blob: 255c350de9ccd4c2d6f987650fd95a4833458554 [file] [log] [blame]
//===--- GenericSignature.cpp - Generic Signature AST ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the GenericSignature class.
//
//===----------------------------------------------------------------------===//
#include "GenericSignatureBuilderImpl.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/GenericSignatureBuilder.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/Types.h"
#include "swift/Basic/STLExtras.h"
#include <functional>
using namespace swift;
void ConformanceAccessPath::print(raw_ostream &out) const {
interleave(begin(), end(),
[&](const Entry &entry) {
entry.first.print(out);
out << ": " << entry.second->getName();
}, [&] {
out << " -> ";
});
}
void ConformanceAccessPath::dump() const {
print(llvm::errs());
llvm::errs() << "\n";
}
GenericSignature::GenericSignature(TypeArrayView<GenericTypeParamType> params,
ArrayRef<Requirement> requirements,
bool isKnownCanonical)
: NumGenericParams(params.size()), NumRequirements(requirements.size()),
CanonicalSignatureOrASTContext()
{
auto paramsBuffer = getGenericParamsBuffer();
for (unsigned i = 0; i < NumGenericParams; ++i) {
paramsBuffer[i] = params[i];
}
auto reqtsBuffer = getRequirementsBuffer();
for (unsigned i = 0; i < NumRequirements; ++i) {
reqtsBuffer[i] = requirements[i];
}
#ifndef NDEBUG
// Make sure generic parameters are in the right order, and
// none are missing.
unsigned depth = 0;
unsigned count = 0;
for (auto param : params) {
if (param->getDepth() != depth) {
assert(param->getDepth() > depth &&
"Generic parameter depth mismatch");
depth = param->getDepth();
count = 0;
}
assert(param->getIndex() == count &&
"Generic parameter index mismatch");
count++;
}
#endif
if (isKnownCanonical)
CanonicalSignatureOrASTContext = &getASTContext(getGenericParams(),
requirements);
}
TypeArrayView<GenericTypeParamType>
GenericSignature::getInnermostGenericParams() const {
auto params = getGenericParams();
// Find the point at which the depth changes.
unsigned depth = params.back()->getDepth();
for (unsigned n = params.size(); n > 0; --n) {
if (params[n-1]->getDepth() != depth) {
return params.slice(n);
}
}
// All parameters are at the same depth.
return params;
}
void GenericSignature::forEachParam(
llvm::function_ref<void(GenericTypeParamType *, bool)> callback) const {
// Figure out which generic parameters are concrete or same-typed to another
// type parameter.
auto genericParams = getGenericParams();
auto genericParamsAreCanonical =
SmallVector<bool, 4>(genericParams.size(), true);
for (auto req : getRequirements()) {
if (req.getKind() != RequirementKind::SameType) continue;
GenericTypeParamType *gp;
if (auto secondGP = req.getSecondType()->getAs<GenericTypeParamType>()) {
// If two generic parameters are same-typed, then the right-hand one
// is non-canonical.
assert(req.getFirstType()->is<GenericTypeParamType>());
gp = secondGP;
} else {
// Otherwise, the right-hand side is an associated type or concrete type,
// and the left-hand one is non-canonical.
gp = req.getFirstType()->getAs<GenericTypeParamType>();
if (!gp) continue;
// If an associated type is same-typed, it doesn't constrain the generic
// parameter itself. That is, if T == U.Foo, then T is canonical, whereas
// U.Foo is not.
if (req.getSecondType()->isTypeParameter()) continue;
}
unsigned index = GenericParamKey(gp).findIndexIn(genericParams);
genericParamsAreCanonical[index] = false;
}
// Call the callback with each parameter and the result of the above analysis.
for (auto index : indices(genericParams))
callback(genericParams[index], genericParamsAreCanonical[index]);
}
bool GenericSignature::areAllParamsConcrete() const {
unsigned numConcreteGenericParams = 0;
for (const auto &req : getRequirements()) {
if (req.getKind() != RequirementKind::SameType) continue;
if (!req.getFirstType()->is<GenericTypeParamType>()) continue;
if (req.getSecondType()->isTypeParameter()) continue;
++numConcreteGenericParams;
}
return numConcreteGenericParams == getGenericParams().size();
}
ASTContext &GenericSignature::getASTContext(
TypeArrayView<GenericTypeParamType> params,
ArrayRef<swift::Requirement> requirements) {
// The params and requirements cannot both be empty.
