubstitutionMap SubstitutionMap::get(GenericSignature *genericSig,
TypeSubstitutionFn subs,
LookupConformanceFn lookupConformance) {
if (!genericSig) {
return SubstitutionMap();
}
// Form the replacement types.
SmallVector<Type, 4> replacementTypes;
replacementTypes.reserve(genericSig->getGenericParams().size());
genericSig->forEachParam([&](GenericTypeParamType *gp, bool canonical) {
// Don't eagerly form replacements for non-canonical generic parameters.
if (!canonical) {
replacementTypes.push_back(Type());
return;
}
// Record the replacement.
Type replacement = Type(gp).subst(subs, lookupConformance,
SubstFlags::UseErrorType);
replacementTypes.push_back(replacement);
});
// Form the stored conformances.
SmallVector<ProtocolConformanceRef, 4> conformances;
for (const auto &req : genericSig->getRequirements()) {
if (req.getKind() != RequirementKind::Conformance) continue;
CanType depTy = req.getFirstType()->getCanonicalType();
auto replacement = depTy.subst(subs, lookupConformance,
SubstFlags::UseErrorType);
auto protoType = req.getSecondType()->castTo<ProtocolType>();
auto proto = protoType->getDecl();
auto conformance = lookupConformance(depTy, replacement, proto)
.getValueOr(ProtocolConformanceRef::forInvalid());
conformances.push_back(conformance);
}
return SubstitutionMap(genericSig, replacementTypes, conformances);
}
Type SubstitutionMap::lookupSubstitution(CanSubstitutableType type) const {
if (empty())
return Type();
// If we have an archetype, map out of the context so we can compute a
// conformance access path.
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
if (!isa<PrimaryArchetypeType>(archetype))
return Type();
type = cast<GenericTypeParamType>(
archetype->getInterfaceType()->getCanonicalType());
}
// Find the index of the replacement type based on the generic parameter we
// have.
auto genericParam = cast<GenericTypeParamType>(type);
auto mutableThis = const_cast<SubstitutionMap *>(this);
auto replacementTypes = mutableThis->getReplacementTypesBuffer();
auto genericSig = getGenericSignature();
assert(genericSig);
auto genericParams = genericSig->getGenericParams();
auto replacementIndex =
GenericParamKey(genericParam).findIndexIn(genericParams);
// If this generic parameter isn't represented, we don't have a replacement
// type for it.
if (replacementIndex == genericParams.size())
return Type();
// If we already have a replacement type, return it.
Type &replacementType = replacementTypes[replacementIndex];
if (replacementType)
return replacementType;
// The generic parameter may have been made concrete by the generic signature,
// substitute into the concrete type.
if (auto concreteType = genericSig->getConcreteType(genericParam)){
// Set the replacement type to an error, to block infinite recursion.
replacementType = ErrorType::get(concreteType);
// Substitute into the replacement type.
replacementType = concreteType.subst(*this);
// If the generic signature is canonical, canonicalize the replacement type.
if (getGenericSignature()->isCanonical())
replacementType = replacementType->getCanonicalType();
return replacementType;
}
// The generic parameter may not be canonical. Retrieve the canonical
// type, which will be dependent.
CanType canonicalType = genericSig->getCanonicalTypeInContext(genericParam);
// If nothing changed, we don't have a replacement.
if (canonicalType == type) return Type();
// If we're left with a substitutable type, substitute into that.
// First, set the replacement type to an error, to block infinite recursion.
replacementType = ErrorType::get(type);
replacementType = lookupSubstitution(cast<SubstitutableType>(canonicalType));
// If the generic signature is canonical, canonicalize the replacement type.
if (getGenericSignature()->isCanonical())
replacementType = replacementType->getCanonicalType();
return replacementType;
}
Optional<ProtocolConformanceRef>
SubstitutionMap::lookupConformance(CanType type, ProtocolDecl *proto) const {
if (empty()) return None;
// If we have an archetype, map out of the context so we can compute a
// conformance access path.
