blob: 3698f761c1576971b441138c3e6552499b36b34d [file] [log] [blame]
//===--- ConstraintGraph.cpp - Constraint Graph ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c ConstraintGraph class, which describes the
// relationships among the type variables within a constraint system.
//
//===----------------------------------------------------------------------===//
#include "ConstraintGraph.h"
#include "ConstraintGraphScope.h"
#include "ConstraintSystem.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/SaveAndRestore.h"
#include <algorithm>
#include <memory>
#include <numeric>
using namespace swift;
using namespace constraints;
#pragma mark Graph construction/destruction
ConstraintGraph::ConstraintGraph(ConstraintSystem &cs) : CS(cs) { }
ConstraintGraph::~ConstraintGraph() {
assert(Changes.empty() && "Scope stack corrupted");
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
auto &impl = TypeVariables[i]->getImpl();
delete impl.getGraphNode();
impl.setGraphNode(nullptr);
}
}
#pragma mark Graph accessors
std::pair<ConstraintGraphNode &, unsigned>
ConstraintGraph::lookupNode(TypeVariableType *typeVar) {
// Check whether we've already created a node for this type variable.
auto &impl = typeVar->getImpl();
if (auto nodePtr = impl.getGraphNode()) {
assert(impl.getGraphIndex() < TypeVariables.size() && "Out-of-bounds index");
assert(TypeVariables[impl.getGraphIndex()] == typeVar &&
"Type variable mismatch");
return { *nodePtr, impl.getGraphIndex() };
}
// Allocate the new node.
auto nodePtr = new ConstraintGraphNode(typeVar);
unsigned index = TypeVariables.size();
impl.setGraphNode(nodePtr);
impl.setGraphIndex(index);
// Record this type variable.
TypeVariables.push_back(typeVar);
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::addedTypeVariable(typeVar));
// If this type variable is not the representative of its equivalence class,
// add it to its representative's set of equivalences.
auto typeVarRep = CS.getRepresentative(typeVar);
if (typeVar != typeVarRep)
mergeNodes(typeVar, typeVarRep);
else if (auto fixed = CS.getFixedType(typeVarRep)) {
// Bind the type variable.
bindTypeVariable(typeVar, fixed);
}
return { *nodePtr, index };
}
ArrayRef<TypeVariableType *> ConstraintGraphNode::getEquivalenceClass() const{
assert(TypeVar == TypeVar->getImpl().getRepresentative(nullptr) &&
"Can't request equivalence class from non-representative type var");
return getEquivalenceClassUnsafe();
}
ArrayRef<TypeVariableType *>
ConstraintGraphNode::getEquivalenceClassUnsafe() const{
if (EquivalenceClass.empty())
EquivalenceClass.push_back(TypeVar);
return EquivalenceClass;
}
#pragma mark Node mutation
void ConstraintGraphNode::addConstraint(Constraint *constraint) {
assert(ConstraintIndex.count(constraint) == 0 && "Constraint re-insertion");
ConstraintIndex[constraint] = Constraints.size();
Constraints.push_back(constraint);
}
void ConstraintGraphNode::removeConstraint(Constraint *constraint) {
auto pos = ConstraintIndex.find(constraint);
assert(pos != ConstraintIndex.end());
// Remove this constraint from the constraint mapping.
auto index = pos->second;
ConstraintIndex.erase(pos);
assert(Constraints[index] == constraint && "Mismatched constraint");
// If this is the last constraint, just pop it off the list and we're done.
unsigned lastIndex = Constraints.size()-1;
if (index == lastIndex) {
Constraints.pop_back();
return;
}
// This constraint is somewhere in the middle; swap it with the last
// constraint, so we can remove the constraint from the vector in O(1)
// time rather than O(n) time.
auto lastConstraint = Constraints[lastIndex];
Constraints[index] = lastConstraint;
ConstraintIndex[lastConstraint] = index;
Constraints.pop_back();
}
ConstraintGraphNode::Adjacency &
ConstraintGraphNode::getAdjacency(TypeVariableType *typeVar) {
assert(typeVar != TypeVar && "Cannot be adjacent to oneself");
// Look for existing adjacency information.
auto pos = AdjacencyInfo.find(typeVar);
if (pos != AdjacencyInfo.end())
return pos->second;
// If we weren't already adjacent to this type variable, add it to the
// list of adjacencies.