if (!params.empty())
return params.front()->getASTContext();
else
return requirements.front().getFirstType()->getASTContext();
}
GenericSignatureBuilder *GenericSignature::getGenericSignatureBuilder() {
// The generic signature builder is associated with the canonical signature.
if (!isCanonical())
return getCanonicalSignature()->getGenericSignatureBuilder();
// generic signature builders are stored on the ASTContext.
return getASTContext().getOrCreateGenericSignatureBuilder(
CanGenericSignature(this));
}
bool GenericSignature::isCanonical() const {
if (CanonicalSignatureOrASTContext.is<ASTContext*>()) return true;
return getCanonicalSignature() == this;
}
#ifndef NDEBUG
/// Determine the canonical ordering of requirements.
static unsigned getRequirementKindOrder(RequirementKind kind) {
switch (kind) {
case RequirementKind::Conformance: return 2;
case RequirementKind::Superclass: return 0;
case RequirementKind::SameType: return 3;
case RequirementKind::Layout: return 1;
}
llvm_unreachable("unhandled kind");
}
#endif
CanGenericSignature
GenericSignature::getCanonical(TypeArrayView<GenericTypeParamType> params,
ArrayRef<Requirement> requirements,
bool skipValidation) {
// Canonicalize the parameters and requirements.
SmallVector<GenericTypeParamType*, 8> canonicalParams;
canonicalParams.reserve(params.size());
for (auto param : params) {
canonicalParams.push_back(cast<GenericTypeParamType>(param->getCanonicalType()));
}
SmallVector<Requirement, 8> canonicalRequirements;
canonicalRequirements.reserve(requirements.size());
for (auto &reqt : requirements) {
if (reqt.getKind() != RequirementKind::Layout) {
auto secondTy = reqt.getSecondType();
canonicalRequirements.push_back(
Requirement(reqt.getKind(), reqt.getFirstType()->getCanonicalType(),
secondTy ? secondTy->getCanonicalType() : CanType()));
} else
canonicalRequirements.push_back(
Requirement(reqt.getKind(), reqt.getFirstType()->getCanonicalType(),
reqt.getLayoutConstraint()));
}
(void)skipValidation;
auto canSig = get(canonicalParams, canonicalRequirements,
/*isKnownCanonical=*/true);
#ifndef NDEBUG
if (skipValidation)
return CanGenericSignature(canSig);
PrettyStackTraceGenericSignature debugStack("canonicalizing", canSig);
// Check that the signature is canonical.
for (unsigned idx : indices(canonicalRequirements)) {
debugStack.setRequirement(idx);
const auto &reqt = canonicalRequirements[idx];
// Left-hand side must be canonical in its context.
// Check canonicalization of requirement itself.
switch (reqt.getKind()) {
case RequirementKind::Superclass:
assert(canSig->isCanonicalTypeInContext(reqt.getFirstType()) &&
"Left-hand side is not canonical");
assert(canSig->isCanonicalTypeInContext(reqt.getSecondType()) &&
"Superclass type isn't canonical in its own context");
break;
case RequirementKind::Layout:
assert(canSig->isCanonicalTypeInContext(reqt.getFirstType()) &&
"Left-hand side is not canonical");
break;
case RequirementKind::SameType:
assert(reqt.getFirstType()->isTypeParameter() &&
"Left-hand side must be a type parameter");
if (reqt.getSecondType()->isTypeParameter()) {
assert(compareDependentTypes(reqt.getFirstType(), reqt.getSecondType())
< 0 &&
"Out-of-order type parameters in same-type constraint");
} else {
assert(canSig->isCanonicalTypeInContext(reqt.getSecondType()) &&
"Concrete same-type isn't canonical in its own context");
}
break;
case RequirementKind::Conformance:
assert(reqt.getFirstType()->isTypeParameter() &&
"Left-hand side must be a type parameter");
assert(isa<ProtocolType>(reqt.getSecondType().getPointer()) &&
"Right-hand side of conformance isn't a protocol type");
break;
}
// From here on, we're only interested in requirements beyond the first.
