blob: 003088c485fbf993ab0def983d893a2a40b19855 [file] [log] [blame]
//===--- Concurrent.h - Concurrent Data Structures -------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_RUNTIME_CONCURRENTUTILS_H
#define SWIFT_RUNTIME_CONCURRENTUTILS_H
#include <iterator>
#include <algorithm>
#include <atomic>
#include <functional>
#include <stdint.h>
#include <vector>
#include "llvm/Support/Allocator.h"
#include "Atomic.h"
#include "Debug.h"
#include "Mutex.h"
#if defined(__FreeBSD__) || defined(__CYGWIN__) || defined(__HAIKU__)
#include <stdio.h>
#endif
namespace swift {
/// This is a node in a concurrent linked list.
template <class ElemTy> struct ConcurrentListNode {
ConcurrentListNode(ElemTy Elem) : Payload(Elem), Next(nullptr) {}
ConcurrentListNode(const ConcurrentListNode &) = delete;
ConcurrentListNode &operator=(const ConcurrentListNode &) = delete;
/// The element.
ElemTy Payload;
/// Points to the next link in the chain.
ConcurrentListNode<ElemTy> *Next;
};
/// This is a concurrent linked list. It supports insertion at the beginning
/// of the list and traversal using iterators.
/// This is a very simple implementation of a concurrent linked list
/// using atomic operations. The 'push_front' method allocates a new link
/// and attempts to compare and swap the old head pointer with pointer to
/// the new link. This operation may fail many times if there are other
/// contending threads, but eventually the head pointer is set to the new
/// link that already points to the old head value. Notice that the more
/// difficult feature of removing links is not supported.
/// See 'push_front' for more details.
template <class ElemTy> struct ConcurrentList {
ConcurrentList() : First(nullptr) {}
~ConcurrentList() {
clear();
}
/// Remove all of the links in the chain. This method leaves
/// the list at a usable state and new links can be added.
/// Notice that this operation is non-concurrent because
/// we have no way of ensuring that no one is currently
/// traversing the list.
void clear() {
// Iterate over the list and delete all the nodes.
auto Ptr = First.load(std::memory_order_acquire);
First.store(nullptr, std:: memory_order_release);
while (Ptr) {
auto N = Ptr->Next;
delete Ptr;
Ptr = N;
}
}
ConcurrentList(const ConcurrentList &) = delete;
ConcurrentList &operator=(const ConcurrentList &) = delete;
/// A list iterator.
struct ConcurrentListIterator :
public std::iterator<std::forward_iterator_tag, ElemTy> {
/// Points to the current link.
ConcurrentListNode<ElemTy> *Ptr;
/// C'tor.
ConcurrentListIterator(ConcurrentListNode<ElemTy> *P) : Ptr(P) {}
/// Move to the next element.
ConcurrentListIterator &operator++() {
Ptr = Ptr->Next;
return *this;
}
/// Access the element.
ElemTy &operator*() { return Ptr->Payload; }
/// Same?
bool operator==(const ConcurrentListIterator &o) const {
return o.Ptr == Ptr;
}
/// Not the same?
bool operator!=(const ConcurrentListIterator &o) const {
return o.Ptr != Ptr;
}
};
/// Iterator entry point.
typedef ConcurrentListIterator iterator;
/// Marks the beginning of the list.
iterator begin() const {
return ConcurrentListIterator(First.load(std::memory_order_acquire));
}
/// Marks the end of the list.
iterator end() const { return ConcurrentListIterator(nullptr); }
/// Add a new item to the list.
void push_front(ElemTy Elem) {
/// Allocate a new node.
ConcurrentListNode<ElemTy> *N = new ConcurrentListNode<ElemTy>(Elem);
// Point to the first element in the list.
N->Next = First.load(std::memory_order_acquire);
auto OldFirst = N->Next;
// Try to replace the current First with the new node.
while (!std::atomic_compare_exchange_weak_explicit(&First, &OldFirst, N,
std::memory_order_release,
std::memory_order_relaxed)) {
// If we fail, update the new node to point to the new head and try to
// insert before the new
// first element.