pos = AdjacencyInfo.insert(
{ typeVar, { static_cast<unsigned>(Adjacencies.size()), 0, 0 } })
.first;
Adjacencies.push_back(typeVar);
return pos->second;
}
void ConstraintGraphNode::modifyAdjacency(
TypeVariableType *typeVar,
std::function<void(Adjacency& adj)> modify) {
// Find the adjacency information.
auto pos = AdjacencyInfo.find(typeVar);
assert(pos != AdjacencyInfo.end() && "Type variables not adjacent");
assert(Adjacencies[pos->second.Index] == typeVar && "Mismatched adjacency");
// Perform the modification .
modify(pos->second);
// If the adjacency is not empty, leave the information in there.
if (!pos->second.empty())
return;
// Remove this adjacency from the mapping.
unsigned index = pos->second.Index;
AdjacencyInfo.erase(pos);
// If this adjacency is last in the vector, just pop it off.
unsigned lastIndex = Adjacencies.size()-1;
if (index == lastIndex) {
Adjacencies.pop_back();
return;
}
// This adjacency is somewhere in the middle; swap it with the last
// adjacency so we can remove the adjacency from the vector in O(1) time
// rather than O(n) time.
auto lastTypeVar = Adjacencies[lastIndex];
Adjacencies[index] = lastTypeVar;
AdjacencyInfo[lastTypeVar].Index = index;
Adjacencies.pop_back();
}
void ConstraintGraphNode::addAdjacency(TypeVariableType *typeVar) {
auto &adjacency = getAdjacency(typeVar);
// Bump the degree of the adjacency.
++adjacency.NumConstraints;
}
void ConstraintGraphNode::removeAdjacency(TypeVariableType *typeVar) {
modifyAdjacency(typeVar, [](Adjacency &adj) {
assert(adj.NumConstraints > 0 && "No adjacency to remove?");
--adj.NumConstraints;
});
}
void ConstraintGraphNode::addToEquivalenceClass(
ArrayRef<TypeVariableType *> typeVars) {
assert(TypeVar == TypeVar->getImpl().getRepresentative(nullptr) &&
"Can't extend equivalence class of non-representative type var");
if (EquivalenceClass.empty())
EquivalenceClass.push_back(TypeVar);
EquivalenceClass.append(typeVars.begin(), typeVars.end());
}
void ConstraintGraphNode::addFixedBinding(TypeVariableType *typeVar) {
auto &adjacency = getAdjacency(typeVar);
assert(!adjacency.FixedBinding && "Already marked as a fixed binding?");
adjacency.FixedBinding = true;
}
void ConstraintGraphNode::removeFixedBinding(TypeVariableType *typeVar) {
modifyAdjacency(typeVar, [](Adjacency &adj) {
assert(adj.FixedBinding && "Not a fixed binding?");
adj.FixedBinding = false;
});
}
#pragma mark Graph scope management
ConstraintGraphScope::ConstraintGraphScope(ConstraintGraph &CG)
: CG(CG), ParentScope(CG.ActiveScope), NumChanges(CG.Changes.size())
{
CG.ActiveScope = this;
}
ConstraintGraphScope::~ConstraintGraphScope() {
// Pop changes off the stack until we hit the change could we had prior to
// introducing this scope.
assert(CG.Changes.size() >= NumChanges && "Scope stack corrupted");
while (CG.Changes.size() > NumChanges) {
CG.Changes.back().undo(CG);
CG.Changes.pop_back();
}
// The active scope is now the parent scope.
CG.ActiveScope = ParentScope;
}
ConstraintGraph::Change
ConstraintGraph::Change::addedTypeVariable(TypeVariableType *typeVar) {
Change result;
result.Kind = ChangeKind::AddedTypeVariable;
result.TypeVar = typeVar;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::addedConstraint(Constraint *constraint) {
Change result;
result.Kind = ChangeKind::AddedConstraint;
result.TheConstraint = constraint;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::removedConstraint(Constraint *constraint) {
Change result;
result.Kind = ChangeKind::RemovedConstraint;
result.TheConstraint = constraint;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::extendedEquivalenceClass(TypeVariableType *typeVar,
unsigned prevSize) {
Change result;
result.Kind = ChangeKind::ExtendedEquivalenceClass;
result.EquivClass.TypeVar = typeVar;
result.EquivClass.PrevSize = prevSize;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::boundTypeVariable(TypeVariableType *typeVar,
Type fixed) {
Change result;
result.Kind = ChangeKind::BoundTypeVariable;
result.Binding.TypeVar = typeVar;
result.Binding.FixedType = fixed.getPointer();
return result;
}
void ConstraintGraph::Change::undo(ConstraintGraph &cg) {
/// Temporarily change the active scope to null, so we don't record
/// any changes made while performing the undo operation.