if (idx == 0) continue;
// Make sure that the left-hand sides are in nondecreasing order.
const auto &prevReqt = canonicalRequirements[idx-1];
int compareLHS =
compareDependentTypes(prevReqt.getFirstType(), reqt.getFirstType());
assert(compareLHS <= 0 && "Out-of-order left-hand sides");
// If we have two same-type requirements where the left-hand sides differ
// but fall into the same equivalence class, we can check the form.
if (compareLHS < 0 && reqt.getKind() == RequirementKind::SameType &&
prevReqt.getKind() == RequirementKind::SameType &&
canSig->areSameTypeParameterInContext(prevReqt.getFirstType(),
reqt.getFirstType())) {
// If it's a it's a type parameter, make sure the equivalence class is
// wired together sanely.
if (prevReqt.getSecondType()->isTypeParameter()) {
assert(prevReqt.getSecondType()->isEqual(reqt.getFirstType()) &&
"same-type constraints within an equiv. class are out-of-order");
} else {
// Otherwise, the concrete types must match up.
assert(prevReqt.getSecondType()->isEqual(reqt.getSecondType()) &&
"inconsistent concrete same-type constraints in equiv. class");
}
}
// From here on, we only care about cases where the previous and current
// requirements have the same left-hand side.
if (compareLHS != 0) continue;
// Check ordering of requirement kinds.
assert((getRequirementKindOrder(prevReqt.getKind()) <=
getRequirementKindOrder(reqt.getKind())) &&
"Requirements for a given kind are out-of-order");
// From here on, we only care about the same requirement kind.
if (prevReqt.getKind() != reqt.getKind()) continue;
assert(reqt.getKind() == RequirementKind::Conformance &&
"Only conformance requirements can have multiples");
auto prevProto =
prevReqt.getSecondType()->castTo<ProtocolType>()->getDecl();
auto proto = reqt.getSecondType()->castTo<ProtocolType>()->getDecl();
assert(TypeDecl::compare(prevProto, proto) < 0 &&
"Out-of-order conformance requirements");
}
#endif
return CanGenericSignature(canSig);
}
CanGenericSignature
GenericSignature::getCanonicalSignature() const {
// If we haven't computed the canonical signature yet, do so now.
if (CanonicalSignatureOrASTContext.isNull()) {
// Compute the canonical signature.
CanGenericSignature canSig = getCanonical(getGenericParams(),
getRequirements());
// Record either the canonical signature or an indication that
// this is the canonical signature.
if (canSig != this)
CanonicalSignatureOrASTContext = canSig;
else
CanonicalSignatureOrASTContext = &getGenericParams()[0]->getASTContext();
// Return the canonical signature.
return canSig;
}
// A stored ASTContext indicates that this is the canonical
// signature.
if (CanonicalSignatureOrASTContext.is<ASTContext*>())
// TODO: CanGenericSignature should be const-correct.
return CanGenericSignature(const_cast<GenericSignature*>(this));
// Otherwise, return the stored canonical signature.
return CanGenericSignature(
CanonicalSignatureOrASTContext.get<GenericSignature*>());
}
GenericEnvironment *GenericSignature::createGenericEnvironment() {
auto *builder = getGenericSignatureBuilder();
return GenericEnvironment::getIncomplete(this, builder);
}
ASTContext &GenericSignature::getASTContext() const {
// Canonical signatures store the ASTContext directly.
if (auto ctx = CanonicalSignatureOrASTContext.dyn_cast<ASTContext *>())
return *ctx;
// For everything else, just get it from the generic parameter.
return getASTContext(getGenericParams(), getRequirements());
}
Optional<ProtocolConformanceRef>
GenericSignature::lookupConformance(CanType type, ProtocolDecl *proto) const {
// FIXME: Actually implement this properly.
auto *M = proto->getParentModule();
if (type->isTypeParameter())
return ProtocolConformanceRef(proto);
return M->lookupConformance(type, proto);
}
bool GenericSignature::requiresClass(Type type) {
if (!type->isTypeParameter()) return false;
auto &builder = *getGenericSignatureBuilder();
auto equivClass =
builder.resolveEquivalenceClass(
type,
ArchetypeResolutionKind::CompleteWellFormed);
if (!equivClass) return false;
// If this type was mapped to a concrete type, then there is no
// requirement.
if (equivClass->concreteType) return false;
// If there is a layout constraint, it might be a class.
if (equivClass->layout && equivClass->layout->isClass()) return true;
// If there is a superclass bound, then obviously it must be a class.
