blob: c3d28618a6603a02bb4bc121545f10068e3fd519 [file] [log] [blame]
//===--- DiagnosticEngine.cpp - Diagnostic Display Engine -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the DiagnosticEngine class, which manages any diagnostics
// emitted by Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/AST/Module.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Config.h"
#include "swift/Parse/Lexer.h" // bad dependency
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
namespace {
enum class DiagnosticOptions {
/// No options.
none,
/// The location of this diagnostic points to the beginning of the first
/// token that the parser considers invalid. If this token is located at the
/// beginning of the line, then the location is adjusted to point to the end
/// of the previous token.
///
/// This behavior improves experience for "expected token X" diagnostics.
PointsToFirstBadToken,
/// After a fatal error subsequent diagnostics are suppressed.
Fatal,
};
struct StoredDiagnosticInfo {
DiagnosticKind kind : 2;
bool pointsToFirstBadToken : 1;
bool isFatal : 1;
constexpr StoredDiagnosticInfo(DiagnosticKind k, bool firstBadToken,
bool fatal)
: kind(k), pointsToFirstBadToken(firstBadToken), isFatal(fatal) {}
constexpr StoredDiagnosticInfo(DiagnosticKind k, DiagnosticOptions opts)
: StoredDiagnosticInfo(k,
opts == DiagnosticOptions::PointsToFirstBadToken,
opts == DiagnosticOptions::Fatal) {}
};
// Reproduce the DiagIDs, as we want both the size and access to the raw ids
// themselves.
enum LocalDiagID : uint32_t {
#define DIAG(KIND, ID, Options, Text, Signature) ID,
#include "swift/AST/DiagnosticsAll.def"
NumDiags
};
} // end anonymous namespace
// TODO: categorization
static const constexpr StoredDiagnosticInfo storedDiagnosticInfos[] = {
#define ERROR(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Error, DiagnosticOptions::Options),
#define WARNING(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Warning, DiagnosticOptions::Options),
#define NOTE(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Note, DiagnosticOptions::Options),
#define REMARK(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Remark, DiagnosticOptions::Options),
#include "swift/AST/DiagnosticsAll.def"
};
static_assert(sizeof(storedDiagnosticInfos) / sizeof(StoredDiagnosticInfo) ==
LocalDiagID::NumDiags,
"array size mismatch");
static constexpr const char * const diagnosticStrings[] = {
#define ERROR(ID, Options, Text, Signature) Text,
#define WARNING(ID, Options, Text, Signature) Text,
#define NOTE(ID, Options, Text, Signature) Text,
#define REMARK(ID, Options, Text, Signature) Text,
#include "swift/AST/DiagnosticsAll.def"
"<not a diagnostic>",
};
DiagnosticState::DiagnosticState() {
// Initialize our per-diagnostic state to default
perDiagnosticBehavior.resize(LocalDiagID::NumDiags, Behavior::Unspecified);
}
static CharSourceRange toCharSourceRange(SourceManager &SM, SourceRange SR) {
return CharSourceRange(SM, SR.Start, Lexer::getLocForEndOfToken(SM, SR.End));
}
static CharSourceRange toCharSourceRange(SourceManager &SM, SourceLoc Start,
SourceLoc End) {
return CharSourceRange(SM, Start, End);
}
/// Extract a character at \p Loc. If \p Loc is the end of the buffer,
/// return '\f'.
static char extractCharAfter(SourceManager &SM, SourceLoc Loc) {
auto chars = SM.extractText({Loc, 1});
return chars.empty() ? '\f' : chars[0];
}
/// Extract a character immediately before \p Loc. If \p Loc is the
/// start of the buffer, return '\f'.
static char extractCharBefore(SourceManager &SM, SourceLoc Loc) {
// We have to be careful not to go off the front of the buffer.