llvm::SaveAndRestore<ConstraintGraphScope *> prevActiveScope(cg.ActiveScope,
nullptr);
switch (Kind) {
case ChangeKind::AddedTypeVariable:
cg.removeNode(TypeVar);
break;
case ChangeKind::AddedConstraint:
cg.removeConstraint(TheConstraint);
break;
case ChangeKind::RemovedConstraint:
cg.addConstraint(TheConstraint);
break;
case ChangeKind::ExtendedEquivalenceClass: {
auto &node = cg[EquivClass.TypeVar];
node.EquivalenceClass.erase(
node.EquivalenceClass.begin() + EquivClass.PrevSize,
node.EquivalenceClass.end());
break;
}
case ChangeKind::BoundTypeVariable:
cg.unbindTypeVariable(Binding.TypeVar, Binding.FixedType);
break;
}
}
#pragma mark Graph mutation
void ConstraintGraph::removeNode(TypeVariableType *typeVar) {
// Remove this node.
auto &impl = typeVar->getImpl();
unsigned index = impl.getGraphIndex();
delete impl.getGraphNode();
impl.setGraphNode(nullptr);
// Remove this type variable from the list.
unsigned lastIndex = TypeVariables.size()-1;
if (index < lastIndex)
TypeVariables[index] = TypeVariables[lastIndex];
TypeVariables.pop_back();
}
void ConstraintGraph::addConstraint(Constraint *constraint) {
// For the nodes corresponding to each type variable...
auto referencedTypeVars = constraint->getTypeVariables();
for (auto typeVar : referencedTypeVars) {
// Find the node for this type variable.
auto &node = (*this)[typeVar];
// Note the constraint within the node for that type variable.
node.addConstraint(constraint);
// Record the adjacent type variables.
// This is O(N^2) in the number of referenced type variables, because
// we're updating all of the adjacent type variables eagerly.
for (auto otherTypeVar : referencedTypeVars) {
if (typeVar == otherTypeVar)
continue;
node.addAdjacency(otherTypeVar);
}
}
// If the constraint doesn't reference any type variables, it's orphaned;
// track it as such.
if (referencedTypeVars.empty()) {
OrphanedConstraints.push_back(constraint);
}
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::addedConstraint(constraint));
}
void ConstraintGraph::removeConstraint(Constraint *constraint) {
// For the nodes corresponding to each type variable...
auto referencedTypeVars = constraint->getTypeVariables();
for (auto typeVar : referencedTypeVars) {
// Find the node for this type variable.
auto &node = (*this)[typeVar];
// Remove the constraint.
node.removeConstraint(constraint);
// Remove the adjacencies for all adjacent type variables.
// This is O(N^2) in the number of referenced type variables, because
// we're updating all of the adjacent type variables eagerly.
for (auto otherTypeVar : referencedTypeVars) {
if (typeVar == otherTypeVar)
continue;
node.removeAdjacency(otherTypeVar);
}
}
// If this is an orphaned constraint, remove it from the list.
if (referencedTypeVars.empty()) {
auto known = std::find(OrphanedConstraints.begin(),
OrphanedConstraints.end(),
constraint);
assert(known != OrphanedConstraints.end() && "missing orphaned constraint");
*known = OrphanedConstraints.back();
OrphanedConstraints.pop_back();
}
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::removedConstraint(constraint));
}
void ConstraintGraph::mergeNodes(TypeVariableType *typeVar1,
TypeVariableType *typeVar2) {
assert(CS.getRepresentative(typeVar1) == CS.getRepresentative(typeVar2) &&
"type representatives don't match");
// Retrieve the node for the representative that we're merging into.
auto typeVarRep = CS.getRepresentative(typeVar1);
auto &repNode = (*this)[typeVarRep];
// Retrieve the node for the non-representative.
assert((typeVar1 == typeVarRep || typeVar2 == typeVarRep) &&
"neither type variable is the new representative?");
auto typeVarNonRep = typeVar1 == typeVarRep? typeVar2 : typeVar1;
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::extendedEquivalenceClass(
typeVarRep,
repNode.getEquivalenceClass().size()));
// Merge equivalence class from the non-representative type variable.
