blob: dd776f835dc3a0ba4d8429efde0cc66d448ccc05 [file] [log] [blame]
//===--- DiagnoseStaticExclusivity.cpp - Find violations of exclusivity ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements a diagnostic pass that finds violations of the
// "Law of Exclusivity" at compile time. The Law of Exclusivity requires
// that the access duration of any access to an address not overlap
// with an access to the same address unless both accesses are reads.
//
// This pass relies on 'begin_access' and 'end_access' SIL instruction
// markers inserted during SILGen to determine when an access to an address
// begins and ends. It models the in-progress accesses with a map from
// storage locations to the counts of read and write-like accesses in progress
// for that location.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "static-exclusivity"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Stmt.h"
#include "swift/Basic/SourceLoc.h"
#include "swift/Parse/Lexer.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/Projection.h"
#include "swift/SILOptimizer/Analysis/AccessSummaryAnalysis.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Support/Debug.h"
using namespace swift;
template <typename... T, typename... U>
static InFlightDiagnostic diagnose(ASTContext &Context, SourceLoc loc,
Diag<T...> diag, U &&... args) {
return Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
namespace {
enum class AccessedStorageKind : unsigned {
/// The access is to a location represented by a SIL value
/// (for example, an 'alloc_box' instruction for a local variable).
/// Two accesses accessing the exact same SILValue are considered to be
/// accessing the same storage location.
Value,
/// The access is to a global variable.
GlobalVar,
/// The access is to a stored class property.
ClassProperty
};
/// Represents the identity of a stored class property as a combination
/// of a base and a single projection. Eventually the goal is to make this
/// more precise and consider, casts, etc.
class ObjectProjection {
public:
ObjectProjection(SILValue Object, const Projection &Proj)
: Object(Object), Proj(Proj) {
assert(Object->getType().isObject());
}
SILValue getObject() const { return Object; }
const Projection &getProjection() const { return Proj; }
bool operator==(const ObjectProjection &Other) const {
return Object == Other.Object && Proj == Other.Proj;
}
bool operator!=(const ObjectProjection &Other) const {
return Object != Other.Object || Proj != Other.Proj;
}
private:
SILValue Object;
Projection Proj;
};
/// Represents the identity of a storage location being accessed.
/// This is used to determine when two 'begin_access' instructions
/// definitely access the same underlying location.
///
/// The key invariant that this class must maintain is that if it says
/// two storage locations are the same then they must be the same at run time.
/// It is allowed to err on the other side: it may imprecisely fail to
/// recognize that two storage locations that represent the same run-time
/// location are in fact the same.
class AccessedStorage {
private:
AccessedStorageKind Kind;
union {
SILValue Value;
SILGlobalVariable *Global;
ObjectProjection ObjProj;
};
public:
AccessedStorage(SILValue V)
: Kind(AccessedStorageKind::Value), Value(V) { }
AccessedStorage(SILGlobalVariable *Global)
: Kind(AccessedStorageKind::GlobalVar), Global(Global) {}
AccessedStorage(AccessedStorageKind Kind,
const ObjectProjection &ObjProj)
: Kind(Kind), ObjProj(ObjProj) {}
AccessedStorageKind getKind() const { return Kind; }
SILValue getValue() const {
assert(Kind == AccessedStorageKind::Value);
return Value;
}
SILGlobalVariable *getGlobal() const {
assert(Kind == AccessedStorageKind::GlobalVar);
return Global;
}
const ObjectProjection &getObjectProjection() const {
assert(Kind == AccessedStorageKind::ClassProperty);
return ObjProj;
}
/// Returns the ValueDecl for the underlying storage, if it can be
/// determined. Otherwise returns null. For diagnostic purposes.
const ValueDecl *getStorageDecl() const {
switch(Kind) {
case AccessedStorageKind::GlobalVar:
return getGlobal()->getDecl();
case AccessedStorageKind::Value:
if (auto *Box = dyn_cast<AllocBoxInst>(getValue())) {
return Box->getLoc().getAsASTNode<VarDecl>();
}
if (auto *Arg = dyn_cast<SILFunctionArgument>(getValue())) {
return Arg->getDecl();
}
break;
case AccessedStorageKind::ClassProperty: {
const ObjectProjection &OP = getObjectProjection();
const Projection &P = OP.getProjection();
return P.getVarDecl(OP.getObject()->getType());
}
}
return nullptr;
}
};
enum class RecordedAccessKind {
/// The access was for a 'begin_access' instruction in the current function
/// being checked.
BeginInstruction,
/// The access was inside noescape closure that we either
/// passed to function or called directly. It results from applying the
/// the summary of the closure to the closure's captures.