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
type = archetype->getInterfaceType()->getCanonicalType();
}
// Error path: if we don't have a type parameter, there is no conformance.
// FIXME: Query concrete conformances in the generic signature?
if (!type->isTypeParameter())
return None;
auto genericSig = getGenericSignature();
// Fast path
unsigned index = 0;
for (auto reqt : genericSig->getRequirements()) {
if (reqt.getKind() == RequirementKind::Conformance) {
if (reqt.getFirstType()->isEqual(type) &&
reqt.getSecondType()->isEqual(proto->getDeclaredType()))
return getConformances()[index];
index++;
}
}
// Retrieve the starting conformance from the conformance map.
auto getInitialConformance =
[&](Type type, ProtocolDecl *proto) -> Optional<ProtocolConformanceRef> {
unsigned conformanceIndex = 0;
for (const auto &req : getGenericSignature()->getRequirements()) {
if (req.getKind() != RequirementKind::Conformance)
continue;
// Is this the conformance we're looking for?
if (req.getFirstType()->isEqual(type) &&
req.getSecondType()->castTo<ProtocolType>()->getDecl() == proto) {
return getConformances()[conformanceIndex];
}
++conformanceIndex;
}
return None;
};
// Check whether the superclass conforms.
if (auto superclass = genericSig->getSuperclassBound(type)) {
LookUpConformanceInSignature lookup(*getGenericSignature());
if (auto conformance = lookup(type->getCanonicalType(), superclass, proto))
return conformance;
}
// If the type doesn't conform to this protocol, the result isn't formed
// from these requirements.
if (!genericSig->conformsToProtocol(type, proto))
return None;
auto accessPath =
genericSig->getConformanceAccessPath(type, proto);
// Fall through because we cannot yet evaluate an access path.
Optional<ProtocolConformanceRef> conformance;
for (const auto &step : accessPath) {
// For the first step, grab the initial conformance.
if (!conformance) {
conformance = getInitialConformance(step.first, step.second);
if (!conformance)
return None;
continue;
}
if (conformance->isInvalid())
return conformance;
// If we've hit an abstract conformance, everything from here on out is
// abstract.
// FIXME: This may not always be true, but it holds for now.
if (conformance->isAbstract()) {
// FIXME: Rip this out once we can get a concrete conformance from
// an archetype.
auto *M = proto->getParentModule();
auto substType = type.subst(*this);
if (substType &&
(!substType->is<ArchetypeType>() ||
substType->castTo<ArchetypeType>()->getSuperclass()) &&
!substType->isTypeParameter() &&
!substType->isExistentialType()) {
return M->lookupConformance(substType, proto);
}
return ProtocolConformanceRef(proto);
}
// For the second step, we're looking into the requirement signature for
// this protocol.
auto concrete = conformance->getConcrete();
auto normal = concrete->getRootNormalConformance();
// If we haven't set the signature conformances yet, force the issue now.
if (normal->getSignatureConformances().empty()) {
// If we're in the process of checking the type witnesses, fail
// gracefully.
// FIXME: Seems like we should be able to get at the intermediate state
// to use that.
if (normal->getState() == ProtocolConformanceState::CheckingTypeWitnesses)
return None;
auto lazyResolver = type->getASTContext().getLazyResolver();
if (lazyResolver == nullptr)
return None;
lazyResolver->resolveTypeWitness(normal, nullptr);
// Error case: the conformance is broken, so we cannot handle this
// substitution.
if (normal->getSignatureConformances().empty())
return None;
}
// Get the associated conformance.
conformance = concrete->getAssociatedConformance(step.first, step.second);
}
return conformance;
}
SubstitutionMap SubstitutionMap::mapReplacementTypesOutOfContext() const {
return subst(MapTypeOutOfContext(), MakeAbstractConformanceForGenericType());
}
SubstitutionMap SubstitutionMap::subst(SubstitutionMap subMap) const {
return subst(QuerySubstitutionMap{subMap},
LookUpConformanceInSubstitutionMap(subMap));
}
SubstitutionMap SubstitutionMap::subst(TypeSubstitutionFn subs,
LookupConformanceFn conformances) const {
if (empty()) return SubstitutionMap();
SmallVector<Type, 4> newSubs;
for (Type type : getReplacementTypes()) {
if (!type) {
// Non-canonical parameter.