auto bufferID = SM.findBufferContainingLoc(Loc);
auto bufferRange = SM.getRangeForBuffer(bufferID);
if (bufferRange.getStart() == Loc)
return '\f';
auto chars = SM.extractText({Loc.getAdvancedLoc(-1), 1}, bufferID);
assert(!chars.empty() && "Couldn't extractText with valid range");
return chars[0];
}
InFlightDiagnostic &InFlightDiagnostic::highlight(SourceRange R) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && R.isValid())
Engine->getActiveDiagnostic()
.addRange(toCharSourceRange(Engine->SourceMgr, R));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::highlightChars(SourceLoc Start,
SourceLoc End) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && Start.isValid())
Engine->getActiveDiagnostic()
.addRange(toCharSourceRange(Engine->SourceMgr, Start, End));
return *this;
}
/// Add an insertion fix-it to the currently-active diagnostic. The
/// text is inserted immediately *after* the token specified.
///
InFlightDiagnostic &InFlightDiagnostic::fixItInsertAfter(SourceLoc L,
StringRef Str) {
L = Lexer::getLocForEndOfToken(Engine->SourceMgr, L);
return fixItInsert(L, Str);
}
/// Add a token-based removal fix-it to the currently-active
/// diagnostic.
InFlightDiagnostic &InFlightDiagnostic::fixItRemove(SourceRange R) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (R.isInvalid() || !Engine) return *this;
// Convert from a token range to a CharSourceRange, which points to the end of
// the token we want to remove.
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
// If we're removing something (e.g. a keyword), do a bit of extra work to
// make sure that we leave the code in a good place, without extraneous white
// space around its hole. Specifically, check to see there is whitespace
// before and after the end of range. If so, nuke the space afterward to keep
// things consistent.
if (extractCharAfter(SM, charRange.getEnd()) == ' ' &&
isspace(extractCharBefore(SM, charRange.getStart()))) {
charRange = CharSourceRange(charRange.getStart(),
charRange.getByteLength()+1);
}
Engine->getActiveDiagnostic().addFixIt(Diagnostic::FixIt(charRange, {}));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::fixItReplace(SourceRange R,
StringRef Str) {
if (Str.empty())
return fixItRemove(R);
assert(IsActive && "Cannot modify an inactive diagnostic");
if (R.isInvalid() || !Engine) return *this;
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
// If we're replacing with something that wants spaces around it, do a bit of
// extra work so that we don't suggest extra spaces.
if (Str.back() == ' ') {
if (isspace(extractCharAfter(SM, charRange.getEnd())))
Str = Str.drop_back();
}
if (!Str.empty() && Str.front() == ' ') {
if (isspace(extractCharBefore(SM, charRange.getStart())))
Str = Str.drop_front();
}
Engine->getActiveDiagnostic().addFixIt(Diagnostic::FixIt(charRange, Str));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::fixItReplaceChars(SourceLoc Start,
SourceLoc End,
StringRef Str) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && Start.isValid())
Engine->getActiveDiagnostic().addFixIt(Diagnostic::FixIt(
toCharSourceRange(Engine->SourceMgr, Start, End), Str));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::fixItExchange(SourceRange R1,
SourceRange R2) {
assert(IsActive && "Cannot modify an inactive diagnostic");
auto &SM = Engine->SourceMgr;
// Convert from a token range to a CharSourceRange
auto charRange1 = toCharSourceRange(SM, R1);
auto charRange2 = toCharSourceRange(SM, R2);
// Extract source text.
auto text1 = SM.extractText(charRange1);
auto text2 = SM.extractText(charRange2);
Engine->getActiveDiagnostic()
.addFixIt(Diagnostic::FixIt(charRange1, text2));
Engine->getActiveDiagnostic()
.addFixIt(Diagnostic::FixIt(charRange2, text1));
return *this;
}
void InFlightDiagnostic::flush() {
if (!IsActive)
return;
IsActive = false;
if (Engine)
Engine->flushActiveDiagnostic();
}
bool DiagnosticEngine::isDiagnosticPointsToFirstBadToken(DiagID ID) const {
return storedDiagnosticInfos[(unsigned) ID].pointsToFirstBadToken;
}
bool DiagnosticEngine::finishProcessing() {
bool hadError = false;
for (auto &Consumer : Consumers) {
hadError |= Consumer->finishProcessing();
}
return hadError;
}
/// Skip forward to one of the given delimiters.