NoescapeClosureCapture
};
/// Records an access to an address and the single subpath of projections
/// that was performed on the address, if such a single subpath exists.
class RecordedAccess {
private:
RecordedAccessKind RecordKind;
union {
BeginAccessInst *Inst;
struct {
SILAccessKind ClosureAccessKind;
SILLocation ClosureAccessLoc;
};
};
const IndexTrieNode *SubPath;
public:
RecordedAccess(BeginAccessInst *BAI, const IndexTrieNode *SubPath) :
RecordKind(RecordedAccessKind::BeginInstruction), Inst(BAI),
SubPath(SubPath) { }
RecordedAccess(SILAccessKind ClosureAccessKind,
SILLocation ClosureAccessLoc, const IndexTrieNode *SubPath) :
RecordKind(RecordedAccessKind::NoescapeClosureCapture),
ClosureAccessKind(ClosureAccessKind), ClosureAccessLoc(ClosureAccessLoc),
SubPath(SubPath) { }
RecordedAccessKind getRecordKind() const {
return RecordKind;
}
BeginAccessInst *getInstruction() const {
assert(RecordKind == RecordedAccessKind::BeginInstruction);
return Inst;
}
SILAccessKind getAccessKind() const {
switch (RecordKind) {
case RecordedAccessKind::BeginInstruction:
return Inst->getAccessKind();
case RecordedAccessKind::NoescapeClosureCapture:
return ClosureAccessKind;
};
}
SILLocation getAccessLoc() const {
switch (RecordKind) {
case RecordedAccessKind::BeginInstruction:
return Inst->getLoc();
case RecordedAccessKind::NoescapeClosureCapture:
return ClosureAccessLoc;
};
}
const IndexTrieNode *getSubPath() const {
return SubPath;
}
};
/// Records the in-progress accesses to a given sub path.
class SubAccessInfo {
public:
SubAccessInfo(const IndexTrieNode *P) : Path(P) {}
const IndexTrieNode *Path;
/// The number of in-progress 'read' accesses (that is 'begin_access [read]'
/// instructions that have not yet had the corresponding 'end_access').
unsigned Reads = 0;
/// The number of in-progress write-like accesses.
unsigned NonReads = 0;
/// The instruction that began the first in-progress access to the storage
/// location. Used for diagnostic purposes.
Optional<RecordedAccess> FirstAccess = None;
public:
/// Increment the count for given access.
void beginAccess(BeginAccessInst *BAI, const IndexTrieNode *SubPath) {
if (!FirstAccess) {
assert(Reads == 0 && NonReads == 0);
FirstAccess = RecordedAccess(BAI, SubPath);
}
if (BAI->getAccessKind() == SILAccessKind::Read)
Reads++;
else
NonReads++;
}
/// Decrement the count for given access.
void endAccess(EndAccessInst *EAI) {
if (EAI->getBeginAccess()->getAccessKind() == SILAccessKind::Read)
Reads--;
else
NonReads--;
// If all open accesses are now ended, forget the location of the
// first access.
if (Reads == 0 && NonReads == 0)
FirstAccess = None;
}
/// Returns true when there are any accesses to this location in progress.
bool hasAccessesInProgress() const { return Reads > 0 || NonReads > 0; }
/// Returns true when there must have already been a conflict diagnosed
/// for an in-progress access. Used to suppress multiple diagnostics for
/// the same underlying access violation.
bool alreadyHadConflict() const {
return (NonReads > 0 && Reads > 0) || (NonReads > 1);
}
// Returns true when beginning an access of the given Kind can
// result in a conflict with a previous access.
bool canConflictWithAccessOfKind(SILAccessKind Kind) const {
if (Kind == SILAccessKind::Read) {
// A read conflicts with any non-read accesses.
return NonReads > 0;
}
// A non-read access conflicts with any other access.
return NonReads > 0 || Reads > 0;
}
bool conflictsWithAccess(SILAccessKind Kind,
const IndexTrieNode *SubPath) const {
if (!canConflictWithAccessOfKind(Kind))
return false;
return pathsConflict(Path, SubPath);
}
/// Returns true when the two subpaths access overlapping memory.
bool pathsConflict(const IndexTrieNode *Path1,
const IndexTrieNode *Path2) const {
return Path1->isPrefixOf(Path2) || Path2->isPrefixOf(Path1);
}
};
/// Models the in-progress accesses for an address on which access has begun
/// with a begin_access instruction. For a given address, tracks the
/// count and kinds of accesses as well as the subpaths (i.e., projections) that
/// were accessed.
class AccessInfo {
using SubAccessVector = SmallVector<SubAccessInfo, 4>;
SubAccessVector SubAccesses;
/// Returns the SubAccess info for accessing at the given SubPath.
SubAccessInfo &findOrCreateSubAccessInfo(const IndexTrieNode *SubPath) {
for (auto &Info : SubAccesses) {
if (Info.Path == SubPath)
return Info;
}
SubAccesses.emplace_back(SubPath);
return SubAccesses.back();
}
SubAccessVector::const_iterator
findFirstSubPathWithConflict(SILAccessKind OtherKind,
const IndexTrieNode *OtherSubPath) const {
// Note this iteration requires deterministic ordering for repeatable
// diagnostics.
for (auto I = SubAccesses.begin(), E = SubAccesses.end(); I != E; ++I) {
const SubAccessInfo &Access = *I;
if (Access.conflictsWithAccess(OtherKind, OtherSubPath))
return I;
}
return SubAccesses.end();
}
public:
// Returns the previous access when beginning an access of the given Kind will
// result in a conflict with a previous access.