newSubs.push_back(Type());
continue;
}
newSubs.push_back(type.subst(subs, conformances, SubstFlags::UseErrorType));
}
SmallVector<ProtocolConformanceRef, 4> newConformances;
auto oldConformances = getConformances();
auto *genericSig = getGenericSignature();
for (const auto &req : genericSig->getRequirements()) {
if (req.getKind() != RequirementKind::Conformance) continue;
auto conformance = oldConformances[0];
// Fast path for concrete case -- we don't need to compute substType
// at all.
if (conformance.isConcrete()) {
newConformances.push_back(
ProtocolConformanceRef(
conformance.getConcrete()->subst(subs, conformances)));
} else {
auto origType = req.getFirstType();
auto substType = origType.subst(*this, SubstFlags::UseErrorType);
newConformances.push_back(
conformance.subst(substType, subs, conformances));
}
oldConformances = oldConformances.slice(1);
}
assert(oldConformances.empty());
return SubstitutionMap(genericSig, newSubs, newConformances);
}
SubstitutionMap
SubstitutionMap::getProtocolSubstitutions(ProtocolDecl *protocol,
Type selfType,
ProtocolConformanceRef conformance) {
auto protocolSelfType = protocol->getSelfInterfaceType();
return get(
protocol->getGenericSignature(),
[&](SubstitutableType *type) -> Type {
if (type->isEqual(protocolSelfType))
return selfType;
// This will need to change if we ever support protocols
// inside generic types.
return Type();
},
[&](CanType origType, Type replacementType, ProtocolDecl *protoType)
-> Optional<ProtocolConformanceRef> {
if (origType->isEqual(protocolSelfType) && protoType == protocol)
return conformance;
// This will need to change if we ever support protocols
// inside generic types.
return None;
});
}
SubstitutionMap
SubstitutionMap::getOverrideSubstitutions(
const ValueDecl *baseDecl,
const ValueDecl *derivedDecl,
Optional<SubstitutionMap> derivedSubs) {
// For overrides within a protocol hierarchy, substitute the Self type.
if (auto baseProto = baseDecl->getDeclContext()->getSelfProtocolDecl()) {
if (auto derivedProtoSelf =
derivedDecl->getDeclContext()->getSelfInterfaceType()) {
return SubstitutionMap::getProtocolSubstitutions(
baseProto,
derivedProtoSelf,
ProtocolConformanceRef(baseProto));
}
return SubstitutionMap();
}
auto *baseClass = baseDecl->getDeclContext()->getSelfClassDecl();
auto *derivedClass = derivedDecl->getDeclContext()->getSelfClassDecl();
auto *baseSig = baseDecl->getInnermostDeclContext()
->getGenericSignatureOfContext();
auto *derivedSig = derivedDecl->getInnermostDeclContext()
->getGenericSignatureOfContext();
return getOverrideSubstitutions(baseClass, derivedClass,
baseSig, derivedSig,
derivedSubs);
}
SubstitutionMap
SubstitutionMap::getOverrideSubstitutions(const ClassDecl *baseClass,
const ClassDecl *derivedClass,
GenericSignature *baseSig,
GenericSignature *derivedSig,
Optional<SubstitutionMap> derivedSubs) {
if (baseSig == nullptr)
return SubstitutionMap();
auto *M = baseClass->getParentModule();
unsigned baseDepth = 0;
SubstitutionMap baseSubMap;
if (auto *baseClassSig = baseClass->getGenericSignature()) {
baseDepth = baseClassSig->getGenericParams().back()->getDepth() + 1;
auto derivedClassTy = derivedClass->getDeclaredInterfaceType();
if (derivedSubs)
derivedClassTy = derivedClassTy.subst(*derivedSubs);
auto baseClassTy = derivedClassTy->getSuperclassForDecl(baseClass);
if (baseClassTy->is<ErrorType>())
return SubstitutionMap();
baseSubMap = baseClassTy->getContextSubstitutionMap(M, baseClass);