///
/// \param Text The text to search through, which will be updated to point
/// just after the delimiter.
///
/// \param Delim The first character delimiter to search for.
///
/// \param FoundDelim On return, true if the delimiter was found, or false
/// if the end of the string was reached.
///
/// \returns The string leading up to the delimiter, or the empty string
/// if no delimiter is found.
static StringRef
skipToDelimiter(StringRef &Text, char Delim, bool *FoundDelim = nullptr) {
unsigned Depth = 0;
if (FoundDelim)
*FoundDelim = false;
unsigned I = 0;
for (unsigned N = Text.size(); I != N; ++I) {
if (Text[I] == '{') {
++Depth;
continue;
}
if (Depth > 0) {
if (Text[I] == '}')
--Depth;
continue;
}
if (Text[I] == Delim) {
if (FoundDelim)
*FoundDelim = true;
break;
}
}
assert(Depth == 0 && "Unbalanced {} set in diagnostic text");
StringRef Result = Text.substr(0, I);
Text = Text.substr(I + 1);
return Result;
}
/// Handle the integer 'select' modifier. This is used like this:
/// %select{foo|bar|baz}2. This means that the integer argument "%2" has a
/// value from 0-2. If the value is 0, the diagnostic prints 'foo'.
/// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'.
/// This is very useful for certain classes of variant diagnostics.
static void formatSelectionArgument(StringRef ModifierArguments,
ArrayRef<DiagnosticArgument> Args,
unsigned SelectedIndex,
DiagnosticFormatOptions FormatOpts,
llvm::raw_ostream &Out) {
bool foundPipe = false;
do {
assert((!ModifierArguments.empty() || foundPipe) &&
"Index beyond bounds in %select modifier");
StringRef Text = skipToDelimiter(ModifierArguments, '|', &foundPipe);
if (SelectedIndex == 0) {
DiagnosticEngine::formatDiagnosticText(Out, Text, Args, FormatOpts);
break;
}
--SelectedIndex;
} while (true);
}
static bool isInterestingTypealias(Type type) {
// Dig out the typealias declaration, if there is one.
TypeAliasDecl *aliasDecl = nullptr;
if (auto aliasTy = dyn_cast<TypeAliasType>(type.getPointer()))
aliasDecl = aliasTy->getDecl();
else
return false;
if (aliasDecl == type->getASTContext().getVoidDecl())
return false;
// The 'Swift.AnyObject' typealias is not 'interesting'.
if (aliasDecl->getName() ==
aliasDecl->getASTContext().getIdentifier("AnyObject") &&
(aliasDecl->getParentModule()->isStdlibModule() ||
aliasDecl->getParentModule()->isBuiltinModule())) {
return false;
}
// Compatibility aliases are only interesting insofar as their underlying
// types are interesting.
if (aliasDecl->isCompatibilityAlias()) {
auto underlyingTy = aliasDecl->getUnderlyingTypeLoc().getType();
return isInterestingTypealias(underlyingTy);
}
// Builtin types are never interesting typealiases.
if (type->is<BuiltinType>()) return false;
return true;
}
/// Decide whether to show the desugared type or not. We filter out some
/// cases to avoid too much noise.
static bool shouldShowAKA(Type type, StringRef typeName) {
// Canonical types are already desugared.
if (type->isCanonical())
return false;
// Don't show generic type parameters.
if (type->hasTypeParameter())
return false;
// Only show 'aka' if there's a typealias involved; other kinds of sugar
// are easy enough for people to read on their own.