N->Next = OldFirst;
}
}
/// Points to the first link in the list.
std::atomic<ConcurrentListNode<ElemTy> *> First;
};
/// A utility function for ordering two integers, which is useful
/// for implementing compareWithKey.
template <class T>
static inline int compareIntegers(T left, T right) {
return (left == right ? 0 : left < right ? -1 : 1);
}
/// A utility function for ordering two pointers, which is useful
/// for implementing compareWithKey.
template <class T>
static inline int comparePointers(const T *left, const T *right) {
return (left == right ? 0 : std::less<const T *>()(left, right) ? -1 : 1);
}
template <class EntryTy, bool ProvideDestructor, class Allocator>
class ConcurrentMapBase;
/// The partial specialization of ConcurrentMapBase whose destructor is
/// trivial. The other implementation inherits from this, so this is a
/// base for all ConcurrentMaps.
template <class EntryTy, class Allocator>
class ConcurrentMapBase<EntryTy, false, Allocator> : protected Allocator {
protected:
struct Node {
std::atomic<Node*> Left;
std::atomic<Node*> Right;
EntryTy Payload;
template <class... Args>
Node(Args &&... args)
: Left(nullptr), Right(nullptr), Payload(std::forward<Args>(args)...) {}
Node(const Node &) = delete;
Node &operator=(const Node &) = delete;
#ifndef NDEBUG
void dump() const {
auto L = Left.load(std::memory_order_acquire);
auto R = Right.load(std::memory_order_acquire);
printf("\"%p\" [ label = \" {<f0> %08lx | {<f1> | <f2>}}\" "
"style=\"rounded\" shape=\"record\"];\n",
this, (long) Payload.getKeyValueForDump());
if (L) {
L->dump();
printf("\"%p\":f1 -> \"%p\":f0;\n", this, L);
}
if (R) {
R->dump();
printf("\"%p\":f2 -> \"%p\":f0;\n", this, R);
}
}
#endif
};
std::atomic<Node*> Root;
constexpr ConcurrentMapBase() : Root(nullptr) {}
// Implicitly trivial destructor.
~ConcurrentMapBase() = default;
void destroyNode(Node *node) {
assert(node && "destroying null node");
auto allocSize = sizeof(Node) + node->Payload.getExtraAllocationSize();
// Destroy the node's payload.
node->~Node();
// Deallocate the node. The static_cast here is required
// because LLVM's allocator API is insane.
this->Deallocate(static_cast<void*>(node), allocSize);
}
};
/// The partial specialization of ConcurrentMapBase which provides a
/// non-trivial destructor.
template <class EntryTy, class Allocator>
class ConcurrentMapBase<EntryTy, true, Allocator>
: protected ConcurrentMapBase<EntryTy, false, Allocator> {
protected:
using super = ConcurrentMapBase<EntryTy, false, Allocator>;
using Node = typename super::Node;
constexpr ConcurrentMapBase() {}
~ConcurrentMapBase() {
destroyTree(this->Root);
}
private:
void destroyTree(const std::atomic<Node*> &edge) {
// This can be a relaxed load because destruction is not allowed to race
// with other operations.
auto node = edge.load(std::memory_order_relaxed);
if (!node) return;
// Destroy the node's children.
destroyTree(node->Left);
destroyTree(node->Right);
// Destroy the node itself.
this->destroyNode(node);
}
};
/// A concurrent map that is implemented using a binary tree. It supports
/// concurrent insertions but does not support removals or rebalancing of
/// the tree.
///
/// The entry type must provide the following operations:
///
/// /// For debugging purposes only. Summarize this key as an integer value.
/// intptr_t getKeyIntValueForDump() const;
///
/// /// A ternary comparison. KeyTy is the type of the key provided
/// /// to find or getOrInsert.
/// int compareWithKey(KeyTy key) const;
///
/// /// Return the amount of extra trailing space required by an entry,
/// /// where KeyTy is the type of the first argument to getOrInsert and
/// /// ArgTys is the type of the remaining arguments.
/// static size_t getExtraAllocationSize(KeyTy key, ArgTys...)
///
/// /// Return the amount of extra trailing space that was requested for
/// /// this entry. This method is only used to compute the size of the
/// /// object during node deallocation; it does not need to return a
/// /// correct value so long as the allocator's Deallocate implementation
/// /// ignores this argument.