auto &nonRepNode = (*this)[typeVarNonRep];
repNode.addToEquivalenceClass(nonRepNode.getEquivalenceClassUnsafe());
}
void ConstraintGraph::bindTypeVariable(TypeVariableType *typeVar, Type fixed) {
// If there are no type variables in the fixed type, there's nothing to do.
if (!fixed->hasTypeVariable())
return;
SmallVector<TypeVariableType *, 4> typeVars;
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
fixed->getTypeVariables(typeVars);
auto &node = (*this)[typeVar];
for (auto otherTypeVar : typeVars) {
if (knownTypeVars.insert(otherTypeVar).second) {
if (typeVar == otherTypeVar) continue;
(*this)[otherTypeVar].addFixedBinding(typeVar);
node.addFixedBinding(otherTypeVar);
}
}
// Record the change, if there are active scopes.
// Note: If we ever use this to undo the actual variable binding,
// we'll need to store the change along the early-exit path as well.
if (ActiveScope)
Changes.push_back(Change::boundTypeVariable(typeVar, fixed));
}
void ConstraintGraph::unbindTypeVariable(TypeVariableType *typeVar, Type fixed){
// If there are no type variables in the fixed type, there's nothing to do.
if (!fixed->hasTypeVariable())
return;
SmallVector<TypeVariableType *, 4> typeVars;
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
fixed->getTypeVariables(typeVars);
auto &node = (*this)[typeVar];
for (auto otherTypeVar : typeVars) {
if (knownTypeVars.insert(otherTypeVar).second) {
(*this)[otherTypeVar].removeFixedBinding(typeVar);
node.removeFixedBinding(otherTypeVar);
}
}
}
void ConstraintGraph::gatherConstraints(
TypeVariableType *typeVar,
SmallVectorImpl<Constraint *> &constraints,
GatheringKind kind) {
auto &reprNode = (*this)[CS.getRepresentative(typeVar)];
auto equivClass = reprNode.getEquivalenceClass();
llvm::SmallPtrSet<TypeVariableType *, 4> typeVars;
for (auto typeVar : equivClass) {
if (!typeVars.insert(typeVar).second)
continue;
for (auto constraint : (*this)[typeVar].getConstraints())
constraints.push_back(constraint);
auto &node = (*this)[typeVar];
// Retrieve the constraints from adjacent bindings.
for (auto adjTypeVar : node.getAdjacencies()) {
switch (kind) {
case GatheringKind::EquivalenceClass:
if (!node.getAdjacency(adjTypeVar).FixedBinding)
continue;
break;
case GatheringKind::AllMentions:
break;
}
ArrayRef<TypeVariableType *> adjTypeVarsToVisit;
switch (kind) {
case GatheringKind::EquivalenceClass:
adjTypeVarsToVisit = adjTypeVar;
break;
case GatheringKind::AllMentions:
adjTypeVarsToVisit
= (*this)[CS.getRepresentative(adjTypeVar)].getEquivalenceClass();
break;
}
for (auto adjTypeVarEquiv : adjTypeVarsToVisit) {
if (!typeVars.insert(adjTypeVarEquiv).second)
continue;
for (auto constraint : (*this)[adjTypeVarEquiv].getConstraints())
constraints.push_back(constraint);
}
}
}
}
#pragma mark Algorithms
/// Depth-first search for connected components
static void connectedComponentsDFS(ConstraintGraph &cg,
ConstraintGraphNode &node,
unsigned component,
SmallVectorImpl<unsigned> &components) {
// Local function that recurses on the given set of type variables.
auto visitAdjacencies = [&](ArrayRef<TypeVariableType *> typeVars) {
for (auto adj : typeVars) {
auto nodeAndIndex = cg.lookupNode(adj);
// If we've already seen this node in this component, we're done.
unsigned &curComponent = components[nodeAndIndex.second];
if (curComponent == component)
continue;
// Mark this node as part of this connected component, then recurse.
assert(curComponent == components.size() && "Already in a component?");
curComponent = component;
connectedComponentsDFS(cg, nodeAndIndex.first, component, components);
}
};
// Recurse to mark adjacent nodes as part of this connected component.
visitAdjacencies(node.getAdjacencies());
// Figure out the representative for this type variable.