// FIXME: We shouldn't need this?
if (equivClass->superclass) return true;
// If any of the protocols are class-bound, then it must be a class.
// FIXME: We shouldn't need this?
for (const auto &conforms : equivClass->conformsTo) {
if (conforms.first->requiresClass()) return true;
}
return false;
}
/// Determine the superclass bound on the given dependent type.
Type GenericSignature::getSuperclassBound(Type type) {
if (!type->isTypeParameter()) return nullptr;
auto &builder = *getGenericSignatureBuilder();
auto equivClass =
builder.resolveEquivalenceClass(
type,
ArchetypeResolutionKind::CompleteWellFormed);
if (!equivClass) return nullptr;
// If this type was mapped to a concrete type, then there is no
// requirement.
if (equivClass->concreteType) return nullptr;
// Retrieve the superclass bound.
return equivClass->superclass;
}
/// Determine the set of protocols to which the given dependent type
/// must conform.
SmallVector<ProtocolDecl *, 2>
GenericSignature::getConformsTo(Type type) {
if (!type->isTypeParameter()) return { };
auto &builder = *getGenericSignatureBuilder();
auto equivClass =
builder.resolveEquivalenceClass(
type,
ArchetypeResolutionKind::CompleteWellFormed);
if (!equivClass) return { };
// If this type was mapped to a concrete type, then there are no
// requirements.
if (equivClass->concreteType) return { };
// Retrieve the protocols to which this type conforms.
SmallVector<ProtocolDecl *, 2> result;
for (const auto &conforms : equivClass->conformsTo)
result.push_back(conforms.first);
// Canonicalize the resulting set of protocols.
ProtocolType::canonicalizeProtocols(result);
return result;
}
bool GenericSignature::conformsToProtocol(Type type, ProtocolDecl *proto) {
// FIXME: Deal with concrete conformances here?
if (!type->isTypeParameter()) return false;
auto &builder = *getGenericSignatureBuilder();
auto equivClass =
builder.resolveEquivalenceClass(
type,
ArchetypeResolutionKind::CompleteWellFormed);
if (!equivClass) return false;
// FIXME: Deal with concrete conformances here?
if (equivClass->concreteType) return false;
// Check whether the representative conforms to this protocol.
return equivClass->conformsTo.count(proto) > 0;
}
/// Determine whether the given dependent type is equal to a concrete type.
bool GenericSignature::isConcreteType(Type type) {
return bool(getConcreteType(type));
}
/// Return the concrete type that the given dependent type is constrained to,
/// or the null Type if it is not the subject of a concrete same-type
/// constraint.