}
unsigned origDepth = 0;
if (auto *derivedClassSig = derivedClass->getGenericSignature())
origDepth = derivedClassSig->getGenericParams().back()->getDepth() + 1;
SubstitutionMap origSubMap;
if (derivedSubs)
origSubMap = *derivedSubs;
else if (derivedSig) {
origSubMap = get(
derivedSig,
[](SubstitutableType *type) -> Type { return type; },
MakeAbstractConformanceForGenericType());
}
return combineSubstitutionMaps(baseSubMap, origSubMap,
CombineSubstitutionMaps::AtDepth,
baseDepth, origDepth,
baseSig);
}
SubstitutionMap
SubstitutionMap::combineSubstitutionMaps(SubstitutionMap firstSubMap,
SubstitutionMap secondSubMap,
CombineSubstitutionMaps how,
unsigned firstDepthOrIndex,
unsigned secondDepthOrIndex,
GenericSignature *genericSig) {
auto &ctx = genericSig->getASTContext();
auto replaceGenericParameter = [&](Type type) -> Type {
if (auto gp = type->getAs<GenericTypeParamType>()) {
if (how == CombineSubstitutionMaps::AtDepth) {
if (gp->getDepth() < firstDepthOrIndex)
return Type();
return GenericTypeParamType::get(
gp->getDepth() + secondDepthOrIndex - firstDepthOrIndex,
gp->getIndex(),
ctx);
}
assert(how == CombineSubstitutionMaps::AtIndex);
if (gp->getIndex() < firstDepthOrIndex)
return Type();
return GenericTypeParamType::get(
gp->getDepth(),
gp->getIndex() + secondDepthOrIndex - firstDepthOrIndex,
ctx);
}
return type;
};
return get(
genericSig,
[&](SubstitutableType *type) {
auto replacement = replaceGenericParameter(type);
if (replacement)
return Type(replacement).subst(secondSubMap);
return Type(type).subst(firstSubMap);
},
[&](CanType type, Type substType, ProtocolDecl *conformedProtocol) {
auto replacement = type.transform(replaceGenericParameter);
if (replacement)
return secondSubMap.lookupConformance(replacement->getCanonicalType(),
conformedProtocol);
return firstSubMap.lookupConformance(type, conformedProtocol);
});
}
void SubstitutionMap::verify() const {
#ifndef NDEBUG
if (empty())
return;
unsigned conformanceIndex = 0;
for (const auto &req : getGenericSignature()->getRequirements()) {
if (req.getKind() != RequirementKind::Conformance)
continue;
auto substType = req.getFirstType().subst(*this, SubstFlags::UseErrorType);
if (substType->isTypeParameter() ||
substType->is<ArchetypeType>() ||
substType->isTypeVariableOrMember() ||
substType->is<UnresolvedType>() ||
substType->hasError())
continue;
auto conformance = getConformances()[conformanceIndex];
if (conformance.isInvalid())
continue;
// An existential type can have an abstract conformance to
// AnyObject or an @objc protocol.
if (conformance.isAbstract() &&
substType->isExistentialType()) {
auto *proto = conformance.getRequirement();
if (!proto->isObjC()) {
llvm::dbgs() << "Existential type conforms to something:\n";
substType->dump();
llvm::dbgs() << "SubstitutionMap:\n";
dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
assert(proto->isObjC() &&
"an existential type can conform only to an "
"@objc-protocol");
continue;
}
// All of the conformances should be concrete.
if (!conformance.isConcrete()) {
llvm::dbgs() << "Concrete substType type:\n";
substType->dump(llvm::dbgs());
llvm::dbgs() << "SubstitutionMap:\n";
dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
assert(conformance.isConcrete() && "Conformance should be concrete");
++conformanceIndex;
}
#endif
}
void SubstitutionMap::profile(llvm::FoldingSetNodeID &id) const {
id.AddPointer(storage);
}