auto &cs = cg.getConstraintSystem();
auto typeVarRep = cs.getRepresentative(node.getTypeVariable());
if (typeVarRep == node.getTypeVariable()) {
// This type variable is the representative of its set; visit all of the
// other type variables in the same equivalence class.
visitAdjacencies(node.getEquivalenceClass().slice(1));
} else {
// Otherwise, visit the representative of the set.
visitAdjacencies(typeVarRep);
}
}
unsigned ConstraintGraph::computeConnectedComponents(
SmallVectorImpl<TypeVariableType *> &typeVars,
SmallVectorImpl<unsigned> &components) {
// Track those type variables that the caller cares about.
llvm::SmallPtrSet<TypeVariableType *, 4> typeVarSubset(typeVars.begin(),
typeVars.end());
typeVars.clear();
// Initialize the components with component == # of type variables,
// a sentinel value indicating
unsigned numTypeVariables = TypeVariables.size();
components.assign(numTypeVariables, numTypeVariables);
// Perform a depth-first search from each type variable to identify
// what component it is in.
unsigned numComponents = 0;
for (unsigned i = 0; i != numTypeVariables; ++i) {
auto typeVar = TypeVariables[i];
// Look up the node for this type variable.
auto nodeAndIndex = lookupNode(typeVar);
// If we're already assigned a component for this node, skip it.
unsigned &curComponent = components[nodeAndIndex.second];
if (curComponent != numTypeVariables)
continue;
// Record this component.
unsigned component = numComponents++;
// Note that this node is part of this component, then visit it.
curComponent = component;
connectedComponentsDFS(*this, nodeAndIndex.first, component, components);
}
// Figure out which components have unbound type variables; these
// are the only components and type variables we want to report.
SmallVector<bool, 4> componentHasUnboundTypeVar(numComponents, false);
for (unsigned i = 0; i != numTypeVariables; ++i) {
// If this type variable has a fixed type, skip it.
if (CS.getFixedType(TypeVariables[i]))
continue;
// If this type variable isn't in the subset of type variables we care
// about, skip it.
if (typeVarSubset.count(TypeVariables[i]) == 0)
continue;
componentHasUnboundTypeVar[components[i]] = true;
}
// Renumber the old components to the new components.
SmallVector<unsigned, 4> componentRenumbering(numComponents, 0);
numComponents = 0;
for (unsigned i = 0, n = componentHasUnboundTypeVar.size(); i != n; ++i) {
// Skip components that have no unbound type variables.
if (!componentHasUnboundTypeVar[i])
continue;
componentRenumbering[i] = numComponents++;
}
// Copy over the type variables in the live components and remap
// component numbers.
unsigned outIndex = 0;
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
// Skip type variables in dead components.
if (!componentHasUnboundTypeVar[components[i]])
continue;
typeVars.push_back(TypeVariables[i]);
components[outIndex] = componentRenumbering[components[i]];
++outIndex;
}
components.erase(components.begin() + outIndex, components.end());
return numComponents + getOrphanedConstraints().size();
}
/// For a given constraint kind, decide if we should attempt to eliminate its
/// edge in the graph.
static bool shouldContractEdge(ConstraintKind kind) {
switch (kind) {
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Equal:
return true;
default:
return false;
}
}
bool ConstraintGraph::contractEdges() {
llvm::SetVector<std::pair<TypeVariableType *,
TypeVariableType *>> contractions;
auto tyvars = getTypeVariables();
auto didContractEdges = false;
for (auto tyvar : tyvars) {
SmallVector<Constraint *, 4> constraints;
gatherConstraints(tyvar, constraints,
ConstraintGraph::GatheringKind::EquivalenceClass);
for (auto constraint : constraints) {
auto kind = constraint->getKind();
// Contract binding edges between type variables.
if (shouldContractEdge(kind)) {
auto t1 = constraint->getFirstType()->getDesugaredType();
auto t2 = constraint->getSecondType()->getDesugaredType();
auto tyvar1 = t1->getAs<TypeVariableType>();
auto tyvar2 = t2->getAs<TypeVariableType>();
if (!(tyvar1 && tyvar2))
continue;
auto isParamBindingConstraint = kind == ConstraintKind::BindParam;
// If the parameter is allowed to bind to `inout` let's not
// try to contract the edge connecting parameter declaration to
// it's use in the body. If parameter declaration is bound to
// `inout` it's use has to be bound to `l-value`, which can't
// happen once equivalence classes of parameter and argument are merged.