Type GenericSignature::getConcreteType(Type type) {
if (!type->isTypeParameter()) return Type();
auto &builder = *getGenericSignatureBuilder();
auto equivClass =
builder.resolveEquivalenceClass(
type,
ArchetypeResolutionKind::CompleteWellFormed);
if (!equivClass) return Type();
return equivClass->concreteType;
}
LayoutConstraint GenericSignature::getLayoutConstraint(Type type) {
if (!type->isTypeParameter()) return LayoutConstraint();
auto &builder = *getGenericSignatureBuilder();
auto equivClass =
builder.resolveEquivalenceClass(
type,
ArchetypeResolutionKind::CompleteWellFormed);
if (!equivClass) return LayoutConstraint();
return equivClass->layout;
}
bool GenericSignature::areSameTypeParameterInContext(Type type1, Type type2) {
assert(type1->isTypeParameter());
assert(type2->isTypeParameter());
if (type1.getPointer() == type2.getPointer())
return true;
auto &builder = *getGenericSignatureBuilder();
auto equivClass1 =
builder.resolveEquivalenceClass(
type1,
ArchetypeResolutionKind::CompleteWellFormed);
assert(equivClass1 && "not a valid dependent type of this signature?");
auto equivClass2 =
builder.resolveEquivalenceClass(
type2,
ArchetypeResolutionKind::CompleteWellFormed);
assert(equivClass2 && "not a valid dependent type of this signature?");
return equivClass1 == equivClass2;
}
bool GenericSignature::isRequirementSatisfied(Requirement requirement) {
auto GSB = getGenericSignatureBuilder();
auto firstType = requirement.getFirstType();
auto canFirstType = getCanonicalTypeInContext(firstType);
switch (requirement.getKind()) {
case RequirementKind::Conformance: {
auto protocolType = requirement.getSecondType()->castTo<ProtocolType>();
auto protocol = protocolType->getDecl();
if (canFirstType->isTypeParameter())
return conformsToProtocol(canFirstType, protocol);
else
return (bool)GSB->lookupConformance(/*dependentType=*/CanType(),
canFirstType, protocol);
}
case RequirementKind::SameType: {
auto canSecondType = getCanonicalTypeInContext(requirement.getSecondType());
return canFirstType->isEqual(canSecondType);
}
case RequirementKind::Superclass: {
auto requiredSuperclass =
getCanonicalTypeInContext(requirement.getSecondType());
// The requirement could be in terms of type parameters like a user-written
// requirement, but it could also be in terms of concrete types if it has
// been substituted/otherwise 'resolved', so we need to handle both.
auto baseType = canFirstType;
if (canFirstType->isTypeParameter()) {
auto directSuperclass = getSuperclassBound(baseType);
if (!directSuperclass)
return false;
baseType = getCanonicalTypeInContext(directSuperclass);
}
return requiredSuperclass->isExactSuperclassOf(baseType);
}
case RequirementKind::Layout: {
auto requiredLayout = requirement.getLayoutConstraint();
if (canFirstType->isTypeParameter()) {
if (auto layout = getLayoutConstraint(canFirstType))
return static_cast<bool>(layout.merge(requiredLayout));
return false;
}
// The requirement is on a concrete type, so it's either globally correct
// or globally incorrect, independent of this generic context. The latter
// case should be diagnosed elsewhere, so let's assume it's correct.
return true;
}
}
llvm_unreachable("unhandled kind");
}
SmallVector<Requirement, 4> GenericSignature::requirementsNotSatisfiedBy(
GenericSignature *otherSig) {
SmallVector<Requirement, 4> result;
// If the signatures are the same, all requirements are satisfied.
if (otherSig == this) return result;
// If there is no other signature, no requirements are satisfied.
if (!otherSig){
result.insert(result.end(),
getRequirements().begin(), getRequirements().end());
return result;
}
// Find the requirements that aren't satisfied.
for (const auto &req : getRequirements()) {
if (!otherSig->isRequirementSatisfied(req))
result.push_back(req);
}
return result;
}
bool GenericSignature::isCanonicalTypeInContext(Type type) {
// If the type isn't independently canonical, it's certainly not canonical
// in this context.
if (!type->isCanonical())
return false;
// All the contextual canonicality rules apply to type parameters, so if the
// type doesn't involve any type parameters, it's already canonical.
if (!type->hasTypeParameter())
return true;
auto &builder = *getGenericSignatureBuilder();
return isCanonicalTypeInContext(type, builder);
}
bool GenericSignature::isCanonicalTypeInContext(Type type,
GenericSignatureBuilder &builder) {
// If the type isn't independently canonical, it's certainly not canonical
// in this context.
if (!type->isCanonical())
return false;
// All the contextual canonicality rules apply to type parameters, so if the
// type doesn't involve any type parameters, it's already canonical.
if (!type->hasTypeParameter())
return true;
// Look for non-canonical type parameters.
return !type.findIf([&](Type component) -> bool {
if (!component->isTypeParameter()) return false;
auto equivClass =
builder.resolveEquivalenceClass(
Type(component),
ArchetypeResolutionKind::CompleteWellFormed);
if (!equivClass) return false;
return (equivClass->concreteType ||
!component->isEqual(equivClass->getAnchor(builder,
getGenericParams())));
});
}
CanType GenericSignature::getCanonicalTypeInContext(Type type,
GenericSignatureBuilder &builder) {
type = type->getCanonicalType();
// All the contextual canonicality rules apply to type parameters, so if the
// type doesn't involve any type parameters, it's already canonical.