Optional<RecordedAccess>
conflictsWithAccess(SILAccessKind Kind, const IndexTrieNode *SubPath) const {
auto I = findFirstSubPathWithConflict(Kind, SubPath);
if (I == SubAccesses.end())
return None;
return I->FirstAccess;
}
/// Returns true if any subpath of has already had a conflict.
bool alreadyHadConflict() const {
for (const auto &SubAccess : SubAccesses) {
if (SubAccess.alreadyHadConflict())
return true;
}
return false;
}
/// Returns true when there are any accesses to this location in progress.
bool hasAccessesInProgress() const {
for (const auto &SubAccess : SubAccesses) {
if (SubAccess.hasAccessesInProgress())
return true;
}
return false;
}
/// Increment the count for given access.
void beginAccess(BeginAccessInst *BAI, const IndexTrieNode *SubPath) {
SubAccessInfo &SubAccess = findOrCreateSubAccessInfo(SubPath);
SubAccess.beginAccess(BAI, SubPath);
}
/// Decrement the count for given access.
void endAccess(EndAccessInst *EAI, const IndexTrieNode *SubPath) {
SubAccessInfo &SubAccess = findOrCreateSubAccessInfo(SubPath);
SubAccess.endAccess(EAI);
}
};
/// Indicates whether a 'begin_access' requires exclusive access
/// or allows shared access. This needs to be kept in sync with
/// diag::exclusivity_access_required, exclusivity_access_required_swift3,
/// and diag::exclusivity_conflicting_access.
enum class ExclusiveOrShared_t : unsigned {
ExclusiveAccess = 0,
SharedAccess = 1
};
/// Tracks the in-progress accesses on per-storage-location basis.
using StorageMap = llvm::SmallDenseMap<AccessedStorage, AccessInfo, 4>;
/// Represents two accesses that conflict and their underlying storage.
struct ConflictingAccess {
public:
/// Create a conflict for two begin_access instructions in the same function.
ConflictingAccess(const AccessedStorage &Storage, const RecordedAccess &First,
const RecordedAccess &Second)
: Storage(Storage), FirstAccess(First), SecondAccess(Second) {}
const AccessedStorage Storage;
const RecordedAccess FirstAccess;
const RecordedAccess SecondAccess;
};
} // end anonymous namespace
namespace llvm {
/// Enable using AccessedStorage as a key in DenseMap.
template <> struct DenseMapInfo<AccessedStorage> {
static AccessedStorage getEmptyKey() {
return AccessedStorage(swift::SILValue::getFromOpaqueValue(
llvm::DenseMapInfo<void *>::getEmptyKey()));
}
static AccessedStorage getTombstoneKey() {
return AccessedStorage(swift::SILValue::getFromOpaqueValue(
llvm::DenseMapInfo<void *>::getTombstoneKey()));
}
static unsigned getHashValue(AccessedStorage Storage) {
switch (Storage.getKind()) {
case AccessedStorageKind::Value:
return DenseMapInfo<swift::SILValue>::getHashValue(Storage.getValue());
case AccessedStorageKind::GlobalVar:
return DenseMapInfo<void *>::getHashValue(Storage.getGlobal());
case AccessedStorageKind::ClassProperty: {
const ObjectProjection &P = Storage.getObjectProjection();
return llvm::hash_combine(P.getObject(), P.getProjection());
}
}
llvm_unreachable("Unhandled AccessedStorageKind");
}
static bool isEqual(AccessedStorage LHS, AccessedStorage RHS) {
if (LHS.getKind() != RHS.getKind())
return false;
switch (LHS.getKind()) {
case AccessedStorageKind::Value:
return LHS.getValue() == RHS.getValue();
case AccessedStorageKind::GlobalVar:
return LHS.getGlobal() == RHS.getGlobal();
case AccessedStorageKind::ClassProperty:
return LHS.getObjectProjection() == RHS.getObjectProjection();
}
llvm_unreachable("Unhandled AccessedStorageKind");
}
};
} // end namespace llvm
/// Returns whether an access of the given kind requires exclusive or shared
/// access to its storage.
static ExclusiveOrShared_t getRequiredAccess(SILAccessKind Kind) {
if (Kind == SILAccessKind::Read)
return ExclusiveOrShared_t::SharedAccess;
return ExclusiveOrShared_t::ExclusiveAccess;
}
/// Extract the text for the given expression.
static StringRef extractExprText(const Expr *E, SourceManager &SM) {
const auto CSR = Lexer::getCharSourceRangeFromSourceRange(SM,
E->getSourceRange());
return SM.extractText(CSR);
}
/// Returns true when the call expression is a call to swap() in the Standard
/// Library.
/// This is a helper function that is only used in an assertion, which is why
/// it is in the ifndef.