if (isParamBindingConstraint && tyvar1->getImpl().canBindToInOut())
continue;
auto rep1 = CS.getRepresentative(tyvar1);
auto rep2 = CS.getRepresentative(tyvar2);
if (((rep1->getImpl().canBindToLValue() ==
rep2->getImpl().canBindToLValue()) ||
// Allow l-value contractions when binding parameter types.
isParamBindingConstraint)) {
if (CS.TC.getLangOpts().DebugConstraintSolver) {
auto &log = CS.getASTContext().TypeCheckerDebug->getStream();
if (CS.solverState)
log.indent(CS.solverState->depth * 2);
log << "Contracting constraint ";
constraint->print(log, &CS.getASTContext().SourceMgr);
log << "\n";
}
// Merge the edges and remove the constraint.
removeEdge(constraint);
if (rep1 != rep2)
CS.mergeEquivalenceClasses(rep1, rep2, /*updateWorkList*/ false);
didContractEdges = true;
}
}
}
}
return didContractEdges;
}
void ConstraintGraph::removeEdge(Constraint *constraint) {
bool isExistingConstraint = false;
for (auto &active : CS.ActiveConstraints) {
if (&active == constraint) {
CS.ActiveConstraints.erase(constraint);
isExistingConstraint = true;
break;
}
}
for (auto &inactive : CS.InactiveConstraints) {
if (&inactive == constraint) {
CS.InactiveConstraints.erase(constraint);
isExistingConstraint = true;
break;
}
}
if (CS.solverState) {
if (isExistingConstraint)
CS.solverState->retireConstraint(constraint);
else
CS.solverState->removeGeneratedConstraint(constraint);
}
removeConstraint(constraint);
}
void ConstraintGraph::optimize() {
// Merge equivalence classes until a fixed point is reached.
while (contractEdges()) {}
}
#pragma mark Debugging output
void ConstraintGraphNode::print(llvm::raw_ostream &out, unsigned indent) {
out.indent(indent);
TypeVar->print(out);
out << ":\n";
// Print constraints.
if (!Constraints.empty()) {
out.indent(indent + 2);
out << "Constraints:\n";
SmallVector<Constraint *, 4> sortedConstraints(Constraints.begin(),
Constraints.end());
std::sort(sortedConstraints.begin(), sortedConstraints.end());
for (auto constraint : sortedConstraints) {
out.indent(indent + 4);
constraint->print(out, &TypeVar->getASTContext().SourceMgr);
out << "\n";
}
}
// Print adjacencies.
if (!Adjacencies.empty()) {
out.indent(indent + 2);
out << "Adjacencies:";
SmallVector<TypeVariableType *, 4> sortedAdjacencies(Adjacencies.begin(),
Adjacencies.end());
std::sort(sortedAdjacencies.begin(), sortedAdjacencies.end(),
[&](TypeVariableType *typeVar1, TypeVariableType *typeVar2) {
return typeVar1->getID() < typeVar2->getID();
});
for (auto adj : sortedAdjacencies) {
out << ' ';
adj->print(out);
auto &info = AdjacencyInfo[adj];
auto degree = info.NumConstraints;
if (degree > 1 || info.FixedBinding) {
out << " (";
if (degree > 1) {
out << degree;
if (info.FixedBinding)
out << ", fixed";
} else {
out << "fixed";
}
out << ")";
}
}
out << "\n";
}
// Print equivalence class.