if (!type.findIf(isInterestingTypealias))
return false;
// If they are textually the same, don't show them. This can happen when
// they are actually different types, because they exist in different scopes
// (e.g. everyone names their type parameters 'T').
if (typeName == type->getCanonicalType()->getString())
return false;
return true;
}
/// Format a single diagnostic argument and write it to the given
/// stream.
static void formatDiagnosticArgument(StringRef Modifier,
StringRef ModifierArguments,
ArrayRef<DiagnosticArgument> Args,
unsigned ArgIndex,
DiagnosticFormatOptions FormatOpts,
llvm::raw_ostream &Out) {
const DiagnosticArgument &Arg = Args[ArgIndex];
switch (Arg.getKind()) {
case DiagnosticArgumentKind::Integer:
if (Modifier == "select") {
assert(Arg.getAsInteger() >= 0 && "Negative selection index");
formatSelectionArgument(ModifierArguments, Args, Arg.getAsInteger(),
FormatOpts, Out);
} else if (Modifier == "s") {
if (Arg.getAsInteger() != 1)
Out << 's';
} else {
assert(Modifier.empty() && "Improper modifier for integer argument");
Out << Arg.getAsInteger();
}
break;
case DiagnosticArgumentKind::Unsigned:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args, Arg.getAsUnsigned(),
FormatOpts, Out);
} else if (Modifier == "s") {
if (Arg.getAsUnsigned() != 1)
Out << 's';
} else {
assert(Modifier.empty() && "Improper modifier for unsigned argument");
Out << Arg.getAsUnsigned();
}
break;
case DiagnosticArgumentKind::String:
assert(Modifier.empty() && "Improper modifier for string argument");
Out << Arg.getAsString();
break;
case DiagnosticArgumentKind::Identifier:
assert(Modifier.empty() && "Improper modifier for identifier argument");
Out << FormatOpts.OpeningQuotationMark;
Arg.getAsIdentifier().printPretty(Out);
Out << FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::ObjCSelector:
assert(Modifier.empty() && "Improper modifier for selector argument");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsObjCSelector()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::ValueDecl:
Out << FormatOpts.OpeningQuotationMark;
Arg.getAsValueDecl()->getFullName().printPretty(Out);
Out << FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::Type: {
assert(Modifier.empty() && "Improper modifier for Type argument");
// Strip extraneous parentheses; they add no value.
auto type = Arg.getAsType()->getWithoutParens();
std::string typeName = type->getString();
if (shouldShowAKA(type, typeName)) {
llvm::SmallString<256> AkaText;
llvm::raw_svector_ostream OutAka(AkaText);
OutAka << type->getCanonicalType();
Out << llvm::format(FormatOpts.AKAFormatString.c_str(), typeName.c_str(),
AkaText.c_str());
} else {
Out << FormatOpts.OpeningQuotationMark << typeName
<< FormatOpts.ClosingQuotationMark;
}
break;
}
case DiagnosticArgumentKind::TypeRepr:
assert(Modifier.empty() && "Improper modifier for TypeRepr argument");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsTypeRepr()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::PatternKind:
assert(Modifier.empty() && "Improper modifier for PatternKind argument");
Out << Arg.getAsPatternKind();
break;
case DiagnosticArgumentKind::SelfAccessKind:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsSelfAccessKind()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for SelfAccessKind argument");
Out << Arg.getAsSelfAccessKind();
}
break;
case DiagnosticArgumentKind::ReferenceOwnership:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsReferenceOwnership()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for ReferenceOwnership argument");
Out << Arg.getAsReferenceOwnership();
}
break;