#ifndef NDEBUG
static bool isCallToStandardLibrarySwap(CallExpr *CE, ASTContext &Ctx) {
if (CE->getCalledValue() == Ctx.getSwap(nullptr))
return true;
// Is the call module qualified, i.e. Swift.swap(&a[i], &[j)?
if (auto *DSBIE = dyn_cast<DotSyntaxBaseIgnoredExpr>(CE->getFn())) {
if (auto *DRE = dyn_cast<DeclRefExpr>(DSBIE->getRHS())) {
return DRE->getDecl() == Ctx.getSwap(nullptr);
}
}
return false;
}
#endif
/// Do a syntactic pattern match to determine whether the call is a call
/// to swap(&base[index1], &base[index2]), which can
/// be replaced with a call to MutableCollection.swapAt(_:_:) on base.
///
/// Returns true if the call can be replaced. Returns the call expression,
/// the base expression, and the two indices as out expressions.
///
/// This method takes an array of all the ApplyInsts for calls to swap()
/// in the function to avoid needing to construct a parent map over the AST
/// to find the CallExpr for the inout accesses.
static bool
canReplaceWithCallToCollectionSwapAt(const BeginAccessInst *Access1,
const BeginAccessInst *Access2,
ArrayRef<ApplyInst *> CallsToSwap,
ASTContext &Ctx,
CallExpr *&FoundCall,
Expr *&Base,
Expr *&Index1,
Expr *&Index2) {
if (CallsToSwap.empty())
return false;
// Inout arguments must be modifications.
if (Access1->getAccessKind() != SILAccessKind::Modify ||
Access2->getAccessKind() != SILAccessKind::Modify) {
return false;
}
SILLocation Loc1 = Access1->getLoc();
SILLocation Loc2 = Access2->getLoc();
if (Loc1.isNull() || Loc2.isNull())
return false;
auto *InOut1 = Loc1.getAsASTNode<InOutExpr>();
auto *InOut2 = Loc2.getAsASTNode<InOutExpr>();
if (!InOut1 || !InOut2)
return false;
FoundCall = nullptr;
// Look through all the calls to swap() recorded in the function to find
// which one we're diagnosing.
for (ApplyInst *AI : CallsToSwap) {
SILLocation CallLoc = AI->getLoc();
if (CallLoc.isNull())
continue;
auto *CE = CallLoc.getAsASTNode<CallExpr>();
if (!CE)
continue;
assert(isCallToStandardLibrarySwap(CE, Ctx));
// swap() takes two arguments.
auto *ArgTuple = cast<TupleExpr>(CE->getArg());
const Expr *Arg1 = ArgTuple->getElement(0);
const Expr *Arg2 = ArgTuple->getElement(1);
if ((Arg1 == InOut1 && Arg2 == InOut2)) {
FoundCall = CE;
break;
}
}
if (!FoundCall)
return false;
// We found a call to swap(&e1, &e2). Now check to see whether it
// matches the form swap(&someCollection[index1], &someCollection[index2]).
auto *SE1 = dyn_cast<SubscriptExpr>(InOut1->getSubExpr());
if (!SE1)
return false;
auto *SE2 = dyn_cast<SubscriptExpr>(InOut2->getSubExpr());
if (!SE2)
return false;
// Do the two subscripts refer to the same subscript declaration?
auto *Decl1 = cast<SubscriptDecl>(SE1->getDecl().getDecl());
auto *Decl2 = cast<SubscriptDecl>(SE2->getDecl().getDecl());
if (Decl1 != Decl2)
return false;
ProtocolDecl *MutableCollectionDecl = Ctx.getMutableCollectionDecl();
// Is the subcript either (1) on MutableCollection itself or (2) a
// a witness for a subscript on MutableCollection?
bool IsSubscriptOnMutableCollection = false;
ProtocolDecl *ProtocolForDecl =
Decl1->getDeclContext()->getAsProtocolOrProtocolExtensionContext();
if (ProtocolForDecl) {
IsSubscriptOnMutableCollection = (ProtocolForDecl == MutableCollectionDecl);
} else {
for (ValueDecl *Req : Decl1->getSatisfiedProtocolRequirements()) {
DeclContext *ReqDC = Req->getDeclContext();
ProtocolDecl *ReqProto = ReqDC->getAsProtocolOrProtocolExtensionContext();
assert(ReqProto && "Protocol requirement not in a protocol?");
if (ReqProto == MutableCollectionDecl) {
IsSubscriptOnMutableCollection = true;
break;
}
}
}
if (!IsSubscriptOnMutableCollection)
return false;
// We're swapping two subscripts on mutable collections -- but are they
// the same collection? Approximate this by checking for textual
// equality on the base expressions. This is just an approximation,
// but is fine for a best-effort Fix-It.