/// size_t getExtraAllocationSize() const;
///
/// If ProvideDestructor is false, the destructor will be trivial. This
/// can be appropriate when the object is declared at global scope.
template <class EntryTy, bool ProvideDestructor = true,
class Allocator = llvm::MallocAllocator>
class ConcurrentMap
: private ConcurrentMapBase<EntryTy, ProvideDestructor, Allocator> {
using super = ConcurrentMapBase<EntryTy, ProvideDestructor, Allocator>;
using Node = typename super::Node;
/// Inherited from base class:
/// std::atomic<Node*> Root;
using super::Root;
/// This member stores the address of the last node that was found by the
/// search procedure. We cache the last search to accelerate code that
/// searches the same value in a loop.
std::atomic<Node*> LastSearch;
public:
constexpr ConcurrentMap() : LastSearch(nullptr) {}
ConcurrentMap(const ConcurrentMap &) = delete;
ConcurrentMap &operator=(const ConcurrentMap &) = delete;
// ConcurrentMap<T, false> must have a trivial destructor.
~ConcurrentMap() = default;
public:
Allocator &getAllocator() {
return *this;
}
#ifndef NDEBUG
void dump() const {
auto R = Root.load(std::memory_order_acquire);
printf("digraph g {\n"
"graph [ rankdir = \"TB\"];\n"
"node [ fontsize = \"16\" ];\n"
"edge [ ];\n");
if (R) {
R->dump();
}
printf("\n}\n");
}
#endif
/// Search for a value by key \p Key.
/// \returns a pointer to the value or null if the value is not in the map.
template <class KeyTy>
EntryTy *find(const KeyTy &key) {
// Check if we are looking for the same key that we looked for in the last
// time we called this function.
if (Node *last = LastSearch.load(std::memory_order_acquire)) {
if (last->Payload.compareWithKey(key) == 0)
return &last->Payload;
}
// Search the tree, starting from the root.
Node *node = Root.load(std::memory_order_acquire);
while (node) {
int comparisonResult = node->Payload.compareWithKey(key);
if (comparisonResult == 0) {
LastSearch.store(node, std::memory_order_release);
return &node->Payload;
} else if (comparisonResult < 0) {
node = node->Left.load(std::memory_order_acquire);
} else {
node = node->Right.load(std::memory_order_acquire);
}
}
return nullptr;
}
/// Get or create an entry in the map.
///
/// \returns the entry in the map and whether a new node was added (true)
/// or already existed (false)
template <class KeyTy, class... ArgTys>
std::pair<EntryTy*, bool> getOrInsert(KeyTy key, ArgTys &&... args) {
// Check if we are looking for the same key that we looked for the
// last time we called this function.
if (Node *last = LastSearch.load(std::memory_order_acquire)) {
if (last && last->Payload.compareWithKey(key) == 0)
return { &last->Payload, false };
}
// The node we allocated.
Node *newNode = nullptr;
// Start from the root.
auto edge = &Root;
while (true) {
// Load the edge.
Node *node = edge->load(std::memory_order_acquire);
// If there's a node there, it's either a match or we're going to
// one of its children.
if (node) {
searchFromNode:
// Compare our key against the node's key.
int comparisonResult = node->Payload.compareWithKey(key);
// If it's equal, we can use this node.
if (comparisonResult == 0) {
// Destroy the node we allocated before if we're carrying one around.
if (newNode) this->destroyNode(newNode);
// Cache and report that we found an existing node.
LastSearch.store(node, std::memory_order_release);
return { &node->Payload, false };
}
// Otherwise, select the appropriate child edge and descend.
edge = (comparisonResult < 0 ? &node->Left : &node->Right);
continue;
}
// Create a new node.
if (!newNode) {
size_t allocSize =
sizeof(Node) + EntryTy::getExtraAllocationSize(key, args...);
void *memory = this->Allocate(allocSize, alignof(Node));
newNode = ::new (memory) Node(key, std::forward<ArgTys>(args)...);
}
// Try to set the edge to the new node.
if (std::atomic_compare_exchange_strong_explicit(edge, &node, newNode,
std::memory_order_acq_rel,
std::memory_order_acquire)) {
// If that succeeded, cache and report that we created a new node.