case DiagnosticArgumentKind::StaticSpellingKind:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsStaticSpellingKind()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for StaticSpellingKind argument");
Out << Arg.getAsStaticSpellingKind();
}
break;
case DiagnosticArgumentKind::DescriptiveDeclKind:
assert(Modifier.empty() &&
"Improper modifier for DescriptiveDeclKind argument");
Out << Decl::getDescriptiveKindName(Arg.getAsDescriptiveDeclKind());
break;
case DiagnosticArgumentKind::DeclAttribute:
assert(Modifier.empty() &&
"Improper modifier for DeclAttribute argument");
if (Arg.getAsDeclAttribute()->isDeclModifier())
Out << FormatOpts.OpeningQuotationMark
<< Arg.getAsDeclAttribute()->getAttrName()
<< FormatOpts.ClosingQuotationMark;
else
Out << '@' << Arg.getAsDeclAttribute()->getAttrName();
break;
case DiagnosticArgumentKind::VersionTuple:
assert(Modifier.empty() &&
"Improper modifier for VersionTuple argument");
Out << Arg.getAsVersionTuple().getAsString();
break;
case DiagnosticArgumentKind::LayoutConstraint:
assert(Modifier.empty() && "Improper modifier for LayoutConstraint argument");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsLayoutConstraint()
<< FormatOpts.ClosingQuotationMark;
break;
}
}
/// Format the given diagnostic text and place the result in the given
/// buffer.
void DiagnosticEngine::formatDiagnosticText(
llvm::raw_ostream &Out, StringRef InText, ArrayRef<DiagnosticArgument> Args,
DiagnosticFormatOptions FormatOpts) {
while (!InText.empty()) {
size_t Percent = InText.find('%');
if (Percent == StringRef::npos) {
// Write the rest of the string; we're done.
Out.write(InText.data(), InText.size());
break;
}
// Write the string up to (but not including) the %, then drop that text
// (including the %).
Out.write(InText.data(), Percent);
InText = InText.substr(Percent + 1);
// '%%' -> '%'.
if (InText[0] == '%') {
Out.write('%');
InText = InText.substr(1);
continue;
}
// Parse an optional modifier.
StringRef Modifier;
{
size_t Length = InText.find_if_not(isalpha);
Modifier = InText.substr(0, Length);
InText = InText.substr(Length);
}
if (Modifier == "error") {
assert(false && "encountered %error in diagnostic text");
Out << StringRef("<<ERROR>>");
break;
}
// Parse the optional argument list for a modifier, which is brace-enclosed.
StringRef ModifierArguments;
if (InText[0] == '{') {
InText = InText.substr(1);
ModifierArguments = skipToDelimiter(InText, '}');
}
// Find the digit sequence, and parse it into an argument index.
size_t Length = InText.find_if_not(isdigit);
unsigned ArgIndex;
bool Result = InText.substr(0, Length).getAsInteger(10, ArgIndex);
assert(!Result && "Unparseable argument index value?");
(void)Result;
assert(ArgIndex < Args.size() && "Out-of-range argument index");
InText = InText.substr(Length);
// Convert the argument to a string.
formatDiagnosticArgument(Modifier, ModifierArguments, Args, ArgIndex,
FormatOpts, Out);
}
}
static DiagnosticKind toDiagnosticKind(DiagnosticState::Behavior behavior) {
switch (behavior) {
case DiagnosticState::Behavior::Unspecified:
llvm_unreachable("unspecified behavior");
case DiagnosticState::Behavior::Ignore:
llvm_unreachable("trying to map an ignored diagnostic");
case DiagnosticState::Behavior::Error:
case DiagnosticState::Behavior::Fatal:
return DiagnosticKind::Error;
case DiagnosticState::Behavior::Note:
return DiagnosticKind::Note;
case DiagnosticState::Behavior::Warning:
return DiagnosticKind::Warning;
case DiagnosticState::Behavior::Remark:
return DiagnosticKind::Remark;
}
llvm_unreachable("Unhandled DiagnosticKind in switch.");
}
/// A special option only for compiler writers that causes Diagnostics to assert
/// when a failure diagnostic is emitted. Intended for use in the debugger.