SourceManager &SM = Ctx.SourceMgr;
StringRef Base1Text = extractExprText(SE1->getBase(), SM);
StringRef Base2Text = extractExprText(SE2->getBase(), SM);
if (Base1Text != Base2Text)
return false;
auto *Index1Paren = dyn_cast<ParenExpr>(SE1->getIndex());
if (!Index1Paren)
return false;
auto *Index2Paren = dyn_cast<ParenExpr>(SE2->getIndex());
if (!Index2Paren)
return false;
Base = SE1->getBase();
Index1 = Index1Paren->getSubExpr();
Index2 = Index2Paren->getSubExpr();
return true;
}
/// Suggest replacing with call with a call to swapAt().
static void addSwapAtFixit(InFlightDiagnostic &Diag, CallExpr *&FoundCall,
Expr *Base, Expr *&Index1, Expr *&Index2,
SourceManager &SM) {
StringRef BaseText = extractExprText(Base, SM);
StringRef Index1Text = extractExprText(Index1, SM);
StringRef Index2Text = extractExprText(Index2, SM);
SmallString<64> FixItText;
{
llvm::raw_svector_ostream Out(FixItText);
Out << BaseText << ".swapAt(" << Index1Text << ", " << Index2Text << ")";
}
Diag.fixItReplace(FoundCall->getSourceRange(), FixItText);
}
/// Returns a string representation of the BaseName and the SubPath
/// suitable for use in diagnostic text. Only supports the Projections
/// that stored-property relaxation supports: struct stored properties
/// and tuple elements.
static std::string getPathDescription(DeclName BaseName, SILType BaseType,
const IndexTrieNode *SubPath,
SILModule &M) {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "'" << BaseName;
os << AccessSummaryAnalysis::getSubPathDescription(BaseType, SubPath, M);
os << "'";
return os.str();
}
/// Emits a diagnostic if beginning an access with the given in-progress
/// accesses violates the law of exclusivity. Returns true when a
/// diagnostic was emitted.
static void diagnoseExclusivityViolation(const ConflictingAccess &Violation,
ArrayRef<ApplyInst *> CallsToSwap,
ASTContext &Ctx) {
const AccessedStorage &Storage = Violation.Storage;
const RecordedAccess &FirstAccess = Violation.FirstAccess;
const RecordedAccess &SecondAccess = Violation.SecondAccess;
DEBUG(llvm::dbgs() << "Conflict on " << *FirstAccess.getInstruction()
<< "\n vs " << *SecondAccess.getInstruction()
<< "\n in function "
<< *FirstAccess.getInstruction()->getFunction());
// Can't have a conflict if both accesses are reads.
assert(!(FirstAccess.getAccessKind() == SILAccessKind::Read &&
SecondAccess.getAccessKind() == SILAccessKind::Read));
ExclusiveOrShared_t FirstRequires =
getRequiredAccess(FirstAccess.getAccessKind());
// Diagnose on the first access that requires exclusivity.
bool FirstIsMain = (FirstRequires == ExclusiveOrShared_t::ExclusiveAccess);
const RecordedAccess &MainAccess = (FirstIsMain ? FirstAccess : SecondAccess);
const RecordedAccess &NoteAccess = (FirstIsMain ? SecondAccess : FirstAccess);
SourceRange RangeForMain = MainAccess.getAccessLoc().getSourceRange();
unsigned AccessKindForMain =
static_cast<unsigned>(MainAccess.getAccessKind());
if (const ValueDecl *VD = Storage.getStorageDecl()) {
// We have a declaration, so mention the identifier in the diagnostic.
auto DiagnosticID = (Ctx.LangOpts.isSwiftVersion3() ?
diag::exclusivity_access_required_swift3 :
diag::exclusivity_access_required);
SILType BaseType = FirstAccess.getInstruction()->getType().getAddressType();
SILModule &M = FirstAccess.getInstruction()->getModule();
std::string PathDescription = getPathDescription(
VD->getBaseName(), BaseType, MainAccess.getSubPath(), M);
// Determine whether we can safely suggest replacing the violation with
// a call to MutableCollection.swapAt().
bool SuggestSwapAt = false;
CallExpr *CallToReplace = nullptr;
Expr *Base = nullptr;
Expr *SwapIndex1 = nullptr;
Expr *SwapIndex2 = nullptr;
if (SecondAccess.getRecordKind() == RecordedAccessKind::BeginInstruction) {
SuggestSwapAt = canReplaceWithCallToCollectionSwapAt(
FirstAccess.getInstruction(), SecondAccess.getInstruction(),
CallsToSwap, Ctx, CallToReplace, Base, SwapIndex1, SwapIndex2);
}
auto D =
diagnose(Ctx, MainAccess.getAccessLoc().getSourceLoc(), DiagnosticID,
PathDescription, AccessKindForMain, SuggestSwapAt);
D.highlight(RangeForMain);
if (SuggestSwapAt)
addSwapAtFixit(D, CallToReplace, Base, SwapIndex1, SwapIndex2,
Ctx.SourceMgr);
} else {
auto DiagnosticID = (Ctx.LangOpts.isSwiftVersion3() ?