if (!type->hasTypeParameter())
return CanType(type);
// Replace non-canonical type parameters.
type = type.transformRec([&](TypeBase *component) -> Optional<Type> {
if (!isa<GenericTypeParamType>(component) &&
!isa<DependentMemberType>(component))
return None;
// Find the equivalence class for this dependent type.
auto resolved = builder.maybeResolveEquivalenceClass(
Type(component),
ArchetypeResolutionKind::CompleteWellFormed,
/*wantExactPotentialArchetype=*/false);
if (!resolved) return None;
if (auto concrete = resolved.getAsConcreteType())
return getCanonicalTypeInContext(concrete, builder);
auto equivClass = resolved.getEquivalenceClass(builder);
if (!equivClass) return None;
if (equivClass->concreteType) {
return getCanonicalTypeInContext(equivClass->concreteType, builder);
}
return equivClass->getAnchor(builder, getGenericParams());
});
auto result = type->getCanonicalType();
assert(isCanonicalTypeInContext(result, builder));
return result;
}
CanType GenericSignature::getCanonicalTypeInContext(Type type) {
type = type->getCanonicalType();
// All the contextual canonicality rules apply to type parameters, so if the
// type doesn't involve any type parameters, it's already canonical.
if (!type->hasTypeParameter())
return CanType(type);
auto &builder = *getGenericSignatureBuilder();
return getCanonicalTypeInContext(type, builder);
}
GenericEnvironment *CanGenericSignature::getGenericEnvironment() const {
// generic signature builders are stored on the ASTContext.
auto &ctx = getGenericParams()[0]->getASTContext();
return ctx.getOrCreateCanonicalGenericEnvironment(
ctx.getOrCreateGenericSignatureBuilder(*this),
*this);
}
ArrayRef<CanTypeWrapper<GenericTypeParamType>>
CanGenericSignature::getGenericParams() const{
auto params = Signature->getGenericParams().getOriginalArray();
auto base = static_cast<const CanTypeWrapper<GenericTypeParamType>*>(
params.data());
return {base, params.size()};
}
/// Remove all of the associated type declarations from the given type
/// parameter, producing \c DependentMemberTypes with names alone.
static Type eraseAssociatedTypes(Type type) {
if (auto depMemTy = type->getAs<DependentMemberType>())
return DependentMemberType::get(eraseAssociatedTypes(depMemTy->getBase()),
depMemTy->getName());
return type;
}
namespace {
typedef GenericSignatureBuilder::RequirementSource RequirementSource;
template<typename T>
using GSBConstraint = GenericSignatureBuilder::Constraint<T>;
} // end anonymous namespace
/// Determine whether there is a conformance of the given
/// subject type to the given protocol within the given set of explicit
/// requirements.
static bool hasConformanceInSignature(ArrayRef<Requirement> requirements,
Type subjectType,
ProtocolDecl *proto) {
// Make sure this requirement exists in the requirement signature.
for (const auto &req: requirements) {
if (req.getKind() == RequirementKind::Conformance &&
req.getFirstType()->isEqual(subjectType) &&
req.getSecondType()->castTo<ProtocolType>()->getDecl()
== proto) {
return true;
}
}
return false;
}
/// Check whether the given requirement source has any non-canonical protocol
/// requirements in it.
static bool hasNonCanonicalSelfProtocolRequirement(
const RequirementSource *source,
ProtocolDecl *conformingProto) {
for (; source; source = source->parent) {
// Only look at protocol requirements.
if (!source->isProtocolRequirement())
continue;
// If we don't already have a requirement signature for this protocol,
// build one now.
auto inProto = source->getProtocolDecl();
if (!inProto->isRequirementSignatureComputed()) {
inProto->computeRequirementSignature();
assert(inProto->isRequirementSignatureComputed() &&
"couldn't compute requirement signature?");
}
// Check whether the given requirement is in the requirement signature.
if (!source->usesRequirementSignature &&
!hasConformanceInSignature(inProto->getRequirementSignature(),
source->getStoredType(), conformingProto))
return true;
// Update the conforming protocol for the rest of the search.
