blob: dd4d2b9e66525afb32a3bc79afa0db74f327c078 [file] [log] [blame]
//===--- Availability.h - Swift Availability Structures ---------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines data structures for API availability.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_AST_AVAILABILITY_H
#define SWIFT_AST_AVAILABILITY_H
#include "swift/AST/Type.h"
#include "swift/Basic/LLVM.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/VersionTuple.h"
namespace swift {
class ASTContext;
class Decl;
/// A lattice of version ranges of the form [x.y.z, +Inf).
class VersionRange {
// The lattice ordering is linear:
// Empty <= ... <= [10.10.0,+Inf) <= ... [10.1.0,+Inf) <= ... <= All
// and corresponds to set inclusion.
// The concretization of lattice elements is:
// Empty: empty
// All: all versions
// x.y.x: all versions greater than or equal to x.y.z
enum class ExtremalRange { Empty, All };
// A version range is either an extremal value (Empty, All) or
// a single version tuple value representing the lower end point x.y.z of a
// range [x.y.z, +Inf).
union {
llvm::VersionTuple LowerEndpoint;
ExtremalRange ExtremalValue;
};
unsigned HasLowerEndpoint : 1;
public:
/// Returns true if the range of versions is empty, or false otherwise.
bool isEmpty() const {
return !HasLowerEndpoint && ExtremalValue == ExtremalRange::Empty;
}
/// Returns true if the range includes all versions, or false otherwise.
bool isAll() const {
return !HasLowerEndpoint && ExtremalValue == ExtremalRange::All;
}
/// Returns true if the range has a lower end point; that is, if it is of
/// the form [X, +Inf).
bool hasLowerEndpoint() const { return HasLowerEndpoint; }
/// Returns the range's lower endpoint.
const llvm::VersionTuple &getLowerEndpoint() const {
assert(HasLowerEndpoint);
return LowerEndpoint;
}
/// Returns a representation of this range as a string for debugging purposes.
std::string getAsString() const {
if (isEmpty()) {
return "empty";
} else if (isAll()) {
return "all";
} else {
return "[" + getLowerEndpoint().getAsString() + ",+Inf)";
}
}
/// Returns true if all versions in this range are also in the Other range.
bool isContainedIn(const VersionRange &Other) const {
if (isEmpty() || Other.isAll())
return true;
if (isAll() || Other.isEmpty())
return false;
// [v1, +Inf) is contained in [v2, +Inf) if v1 >= v2
return getLowerEndpoint() >= Other.getLowerEndpoint();
}
/// Mutates this range to be a best-effort underapproximation of
/// the intersection of itself and Other. This is the
/// meet operation (greatest lower bound) in the version range lattice.
void intersectWith(const VersionRange &Other) {
// With the existing lattice this operation is precise. If the lattice
// is ever extended it is important that this operation be an
// underapproximation of intersection.
if (isEmpty() || Other.isAll())
return;
if (isAll() || Other.isEmpty()) {
*this = Other;
return;
}
// The g.l.b of [v1, +Inf), [v2, +Inf) is [max(v1,v2), +Inf)
const llvm::VersionTuple maxVersion =
std::max(this->getLowerEndpoint(), Other.getLowerEndpoint());
setLowerEndpoint(maxVersion);
}
/// Mutates this range to be the union of itself and Other. This is the
/// join operator (least upper bound) in the version range lattice.
void unionWith(const VersionRange &Other) {
// With the existing lattice this operation is precise. If the lattice
// is ever extended it is important that this operation be an
// overapproximation of union.
if (isAll() || Other.isEmpty())
return;
if (isEmpty() || Other.isAll()) {
*this = Other;
return;
}
// The l.u.b of [v1, +Inf), [v2, +Inf) is [min(v1,v2), +Inf)
const llvm::VersionTuple minVersion =
std::min(this->getLowerEndpoint(), Other.getLowerEndpoint());
setLowerEndpoint(minVersion);
}
/// Mutates this range to be a best effort over-approximation of the
/// intersection of the concretizations of this version range and Other.
void constrainWith(const VersionRange &Other) {
// We can use intersection for this because the lattice is multiplicative
// with respect to concretization--that is, the concretization
// of Range1 meet Range2 is equal to the intersection of the
// concretization of Range1 and the concretization of Range2.
// This will change if we add (-Inf, v) to our version range lattice.
intersectWith(Other);
}
/// Returns a version range representing all versions.
static VersionRange all() { return VersionRange(ExtremalRange::All); }
/// Returns a version range representing no versions.
static VersionRange empty() { return VersionRange(ExtremalRange::Empty); }
/// Returns a version range representing all versions greater than or equal
/// to the passed-in version.
static VersionRange allGTE(const llvm::VersionTuple &EndPoint) {
return VersionRange(EndPoint);
}
private:
VersionRange(const llvm::VersionTuple &LowerEndpoint) {
setLowerEndpoint(LowerEndpoint);
}
VersionRange(ExtremalRange ExtremalValue) {
setExtremalRange(ExtremalValue);
}
void setExtremalRange(ExtremalRange Version) {
HasLowerEndpoint = 0;
ExtremalValue = Version;
}
void setLowerEndpoint(const llvm::VersionTuple &Version) {
HasLowerEndpoint = 1;
LowerEndpoint = Version;
}
};
/// Records the reason a declaration is potentially unavailable.
class UnavailabilityReason {
public:
enum class Kind {
/// The declaration is potentially unavailable because it requires an OS
/// version range that is not guaranteed by the minimum deployment
/// target.