diag::exclusivity_access_required_unknown_decl_swift3 :
diag::exclusivity_access_required_unknown_decl);
diagnose(Ctx, MainAccess.getAccessLoc().getSourceLoc(), DiagnosticID,
AccessKindForMain)
.highlight(RangeForMain);
}
diagnose(Ctx, NoteAccess.getAccessLoc().getSourceLoc(),
diag::exclusivity_conflicting_access)
.highlight(NoteAccess.getAccessLoc().getSourceRange());
}
/// Make a best effort to find the underlying object for the purpose
/// of identifying the base of a 'ref_element_addr'.
static SILValue findUnderlyingObject(SILValue Value) {
assert(Value->getType().isObject());
SILValue Iter = Value;
while (true) {
// For now just look through begin_borrow instructions; we can likely
// make this more precise in the future.
if (auto *BBI = dyn_cast<BeginBorrowInst>(Iter)) {
Iter = BBI->getOperand();
continue;
}
break;
}
assert(Iter->getType().isObject());
return Iter;
}
/// Look through a value to find the underlying storage accessed.
static AccessedStorage findAccessedStorage(SILValue Source) {
SILValue Iter = Source;
while (true) {
// Base case for globals: make sure ultimate source is recognized.
if (auto *GAI = dyn_cast<GlobalAddrInst>(Iter)) {
return AccessedStorage(GAI->getReferencedGlobal());
}
// Base case for class objects.
if (auto *REA = dyn_cast<RefElementAddrInst>(Iter)) {
// Do a best-effort to find the identity of the object being projected
// from. It is OK to be unsound here (i.e. miss when two ref_element_addrs
// actually refer the same address) because these will be dynamically
// checked.
SILValue Object = findUnderlyingObject(REA->getOperand());
const ObjectProjection &OP = ObjectProjection(Object,
Projection(REA));
return AccessedStorage(AccessedStorageKind::ClassProperty, OP);
}
switch (Iter->getKind()) {
// Inductive cases: look through operand to find ultimate source.
case ValueKind::ProjectBoxInst:
case ValueKind::CopyValueInst:
case ValueKind::MarkUninitializedInst:
case ValueKind::UncheckedAddrCastInst:
// Inlined access to subobjects.
case ValueKind::StructElementAddrInst:
case ValueKind::TupleElementAddrInst:
case ValueKind::UncheckedTakeEnumDataAddrInst:
case ValueKind::RefTailAddrInst:
case ValueKind::TailAddrInst:
case ValueKind::IndexAddrInst:
Iter = cast<SingleValueInstruction>(Iter)->getOperand(0);
continue;
// Base address producers.
case ValueKind::AllocBoxInst:
// An AllocBox is a fully identified memory location.
case ValueKind::AllocStackInst:
// An AllocStack is a fully identified memory location, which may occur
// after inlining code already subjected to stack promotion.
case ValueKind::BeginAccessInst:
// The current access is nested within another access.
// View the outer access as a separate location because nested accesses do
// not conflict with each other.
case ValueKind::SILFunctionArgument:
// A function argument is effectively a nested access, enforced
// independently in the caller and callee.
case ValueKind::PointerToAddressInst:
// An addressor provides access to a global or class property via a
// RawPointer. Calling the addressor casts that raw pointer to an address.
return AccessedStorage(Iter);
// Unsupported address producers.
// Initialization is always local.
case ValueKind::InitEnumDataAddrInst:
case ValueKind::InitExistentialAddrInst:
// Accessing an existential value requires a cast.
case ValueKind::OpenExistentialAddrInst:
default:
DEBUG(llvm::dbgs() << "Bad memory access source: " << Iter);
llvm_unreachable("Unexpected access source.");
}
}
}
/// Returns true when the apply calls the Standard Library swap().
/// Used for fix-its to suggest replacing with Collection.swapAt()
/// on exclusivity violations.
static bool isCallToStandardLibrarySwap(ApplyInst *AI, ASTContext &Ctx) {
SILFunction *SF = AI->getReferencedFunction();
if (!SF)
return false;
if (!SF->hasLocation())
return false;
auto *FD = SF->getLocation().getAsASTNode<FuncDecl>();
if (!FD)
return false;
return FD == Ctx.getSwap(nullptr);
}
/// If making an access of the given kind at the given subpath would
/// would conflict, returns the first recorded access it would conflict
/// with. Otherwise, returns None.
static Optional<RecordedAccess>
shouldReportAccess(const AccessInfo &Info,swift::SILAccessKind Kind,
const IndexTrieNode *SubPath) {
if (Info.alreadyHadConflict())
return None;
return Info.conflictsWithAccess(Kind, SubPath);
}
/// For each projection that the summarized function accesses on its
/// capture, check whether the access conflicts with already-in-progress
/// access. Returns the most general summarized conflict -- so if there are
/// two conflicts in the called function and one is for an access to an
/// aggregate and another is for an access to a projection from the aggregate,
/// this will return the conflict for the aggregate. This approach guarantees
/// determinism and makes it more likely that we'll diagnose the most helpful
/// conflict.