if (TypeVar->getImpl().getRepresentative(nullptr) == TypeVar &&
EquivalenceClass.size() > 1) {
out.indent(indent + 2);
out << "Equivalence class:";
for (unsigned i = 1, n = EquivalenceClass.size(); i != n; ++i) {
out << ' ';
EquivalenceClass[i]->print(out);
}
out << "\n";
}
}
void ConstraintGraphNode::dump() {
llvm::SaveAndRestore<bool>
debug(TypeVar->getASTContext().LangOpts.DebugConstraintSolver, true);
print(llvm::dbgs(), 0);
}
void ConstraintGraph::print(llvm::raw_ostream &out) {
for (auto typeVar : TypeVariables) {
(*this)[typeVar].print(out, 2);
out << "\n";
}
}
void ConstraintGraph::dump() {
llvm::SaveAndRestore<bool>
debug(CS.getASTContext().LangOpts.DebugConstraintSolver, true);
print(llvm::dbgs());
}
void ConstraintGraph::printConnectedComponents(llvm::raw_ostream &out) {
SmallVector<TypeVariableType *, 16> typeVars;
typeVars.append(TypeVariables.begin(), TypeVariables.end());
SmallVector<unsigned, 16> components;
unsigned numComponents = computeConnectedComponents(typeVars, components);
for (unsigned component = 0; component != numComponents; ++component) {
out.indent(2);
out << component << ":";
for (unsigned i = 0, n = typeVars.size(); i != n; ++i) {
if (components[i] == component) {
out << ' ';
typeVars[i]->print(out);
}
}
out << '\n';
}
}
void ConstraintGraph::dumpConnectedComponents() {
printConnectedComponents(llvm::dbgs());
}
#pragma mark Verification of graph invariants
/// Require that the given condition evaluate true.
///
/// If the condition is not true, complain about the problem and abort.
///
/// \param condition The actual Boolean condition.
///
/// \param complaint A string that describes the problem.
///
/// \param cg The constraint graph that failed verification.
///
/// \param node If non-null, the graph node that failed verification.
///
/// \param extraContext If provided, a function that will be called to
/// provide extra, contextual information about the failure.
static void _require(bool condition, const Twine &complaint,
ConstraintGraph &cg,
ConstraintGraphNode *node,
const std::function<void()> &extraContext = nullptr) {
if (condition)
return;
// Complain
llvm::dbgs() << "Constraint graph verification failed: " << complaint << '\n';
if (extraContext)
extraContext();
// Print the graph.
// FIXME: Highlight the offending node/constraint/adjacency/etc.
cg.print(llvm::dbgs());
abort();
}
/// Print a type variable value.
static void printValue(llvm::raw_ostream &os, TypeVariableType *typeVar) {
typeVar->print(os);
}
/// Print a constraint value.
static void printValue(llvm::raw_ostream &os, Constraint *constraint) {
constraint->print(os, nullptr);
}
/// Print an unsigned value.
static void printValue(llvm::raw_ostream &os, unsigned value) {
os << value;
}
void ConstraintGraphNode::verify(ConstraintGraph &cg) {
#define require(condition, complaint) _require(condition, complaint, cg, this)
#define requireWithContext(condition, complaint, context) \
_require(condition, complaint, cg, this, context)
#define requireSameValue(value1, value2, complaint) \
_require(value1 == value2, complaint, cg, this, [&] { \
llvm::dbgs() << " "; \
printValue(llvm::dbgs(), value1); \
llvm::dbgs() << " != "; \
printValue(llvm::dbgs(), value2); \
llvm::dbgs() << '\n'; \
})
// Verify that the constraint map/vector haven't gotten out of sync.
requireSameValue(Constraints.size(), ConstraintIndex.size(),
"constraint vector and map have different sizes");
for (auto info : ConstraintIndex) {
require(info.second < Constraints.size(), "constraint index out-of-range");
requireSameValue(info.first, Constraints[info.second],
"constraint map provides wrong index into vector");
}
// Verify that the adjacency map/vector haven't gotten out of sync.
requireSameValue(Adjacencies.size(), AdjacencyInfo.size(),
"adjacency vector and map have different sizes");
for (auto info : AdjacencyInfo) {
require(info.second.Index < Adjacencies.size(),
"adjacency index out-of-range");
requireSameValue(info.first, Adjacencies[info.second.Index],
"adjacency map provides wrong index into vector");
require(!info.second.empty(),
"adjacency information should have been removed");
require(info.second.NumConstraints <= Constraints.size(),
"adjacency information has higher degree than # of constraints");
}
// Based on the constraints we have, build up a representation of what
// we expect the adjacencies to look like.
llvm::DenseMap<TypeVariableType *, unsigned> expectedAdjacencies;
for (auto constraint : Constraints) {
for (auto adjTypeVar : constraint->getTypeVariables()) {
if (adjTypeVar == TypeVar)
continue;
++expectedAdjacencies[adjTypeVar];
}
}
// Make sure that the adjacencies we expect are the adjacencies we have.