RequiresOSVersionRange,
/// The declaration is potentially unavailable because it is explicitly
/// weakly linked.
ExplicitlyWeakLinked
};
private:
// A value of None indicates the declaration is potentially unavailable
// because it is explicitly weak linked.
Optional<VersionRange> RequiredDeploymentRange;
UnavailabilityReason(const Optional<VersionRange> &RequiredDeploymentRange)
: RequiredDeploymentRange(RequiredDeploymentRange) {}
public:
static UnavailabilityReason explicitlyWeaklyLinked() {
return UnavailabilityReason(None);
}
static UnavailabilityReason requiresVersionRange(const VersionRange Range) {
return UnavailabilityReason(Range);
}
Kind getReasonKind() const {
if (RequiredDeploymentRange.hasValue()) {
return Kind::RequiresOSVersionRange;
} else {
return Kind::ExplicitlyWeakLinked;
}
}
const VersionRange &getRequiredOSVersionRange() const {
assert(getReasonKind() == Kind::RequiresOSVersionRange);
return RequiredDeploymentRange.getValue();
}
};
/// Represents everything that a particular chunk of code may assume about its
/// runtime environment.
///
/// The AvailabilityContext structure forms a [lattice][], which allows it to
/// have meaningful union and intersection operations ("join" and "meet"),
/// which use conservative approximations to prevent availability violations.
/// See #unionWith, #intersectWith, and #constrainWith.
///
/// [lattice]: http://mathworld.wolfram.com/Lattice.html
class AvailabilityContext {
VersionRange OSVersion;
public:
/// Creates a context that requires certain versions of the target OS.
explicit AvailabilityContext(VersionRange OSVersion) : OSVersion(OSVersion) {}
/// Creates a context that imposes the constraints of the ASTContext's
/// deployment target.
static AvailabilityContext forDeploymentTarget(ASTContext &Ctx);
/// Creates a context that imposes no constraints.
///
/// \see isAlwaysAvailable
static AvailabilityContext alwaysAvailable() {
return AvailabilityContext(VersionRange::all());
}
/// Creates a context that can never actually occur.
///
/// \see isKnownUnreachable
static AvailabilityContext neverAvailable() {
return AvailabilityContext(VersionRange::empty());
}
/// Returns the range of possible OS versions required by this context.
VersionRange getOSVersion() const { return OSVersion; }
/// Returns true if \p other makes stronger guarantees than this context.
///
/// That is, `a.isContainedIn(b)` implies `a.union(b) == b`.
bool isContainedIn(AvailabilityContext other) const {
return OSVersion.isContainedIn(other.OSVersion);
}
/// Returns true if this context has constraints that make it impossible to
/// actually occur.
///
/// For example, the else branch of a `#available` check for iOS 8.0 when the
/// containing function already requires iOS 9.
bool isKnownUnreachable() const {
return OSVersion.isEmpty();
}
/// Returns true if there are no constraints on this context; that is,
/// nothing can be assumed.
bool isAlwaysAvailable() const {
return OSVersion.isAll();
}
/// Produces an under-approximation of the intersection of the two
/// availability contexts.
///
/// That is, if the intersection can't be represented exactly, prefer
/// treating some valid deployment environments as unavailable. This is the
/// "meet" operation of the lattice.
///
/// As an example, this is used when figuring out the required availability
/// for a type that references multiple nominal decls.
void intersectWith(AvailabilityContext other) {
OSVersion.intersectWith(other.getOSVersion());
}
/// Produces an over-approximation of the intersection of the two
/// availability contexts.
///
/// That is, if the intersection can't be represented exactly, prefer
/// treating some invalid deployment environments as available.
///
/// As an example, this is used for the true branch of `#available`.
void constrainWith(AvailabilityContext other) {
OSVersion.constrainWith(other.getOSVersion());
}
/// Produces an over-approximation of the union of two availability contexts.
///
/// That is, if the union can't be represented exactly, prefer treating
/// some invalid deployment environments as available. This is the "join"
/// operation of the lattice.
///
/// As an example, this is used for the else branch of a conditional with
/// multiple `#available` checks.
void unionWith(AvailabilityContext other) {
OSVersion.unionWith(other.getOSVersion());
}
};
class AvailabilityInference {
public:
/// Infers the common availability required to access an array of
/// declarations and adds attributes reflecting that availability
/// to ToDecl.
static void
applyInferredAvailableAttrs(Decl *ToDecl,
ArrayRef<const Decl *> InferredFromDecls,
ASTContext &Context);
static AvailabilityContext inferForType(Type t);
/// Returns the context where a declaration is available
/// We assume a declaration without an annotation is always available.
static AvailabilityContext availableRange(const Decl *D, ASTContext &C);
/// Returns the context for which the declaration
/// is annotated as available, or None if the declaration
/// has no availability annotation.
static Optional<AvailabilityContext> annotatedAvailableRange(const Decl *D,
ASTContext &C);
};
} // end namespace swift
#endif