static Optional<ConflictingAccess>
findConflictingArgumentAccess(const AccessSummaryAnalysis::ArgumentSummary &AS,
const AccessedStorage &AccessedStorage,
const AccessInfo &InProgressInfo) {
Optional<RecordedAccess> BestInProgressAccess;
Optional<RecordedAccess> BestArgAccess;
for (const auto &MapPair : AS.getSubAccesses()) {
const IndexTrieNode *SubPath = MapPair.getFirst();
const auto &SubAccess = MapPair.getSecond();
SILAccessKind Kind = SubAccess.getAccessKind();
auto InProgressAccess = shouldReportAccess(InProgressInfo, Kind, SubPath);
if (!InProgressAccess)
continue;
if (!BestArgAccess ||
AccessSummaryAnalysis::compareSubPaths(SubPath,
BestArgAccess->getSubPath())) {
SILLocation AccessLoc = SubAccess.getAccessLoc();
BestArgAccess = RecordedAccess(Kind, AccessLoc, SubPath);
BestInProgressAccess = InProgressAccess;
}
}
if (!BestArgAccess)
return None;
return ConflictingAccess(AccessedStorage, *BestInProgressAccess,
*BestArgAccess);
}
/// Use the summary analysis to check whether a call to the given
/// function would conflict with any in progress accesses. The starting
/// index indicates what index into the the callee's parameters the
/// arguments array starts at -- this is useful for partial_apply functions,
/// which pass only a suffix of the callee's arguments at the apply site.
static void checkForViolationWithCall(
const StorageMap &Accesses, SILFunction *Callee, unsigned StartingAtIndex,
OperandValueArrayRef Arguments, AccessSummaryAnalysis *ASA,
llvm::SmallVectorImpl<ConflictingAccess> &ConflictingAccesses) {
const AccessSummaryAnalysis::FunctionSummary &FS =
ASA->getOrCreateSummary(Callee);
// For each argument in the suffix of the callee arguments being passed
// at this call site, determine whether the arguments will be accessed
// in a way that conflicts with any currently in progress accesses.
// If so, diagnose.
for (unsigned ArgumentIndex : indices(Arguments)) {
unsigned CalleeIndex = StartingAtIndex + ArgumentIndex;
const AccessSummaryAnalysis::ArgumentSummary &AS =
FS.getAccessForArgument(CalleeIndex);
const auto &SubAccesses = AS.getSubAccesses();
// Is the capture accessed in the callee?
if (SubAccesses.size() == 0)
continue;
SILValue Argument = Arguments[ArgumentIndex];
assert(Argument->getType().isAddress());
const AccessedStorage &Storage = findAccessedStorage(Argument);
auto AccessIt = Accesses.find(Storage);
// Are there any accesses in progress at the time of the call?
if (AccessIt == Accesses.end())
continue;
const AccessInfo &Info = AccessIt->getSecond();
if (auto Conflict = findConflictingArgumentAccess(AS, Storage, Info)) {
ConflictingAccesses.push_back(*Conflict);
}
}
}
/// Look through a value passed as a function argument to determine whether
/// it is a partial_apply.
static PartialApplyInst *lookThroughForPartialApply(SILValue V) {
while (true) {
if (auto CFI = dyn_cast<ConvertFunctionInst>(V)) {
V = CFI->getOperand();
continue;
}
if (auto *PAI = dyn_cast<PartialApplyInst>(V))
return PAI;
return nullptr;
}
}
/// Checks whether any of the arguments to the apply are closures and diagnoses
/// if any of the @inout_aliasable captures passed to those closures have
/// in-progress accesses that would conflict with any access the summary
/// says the closure would perform.
//
/// TODO: We currently fail to statically diagnose non-escaping closures pased
/// via @block_storage convention. To enforce this case, we should statically
/// recognize when the apply takes a block argument that has been initialized to
/// a non-escaping closure.
static void checkForViolationsInNoEscapeClosures(
const StorageMap &Accesses, FullApplySite FAS, AccessSummaryAnalysis *ASA,
llvm::SmallVectorImpl<ConflictingAccess> &ConflictingAccesses) {
SILFunction *Callee = FAS.getCalleeFunction();
if (Callee && !Callee->empty()) {
// Check for violation with directly called closure
checkForViolationWithCall(Accesses, Callee, 0, FAS.getArguments(), ASA,
ConflictingAccesses);
}
// Check for violation with closures passed as arguments
for (SILValue Argument : FAS.getArguments()) {
auto *PAI = lookThroughForPartialApply(Argument);
if (!PAI)
continue;
SILFunction *Closure = PAI->getCalleeFunction();
if (!Closure || Closure->empty())
continue;
// Check the closure's captures, which are a suffix of the closure's
// parameters.
unsigned StartIndex =
Closure->getArguments().size() - PAI->getNumCallArguments();
checkForViolationWithCall(Accesses, Closure, StartIndex,
PAI->getArguments(), ASA, ConflictingAccesses);
}
}
static void checkStaticExclusivity(SILFunction &Fn, PostOrderFunctionInfo *PO,
AccessSummaryAnalysis *ASA) {
// The implementation relies on the following SIL invariants:
// - All incoming edges to a block must have the same in-progress
// accesses. This enables the analysis to not perform a data flow merge
// on incoming edges.