conformingProto = inProto;
}
return false;
}
/// Retrieve the best requirement source from the list
static const RequirementSource *
getBestRequirementSource(GenericSignatureBuilder &builder,
ArrayRef<GSBConstraint<ProtocolDecl *>> constraints) {
const RequirementSource *bestSource = nullptr;
bool bestIsNonCanonical = false;
auto isBetter = [&](const RequirementSource *source, bool isNonCanonical) {
if (!bestSource) return true;
if (bestIsNonCanonical != isNonCanonical)
return bestIsNonCanonical;
return bestSource->compare(source) > 0;
};
for (const auto &constraint : constraints) {
auto source = constraint.source;
// Skip self-recursive sources.
bool derivedViaConcrete = false;
if (source->getMinimalConformanceSource(
builder,
constraint.getSubjectDependentType({ }),
constraint.value,
derivedViaConcrete)
!= source)
continue;
// If there is a non-canonical protocol requirement next to the root,
// skip this requirement source.
bool isNonCanonical =
hasNonCanonicalSelfProtocolRequirement(source, constraint.value);
if (isBetter(source, isNonCanonical)) {
bestSource = source;
bestIsNonCanonical = isNonCanonical;
continue;
}
}
return bestSource;
}
void GenericSignature::buildConformanceAccessPath(
SmallVectorImpl<ConformanceAccessPath::Entry> &path,
ArrayRef<Requirement> reqs, const void *opaqueSource,
ProtocolDecl *conformingProto, Type rootType,
ProtocolDecl *requirementSignatureProto) {
auto *source = reinterpret_cast<const RequirementSource *>(opaqueSource);
// Each protocol requirement is a step along the path.
if (source->isProtocolRequirement()) {
// If we're expanding for a protocol that had no requirement signature
// and have hit the penultimate step, this is the last step
// that would occur in the requirement signature.
Optional<GenericSignatureBuilder> replacementBuilder;
if (!source->parent->parent && requirementSignatureProto) {
// If we have a requirement signature now, we're done.
if (source->usesRequirementSignature) {
Type subjectType = source->getStoredType()->getCanonicalType();
path.push_back({subjectType, conformingProto});
return;
}
// The generic signature builder we're using for this protocol
// wasn't built from its own requirement signature, so we can't
// trust it. Make sure we have a requirement signature, then build
// a new generic signature builder.
// FIXME: It would be better if we could replace the canonical generic
// signature builder with the rebuilt one.
if (!requirementSignatureProto->isRequirementSignatureComputed())
requirementSignatureProto->computeRequirementSignature();
assert(requirementSignatureProto->isRequirementSignatureComputed());
replacementBuilder.emplace(getASTContext());
replacementBuilder->addGenericSignature(
requirementSignatureProto->getGenericSignature());
replacementBuilder->processDelayedRequirements();
}
// Follow the rest of the path to derive the conformance into which
// this particular protocol requirement step would look.
auto inProtocol = source->getProtocolDecl();
buildConformanceAccessPath(path, reqs, source->parent, inProtocol, rootType,
requirementSignatureProto);
assert(path.back().second == inProtocol &&
"path produces incorrect conformance");
// If this step was computed via the requirement signature, add it
// directly.
if (source->usesRequirementSignature) {
// Add this step along the path, which involves looking for the
// conformance we want (\c conformingProto) within the protocol
// described by this source.
// Canonicalize the subject type within the protocol's generic
// signature.
Type subjectType = source->getStoredType();
subjectType = inProtocol->getGenericSignature()
->getCanonicalTypeInContext(subjectType);
assert(hasConformanceInSignature(inProtocol->getRequirementSignature(),
subjectType, conformingProto) &&
"missing explicit conformance in requirement signature");
// Record this step.
path.push_back({subjectType, conformingProto});
return;
}
// Get the generic signature builder for the protocol.
// Get a generic signature for the protocol's signature.
auto inProtoSig = inProtocol->getGenericSignature();
auto &inProtoSigBuilder =
replacementBuilder ? *replacementBuilder
: *inProtoSig->getGenericSignatureBuilder();
// Retrieve the stored type, but erase all of the specific associated
// type declarations; we don't want any details of the enclosing context
// to sneak in here.