llvm::cl::opt<bool> AssertOnError("swift-diagnostics-assert-on-error",
llvm::cl::init(false));
DiagnosticState::Behavior DiagnosticState::determineBehavior(DiagID id) {
auto set = [this](DiagnosticState::Behavior lvl) {
if (lvl == Behavior::Fatal) {
fatalErrorOccurred = true;
anyErrorOccurred = true;
} else if (lvl == Behavior::Error) {
anyErrorOccurred = true;
}
assert((!AssertOnError || !anyErrorOccurred) && "We emitted an error?!");
previousBehavior = lvl;
return lvl;
};
// We determine how to handle a diagnostic based on the following rules
// 1) If current state dictates a certain behavior, follow that
// 2) If the user provided a behavior for this specific diagnostic, follow
// that
// 3) If the user provided a behavior for this diagnostic's kind, follow
// that
// 4) Otherwise remap the diagnostic kind
auto diagInfo = storedDiagnosticInfos[(unsigned)id];
bool isNote = diagInfo.kind == DiagnosticKind::Note;
// 1) If current state dictates a certain behavior, follow that
// Notes relating to ignored diagnostics should also be ignored
if (previousBehavior == Behavior::Ignore && isNote)
return set(Behavior::Ignore);
// Suppress diagnostics when in a fatal state, except for follow-on notes
if (fatalErrorOccurred)
if (!showDiagnosticsAfterFatalError && !isNote)
return set(Behavior::Ignore);
// 2) If the user provided a behavior for this specific diagnostic, follow
// that
if (perDiagnosticBehavior[(unsigned)id] != Behavior::Unspecified)
return set(perDiagnosticBehavior[(unsigned)id]);
// 3) If the user provided a behavior for this diagnostic's kind, follow
// that
if (diagInfo.kind == DiagnosticKind::Warning) {
if (suppressWarnings)
return set(Behavior::Ignore);
if (warningsAsErrors)
return set(Behavior::Error);
}
// 4) Otherwise remap the diagnostic kind
switch (diagInfo.kind) {
case DiagnosticKind::Note:
return set(Behavior::Note);
case DiagnosticKind::Error:
return set(diagInfo.isFatal ? Behavior::Fatal : Behavior::Error);
case DiagnosticKind::Warning:
return set(Behavior::Warning);
case DiagnosticKind::Remark:
return set(Behavior::Remark);
}
llvm_unreachable("Unhandled DiagnosticKind in switch.");
}
void DiagnosticEngine::flushActiveDiagnostic() {
assert(ActiveDiagnostic && "No active diagnostic to flush");
if (TransactionCount == 0) {
emitDiagnostic(*ActiveDiagnostic);
} else {
TentativeDiagnostics.emplace_back(std::move(*ActiveDiagnostic));
}
ActiveDiagnostic.reset();
}
void DiagnosticEngine::emitTentativeDiagnostics() {
for (auto &diag : TentativeDiagnostics) {
emitDiagnostic(diag);
}
TentativeDiagnostics.clear();
}
void DiagnosticEngine::emitDiagnostic(const Diagnostic &diagnostic) {
auto behavior = state.determineBehavior(diagnostic.getID());
if (behavior == DiagnosticState::Behavior::Ignore)
return;
// Figure out the source location.
SourceLoc loc = diagnostic.getLoc();
if (loc.isInvalid() && diagnostic.getDecl()) {
const Decl *decl = diagnostic.getDecl();
// If a declaration was provided instead of a location, and that declaration
// has a location we can point to, use that location.
loc = decl->getLoc();
if (loc.isInvalid()) {
// There is no location we can point to. Pretty-print the declaration
// so we can point to it.