// - Further, for a given address each of the in-progress
// accesses must have begun in the same order on all edges. This ensures
// consistent diagnostics across changes to the exploration of the CFG.
// - On return from a function there are no in-progress accesses. This
// enables a sanity check for lean analysis state at function exit.
// - Each end_access instruction corresponds to exactly one begin access
// instruction. (This is encoded in the EndAccessInst itself)
// - begin_access arguments cannot be basic block arguments.
// This enables the analysis to look back to find the *single* storage
// storage location accessed.
if (Fn.empty())
return;
// Collects calls the Standard Library swap() for Fix-Its.
llvm::SmallVector<ApplyInst *, 8> CallsToSwap;
// Stores the accesses that have been found to conflict. Used to defer
// emitting diagnostics until we can determine whether they should
// be suppressed.
llvm::SmallVector<ConflictingAccess, 4> ConflictingAccesses;
// For each basic block, track the stack of current accesses on
// exit from that block.
llvm::SmallDenseMap<SILBasicBlock *, Optional<StorageMap>, 32>
BlockOutAccesses;
BlockOutAccesses[Fn.getEntryBlock()] = StorageMap();
for (auto *BB : PO->getReversePostOrder()) {
Optional<StorageMap> &BBState = BlockOutAccesses[BB];
// Because we use a reverse post-order traversal, unless this is the entry
// at least one of its predecessors must have been reached. Use the out
// state for that predecessor as our in state. The SIL verifier guarantees
// that all incoming edges must have the same current accesses.
for (auto *Pred : BB->getPredecessorBlocks()) {
auto it = BlockOutAccesses.find(Pred);
if (it == BlockOutAccesses.end())
continue;
const Optional<StorageMap> &PredAccesses = it->getSecond();
if (PredAccesses) {
BBState = PredAccesses;
break;
}
}
// The in-progress accesses for the current program point, represented
// as map from storage locations to the accesses in progress for the
// location.
StorageMap &Accesses = *BBState;
for (auto &I : *BB) {
// Apply transfer functions. Beginning an access
// increments the read or write count for the storage location;
// Ending onr decrements the count.
if (auto *BAI = dyn_cast<BeginAccessInst>(&I)) {
SILAccessKind Kind = BAI->getAccessKind();
const AccessedStorage &Storage = findAccessedStorage(BAI->getSource());
AccessInfo &Info = Accesses[Storage];
const IndexTrieNode *SubPath = ASA->findSubPathAccessed(BAI);
if (auto Conflict = shouldReportAccess(Info, Kind, SubPath)) {
ConflictingAccesses.emplace_back(Storage, *Conflict,
RecordedAccess(BAI, SubPath));
}
Info.beginAccess(BAI, SubPath);
continue;
}
if (auto *EAI = dyn_cast<EndAccessInst>(&I)) {
auto It = Accesses.find(findAccessedStorage(EAI->getSource()));
AccessInfo &Info = It->getSecond();
BeginAccessInst *BAI = EAI->getBeginAccess();
const IndexTrieNode *SubPath = ASA->findSubPathAccessed(BAI);
Info.endAccess(EAI, SubPath);
// If the storage location has no more in-progress accesses, remove
// it to keep the StorageMap lean.
if (!Info.hasAccessesInProgress())
Accesses.erase(It);
continue;
}
if (auto *AI = dyn_cast<ApplyInst>(&I)) {
// Record calls to swap() for potential Fix-Its.
if (isCallToStandardLibrarySwap(AI, Fn.getASTContext()))
CallsToSwap.push_back(AI);
else
checkForViolationsInNoEscapeClosures(Accesses, AI, ASA,
ConflictingAccesses);
continue;
}
if (auto *TAI = dyn_cast<TryApplyInst>(&I)) {
checkForViolationsInNoEscapeClosures(Accesses, TAI, ASA,
ConflictingAccesses);
continue;
}
// Sanity check to make sure entries are properly removed.
assert((!isa<ReturnInst>(&I) || Accesses.size() == 0) &&
"Entries were not properly removed?!");
}
}
// Now that we've collected violations and suppressed calls, emit
// diagnostics.
for (auto &Violation : ConflictingAccesses) {
diagnoseExclusivityViolation(Violation, CallsToSwap, Fn.getASTContext());
}
}
namespace {
class DiagnoseStaticExclusivity : public SILFunctionTransform {
public:
DiagnoseStaticExclusivity() {}
private:
void run() override {
SILFunction *Fn = getFunction();
// This is a staging flag. Eventually the ability to turn off static
// enforcement will be removed.
if (!Fn->getModule().getOptions().EnforceExclusivityStatic)
return;
PostOrderFunctionInfo *PO = getAnalysis<PostOrderAnalysis>()->get(Fn);
auto *ASA = getAnalysis<AccessSummaryAnalysis>();
checkStaticExclusivity(*Fn, PO, ASA);
}
};
} // end anonymous namespace
SILTransform *swift::createDiagnoseStaticExclusivity() {
return new DiagnoseStaticExclusivity();
}