for (auto adj : expectedAdjacencies) {
auto knownAdj = AdjacencyInfo.find(adj.first);
requireWithContext(knownAdj != AdjacencyInfo.end(),
"missing adjacency information for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString() << 'n';
});
requireWithContext(adj.second == knownAdj->second.NumConstraints,
"wrong number of adjacencies for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString()
<< " (" << adj.second << " vs. "
<< knownAdj->second.NumConstraints
<< ")\n";
});
}
if (AdjacencyInfo.size() != expectedAdjacencies.size()) {
// The adjacency information has something extra in it. Find the
// extraneous type variable.
for (auto adj : AdjacencyInfo) {
requireWithContext(AdjacencyInfo.count(adj.first) > 0,
"extraneous adjacency info for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString() << '\n';
});
}
}
#undef requireSameValue
#undef requireWithContext
#undef require
}
void ConstraintGraph::verify() {
#define require(condition, complaint) \
_require(condition, complaint, *this, nullptr)
#define requireWithContext(condition, complaint, context) \
_require(condition, complaint, *this, nullptr, context)
#define requireSameValue(value1, value2, complaint) \
_require(value1 == value2, complaint, *this, nullptr, [&] { \
llvm::dbgs() << " "; \
printValue(llvm::dbgs(), value1); \
llvm::dbgs() << " != "; \
printValue(llvm::dbgs(), value2); \
llvm::dbgs() << '\n'; \
})
// Verify that the type variables are either representatives or represented
// within their representative's equivalence class.
// FIXME: Also check to make sure the equivalence classes aren't too large?
for (auto typeVar : TypeVariables) {
auto typeVarRep = CS.getRepresentative(typeVar);
auto &repNode = (*this)[typeVarRep];
if (typeVar != typeVarRep) {
// This type variable should be in the equivalence class of its
// representative.
require(std::find(repNode.getEquivalenceClass().begin(),
repNode.getEquivalenceClass().end(),
typeVar) != repNode.getEquivalenceClass().end(),
"type variable not present in its representative's equiv class");
} else {
// Each of the type variables in the same equivalence class as this type
// should have this type variable as their representative.
for (auto equiv : repNode.getEquivalenceClass()) {
requireSameValue(
typeVar, equiv->getImpl().getRepresentative(nullptr),
"representative and an equivalent type variable's representative");
}
}
}
// Verify that our type variable map/vector are in sync.
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
auto typeVar = TypeVariables[i];
auto &impl = typeVar->getImpl();
requireSameValue(impl.getGraphIndex(), i, "wrong graph node index");
require(impl.getGraphNode(), "null graph node");
}
// Verify consistency of all of the nodes in the graph.
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
auto typeVar = TypeVariables[i];
auto &impl = typeVar->getImpl();
impl.getGraphNode()->verify(*this);
}
// Collect all of the constraints known to the constraint graph.
llvm::SmallPtrSet<Constraint *, 4> knownConstraints;
for (auto typeVar : getTypeVariables()) {
for (auto constraint : (*this)[typeVar].getConstraints())
knownConstraints.insert(constraint);
}
// Verify that all of the constraints in the constraint system
// are accounted for.
for (auto &constraint : CS.getConstraints()) {
// Check whether the constraint graph knows about this constraint.
auto referencedTypeVars = constraint.getTypeVariables();
requireWithContext((knownConstraints.count(&constraint) ||
referencedTypeVars.empty()),
"constraint graph doesn't know about constraint",
[&] {
llvm::dbgs() << "constraint = ";
printValue(llvm::dbgs(), &constraint);
llvm::dbgs() << "\n";
});
// Make sure each of the type variables referenced knows about this
// constraint.
for (auto typeVar : referencedTypeVars) {
auto nodePtr = typeVar->getImpl().getGraphNode();
requireWithContext(nodePtr,
"type variable in constraint not known",
[&] {
llvm::dbgs() << "type variable = ";
printValue(llvm::dbgs(), typeVar);
llvm::dbgs() << ", constraint = ";
printValue(llvm::dbgs(), &constraint);
llvm::dbgs() << "\n";
});
auto &node = *nodePtr;
auto constraintPos = node.ConstraintIndex.find(&constraint);
requireWithContext(constraintPos != node.ConstraintIndex.end(),
"type variable doesn't know about constraint",
[&] {
llvm::dbgs() << "type variable = ";
printValue(llvm::dbgs(), typeVar);
llvm::dbgs() << ", constraint = ";
printValue(llvm::dbgs(), &constraint);
llvm::dbgs() << "\n";
});
}
}
#undef requireSameValue
#undef requireWithContext
#undef require
}