SourceLoc ppLoc = PrettyPrintedDeclarations[decl];
if (ppLoc.isInvalid()) {
class TrackingPrinter : public StreamPrinter {
SmallVectorImpl<std::pair<const Decl *, uint64_t>> &Entries;
public:
TrackingPrinter(
SmallVectorImpl<std::pair<const Decl *, uint64_t>> &Entries,
raw_ostream &OS) :
StreamPrinter(OS), Entries(Entries) {}
void printDeclLoc(const Decl *D) override {
Entries.push_back({ D, OS.tell() });
}
};
SmallVector<std::pair<const Decl *, uint64_t>, 8> entries;
llvm::SmallString<128> buffer;
llvm::SmallString<128> bufferName;
{
// Figure out which declaration to print. It's the top-most
// declaration (not a module).
const Decl *ppDecl = decl;
auto dc = decl->getDeclContext();
// FIXME: Horrible, horrible hackaround. We're not getting a
// DeclContext everywhere we should.
if (!dc) {
return;
}
while (!dc->isModuleContext()) {
switch (dc->getContextKind()) {
case DeclContextKind::Module:
llvm_unreachable("Not in a module context!");
break;
case DeclContextKind::FileUnit:
case DeclContextKind::TopLevelCodeDecl:
break;
case DeclContextKind::ExtensionDecl:
ppDecl = cast<ExtensionDecl>(dc);
break;
case DeclContextKind::GenericTypeDecl:
ppDecl = cast<GenericTypeDecl>(dc);
break;
case DeclContextKind::SerializedLocal:
case DeclContextKind::Initializer:
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::AbstractFunctionDecl:
case DeclContextKind::SubscriptDecl:
case DeclContextKind::EnumElementDecl:
break;
}
dc = dc->getParent();
}
// Build the module name path (in reverse), which we use to
// build the name of the buffer.
SmallVector<StringRef, 4> nameComponents;
while (dc) {
nameComponents.push_back(cast<ModuleDecl>(dc)->getName().str());
dc = dc->getParent();
}
for (unsigned i = nameComponents.size(); i; --i) {
bufferName += nameComponents[i-1];
bufferName += '.';
}
if (auto value = dyn_cast<ValueDecl>(ppDecl)) {
bufferName += value->getBaseName().userFacingName();
} else if (auto ext = dyn_cast<ExtensionDecl>(ppDecl)) {
bufferName += ext->getExtendedType().getString();
}
// Pretty-print the declaration we've picked.
llvm::raw_svector_ostream out(buffer);
TrackingPrinter printer(entries, out);
ppDecl->print(printer, PrintOptions::printForDiagnostics());
}
// Build a buffer with the pretty-printed declaration.
auto bufferID = SourceMgr.addMemBufferCopy(buffer, bufferName);
auto memBufferStartLoc = SourceMgr.getLocForBufferStart(bufferID);
// Go through all of the pretty-printed entries and record their
// locations.
for (auto entry : entries) {
PrettyPrintedDeclarations[entry.first] =
memBufferStartLoc.getAdvancedLoc(entry.second);
}
// Grab the pretty-printed location.
ppLoc = PrettyPrintedDeclarations[decl];
}
loc = ppLoc;
}
}
// Pass the diagnostic off to the consumer.
DiagnosticInfo Info;
Info.ID = diagnostic.getID();
Info.Ranges = diagnostic.getRanges();
Info.FixIts = diagnostic.getFixIts();
for (auto &Consumer : Consumers) {
Consumer->handleDiagnostic(SourceMgr, loc, toDiagnosticKind(behavior),
diagnosticStringFor(Info.ID),
diagnostic.getArgs(), Info);
}
}
const char *DiagnosticEngine::diagnosticStringFor(const DiagID id) {
return diagnosticStrings[(unsigned)id];
}
DiagnosticSuppression::DiagnosticSuppression(DiagnosticEngine &diags)
: diags(diags)
{
consumers = diags.takeConsumers();
}
DiagnosticSuppression::~DiagnosticSuppression() {
for (auto consumer : consumers)
diags.addConsumer(*consumer);
}