Type storedType = eraseAssociatedTypes(source->getStoredType());
// Dig out the potential archetype for this stored type.
auto equivClass =
inProtoSigBuilder.resolveEquivalenceClass(
storedType,
ArchetypeResolutionKind::CompleteWellFormed);
// Find the conformance of this potential archetype to the protocol in
// question.
auto conforms = equivClass->conformsTo.find(conformingProto);
assert(conforms != equivClass->conformsTo.end());
// Compute the root type, canonicalizing it w.r.t. the protocol context.
auto conformsSource = getBestRequirementSource(inProtoSigBuilder,
conforms->second);
assert(conformsSource != source || !requirementSignatureProto);
Type localRootType = conformsSource->getRootType();
localRootType = inProtoSig->getCanonicalTypeInContext(localRootType);
// Build the path according to the requirement signature.
buildConformanceAccessPath(path, inProtocol->getRequirementSignature(),
conformsSource, conformingProto, localRootType,
inProtocol);
// We're done.
return;
}
// If we have a superclass or concrete requirement, the conformance
// we need is stored in it.
if (source->kind == RequirementSource::Superclass ||
source->kind == RequirementSource::Concrete) {
auto conformance = source->getProtocolConformance();
(void)conformance;
assert(conformance.getRequirement() == conformingProto);
path.push_back({source->getAffectedType(), conformingProto});
return;
}
// If we still have a parent, keep going.
if (source->parent) {
buildConformanceAccessPath(path, reqs, source->parent, conformingProto,
rootType, requirementSignatureProto);
return;
}
// We are at an explicit or inferred requirement.
assert(source->kind == RequirementSource::Explicit ||
source->kind == RequirementSource::Inferred);
// Skip trivial path elements. These occur when querying a requirement
// signature.
if (!path.empty() && conformingProto == path.back().second &&
rootType->isEqual(conformingProto->getSelfInterfaceType()))
return;
assert(hasConformanceInSignature(reqs, rootType, conformingProto) &&
"missing explicit conformance in signature");
// Add the root of the path, which starts at this explicit requirement.
path.push_back({rootType, conformingProto});
}
ConformanceAccessPath
GenericSignature::getConformanceAccessPath(Type type, ProtocolDecl *protocol) {
assert(type->isTypeParameter() && "not a type parameter");
// Resolve this type to a potential archetype.
auto &builder = *getGenericSignatureBuilder();
auto equivClass =
builder.resolveEquivalenceClass(
type,
ArchetypeResolutionKind::CompleteWellFormed);
auto cached = equivClass->conformanceAccessPathCache.find(protocol);
if (cached != equivClass->conformanceAccessPathCache.end())
return cached->second;
// Dig out the conformance of this type to the given protocol, because we
// want its requirement source.
auto conforms = equivClass->conformsTo.find(protocol);
assert(conforms != equivClass->conformsTo.end());
// Canonicalize the root type.
auto source = getBestRequirementSource(builder, conforms->second);
Type rootType = source->getRootType()->getCanonicalType(this);
// Build the path.
SmallVector<ConformanceAccessPath::Entry, 2> path;
buildConformanceAccessPath(path, getRequirements(), source, protocol,
rootType, nullptr);
// Return the path; we're done!
ConformanceAccessPath result(getASTContext().AllocateCopy(path));
equivClass->conformanceAccessPathCache.insert({protocol, result});
return result;
}
unsigned GenericParamKey::findIndexIn(
TypeArrayView<GenericTypeParamType> genericParams) const {
// For depth 0, we have random access. We perform the extra checking so that
// we can return
if (Depth == 0 && Index < genericParams.size() &&
genericParams[Index] == *this)
return Index;
// At other depths, perform a binary search.
unsigned result =
std::lower_bound(genericParams.begin(), genericParams.end(), *this,
Ordering())
- genericParams.begin();
if (result < genericParams.size() && genericParams[result] == *this)
return result;
// We didn't find the parameter we were looking for.
return genericParams.size();
}
unsigned GenericSignature::getGenericParamOrdinal(GenericTypeParamType *param) {
return GenericParamKey(param->getDepth(), param->getIndex())
.findIndexIn(getGenericParams());
}