LastSearch.store(newNode, std::memory_order_release);
return { &newNode->Payload, true };
}
// Otherwise, we lost the race because some other thread initialized
// the edge before us. node will be set to the current value;
// repeat the search from there.
assert(node && "spurious failure from compare_exchange_strong?");
goto searchFromNode;
}
}
};
/// An append-only array that can be read without taking locks. Writes
/// are still locked and serialized, but only with respect to other
/// writes.
template <class ElemTy> struct ConcurrentReadableArray {
private:
/// The struct used for the array's storage. The `Elem` member is
/// considered to be the first element of a variable-length array,
/// whose size is determined by the allocation. The `Capacity` member
/// from `ConcurrentReadableArray` indicates how large it can be.
struct Storage {
std::atomic<size_t> Count;
typename std::aligned_storage<sizeof(ElemTy), alignof(ElemTy)>::type Elem;
static Storage *allocate(size_t capacity) {
auto size = sizeof(Storage) + (capacity - 1) * sizeof(Storage().Elem);
auto *ptr = reinterpret_cast<Storage *>(malloc(size));
if (!ptr) swift::crash("Could not allocate memory.");
ptr->Count.store(0, std::memory_order_relaxed);
return ptr;
}
void deallocate() {
for (size_t i = 0; i < Count; i++) {
data()[i].~ElemTy();
}
free(this);
}
ElemTy *data() {
return reinterpret_cast<ElemTy *>(&Elem);
}
};
size_t Capacity;
std::atomic<size_t> ReaderCount;
std::atomic<Storage *> Elements;
Mutex WriterLock;
std::vector<Storage *> FreeList;
void incrementReaders() {
ReaderCount.fetch_add(1, std::memory_order_acquire);
}
void decrementReaders() {
ReaderCount.fetch_sub(1, std::memory_order_release);
}
void deallocateFreeList() {
for (Storage *storage : FreeList)
storage->deallocate();
FreeList.clear();
FreeList.shrink_to_fit();
}
public:
struct Snapshot {
ConcurrentReadableArray *Array;
const ElemTy *Start;
size_t Count;
Snapshot(ConcurrentReadableArray *array, const ElemTy *start, size_t count)
: Array(array), Start(start), Count(count) {}
Snapshot(const Snapshot &other)
: Array(other.Array), Start(other.Start), Count(other.Count) {
Array->incrementReaders();
}
~Snapshot() {
Array->decrementReaders();
}
const ElemTy *begin() { return Start; }
const ElemTy *end() { return Start + Count; }
size_t count() { return Count; }
};
// This type cannot be safely copied, moved, or deleted.
ConcurrentReadableArray(const ConcurrentReadableArray &) = delete;
ConcurrentReadableArray(ConcurrentReadableArray &&) = delete;
ConcurrentReadableArray &operator=(const ConcurrentReadableArray &) = delete;
ConcurrentReadableArray() : Capacity(0), ReaderCount(0), Elements(nullptr) {}
~ConcurrentReadableArray() {
assert(ReaderCount.load(std::memory_order_acquire) == 0 &&
"deallocating ConcurrentReadableArray with outstanding snapshots");
deallocateFreeList();
}
void push_back(const ElemTy &elem) {
ScopedLock guard(WriterLock);
auto *storage = Elements.load(std::memory_order_relaxed);
auto count = storage ? storage->Count.load(std::memory_order_relaxed) : 0;
if (count >= Capacity) {
auto newCapacity = std::max((size_t)16, count * 2);
auto *newStorage = Storage::allocate(newCapacity);
if (storage) {
std::copy(storage->data(), storage->data() + count, newStorage->data());
newStorage->Count.store(count, std::memory_order_relaxed);
FreeList.push_back(storage);
}
storage = newStorage;
Capacity = newCapacity;
Elements.store(storage, std::memory_order_release);
}
new(&storage->data()[count]) ElemTy(elem);
storage->Count.store(count + 1, std::memory_order_release);
if (ReaderCount.load(std::memory_order_acquire) == 0)
deallocateFreeList();
}
Snapshot snapshot() {
incrementReaders();
auto *storage = Elements.load(SWIFT_MEMORY_ORDER_CONSUME);
if (storage == nullptr) {
return Snapshot(this, nullptr, 0);
}
auto count = storage->Count.load(std::memory_order_acquire);
const auto *ptr = storage->data();
return Snapshot(this, ptr, count);
}
};
} // end namespace swift
#endif // SWIFT_RUNTIME_CONCURRENTUTILS_H