blob: 2feb3e32326e2ed5efece3e07c065ae5c44d5c39 [file] [log] [blame]
//===--- Frontend.cpp - frontend utility methods --------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file contains utility methods for parsing and performing semantic
// on modules.
//
//===----------------------------------------------------------------------===//
#include "swift/Frontend/Frontend.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Module.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Statistic.h"
#include "swift/Parse/DelayedParsingCallbacks.h"
#include "swift/Parse/Lexer.h"
#include "swift/SIL/SILModule.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
using namespace swift;
std::string CompilerInvocation::getPCHHash() const {
using llvm::hash_code;
using llvm::hash_value;
using llvm::hash_combine;
auto Code = hash_value(LangOpts.getPCHHashComponents());
Code = hash_combine(Code, FrontendOpts.getPCHHashComponents());
Code = hash_combine(Code, ClangImporterOpts.getPCHHashComponents());
Code = hash_combine(Code, SearchPathOpts.getPCHHashComponents());
Code = hash_combine(Code, DiagnosticOpts.getPCHHashComponents());
Code = hash_combine(Code, SILOpts.getPCHHashComponents());
Code = hash_combine(Code, IRGenOpts.getPCHHashComponents());
return llvm::APInt(64, Code).toString(36, /*Signed=*/false);
}
void CompilerInstance::createSILModule() {
assert(MainModule && "main module not created yet");
// Assume WMO if a -primary-file option was not provided.
bool WholeModule = !Invocation.getFrontendOptions().PrimaryInput.hasValue();
TheSILModule = SILModule::createEmptyModule(
getMainModule(), Invocation.getSILOptions(), WholeModule);
}
void CompilerInstance::setPrimarySourceFile(SourceFile *SF) {
assert(SF);
assert(MainModule && "main module not created yet");
assert(!PrimarySourceFile && "already has a primary source file");
assert(PrimaryBufferID == NO_SUCH_BUFFER || !SF->getBufferID().hasValue() ||
SF->getBufferID().getValue() == PrimaryBufferID);
PrimarySourceFile = SF;
PrimarySourceFile->setReferencedNameTracker(NameTracker);
}
bool CompilerInstance::setup(const CompilerInvocation &Invok) {
Invocation = Invok;
// Honor -Xllvm.
if (!Invok.getFrontendOptions().LLVMArgs.empty()) {
llvm::SmallVector<const char *, 4> Args;
Args.push_back("swift (LLVM option parsing)");
for (unsigned i = 0, e = Invok.getFrontendOptions().LLVMArgs.size(); i != e;
++i)
Args.push_back(Invok.getFrontendOptions().LLVMArgs[i].c_str());
Args.push_back(nullptr);
llvm::cl::ParseCommandLineOptions(Args.size()-1, Args.data());
}
if (Invocation.getDiagnosticOptions().ShowDiagnosticsAfterFatalError) {
Diagnostics.setShowDiagnosticsAfterFatalError();
}
if (Invocation.getDiagnosticOptions().SuppressWarnings) {
Diagnostics.setSuppressWarnings(true);
}
if (Invocation.getDiagnosticOptions().WarningsAsErrors) {
Diagnostics.setWarningsAsErrors(true);
}
// If we are asked to emit a module documentation file, configure lexing and
// parsing to remember comments.
if (!Invocation.getFrontendOptions().ModuleDocOutputPath.empty())
Invocation.getLangOptions().AttachCommentsToDecls = true;
// If we are doing index-while-building, configure lexing and parsing to
// remember comments.
if (!Invocation.getFrontendOptions().IndexStorePath.empty()) {
Invocation.getLangOptions().AttachCommentsToDecls = true;
}
Context.reset(new ASTContext(Invocation.getLangOptions(),
Invocation.getSearchPathOptions(),
SourceMgr, Diagnostics));
if (Invocation.getFrontendOptions().EnableSourceImport) {
bool immediate = Invocation.getFrontendOptions().actionIsImmediate();
bool enableResilience = Invocation.getFrontendOptions().EnableResilience;
Context->addModuleLoader(SourceLoader::create(*Context,
!immediate,
enableResilience,
DepTracker));
}
auto SML = SerializedModuleLoader::create(*Context, DepTracker);
this->SML = SML.get();
Context->addModuleLoader(std::move(SML));
// Wire up the Clang importer. If the user has specified an SDK, use it.
// Otherwise, we just keep it around as our interface to Clang's ABI
// knowledge.
auto clangImporter =
ClangImporter::create(*Context, Invocation.getClangImporterOptions(),
Invocation.getPCHHash(),
DepTracker);
if (!clangImporter) {
Diagnostics.diagnose(SourceLoc(), diag::error_clang_importer_create_fail);
return true;
}
Context->addModuleLoader(std::move(clangImporter), /*isClang*/true);
assert(Lexer::isIdentifier(Invocation.getModuleName()));
Optional<unsigned> CodeCompletionBufferID;
auto CodeCompletePoint = Invocation.getCodeCompletionPoint();
if (CodeCompletePoint.first) {
auto MemBuf = CodeCompletePoint.first;
// CompilerInvocation doesn't own the buffers, copy to a new buffer.
CodeCompletionBufferID = SourceMgr.addMemBufferCopy(MemBuf);
BufferIDs.push_back(*CodeCompletionBufferID);
SourceMgr.setCodeCompletionPoint(*CodeCompletionBufferID,
CodeCompletePoint.second);
}
bool MainMode = (Invocation.getInputKind() == InputFileKind::IFK_Swift);
bool SILMode = (Invocation.getInputKind() == InputFileKind::IFK_SIL);
if (SILMode)
Invocation.getLangOptions().EnableAccessControl = false;
const Optional<SelectedInput> &PrimaryInput =
Invocation.getFrontendOptions().PrimaryInput;
// Add the memory buffers first, these will be associated with a filename
// and they can replace the contents of an input filename.
for (unsigned i = 0, e = Invocation.getInputBuffers().size(); i != e; ++i) {
// CompilerInvocation doesn't own the buffers, copy to a new buffer.
auto *InputBuffer = Invocation.getInputBuffers()[i];
auto Copy = std::unique_ptr<llvm::MemoryBuffer>(
llvm::MemoryBuffer::getMemBufferCopy(
InputBuffer->getBuffer(), InputBuffer->getBufferIdentifier()));
if (serialization::isSerializedAST(Copy->getBuffer())) {
PartialModules.push_back({ std::move(Copy), nullptr });
} else {
unsigned BufferID = SourceMgr.addNewSourceBuffer(std::move(Copy));
BufferIDs.push_back(BufferID);
if (SILMode)
MainBufferID = BufferID;
if (PrimaryInput && PrimaryInput->isBuffer() && PrimaryInput->Index == i)
PrimaryBufferID = BufferID;
}
}
for (unsigned i = 0, e = Invocation.getInputFilenames().size(); i != e; ++i) {
auto &File = Invocation.getInputFilenames()[i];
// FIXME: Working with filenames is fragile, maybe use the real path
// or have some kind of FileManager.
using namespace llvm::sys::path;
if (Optional<unsigned> ExistingBufferID =
SourceMgr.getIDForBufferIdentifier(File)) {
if (SILMode || (MainMode && filename(File) == "main.swift"))
MainBufferID = ExistingBufferID.getValue();
if (PrimaryInput && PrimaryInput->isFilename() &&
PrimaryInput->Index == i)
PrimaryBufferID = ExistingBufferID.getValue();
continue; // replaced by a memory buffer.
}
// Open the input file.
using FileOrError = llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>>;
FileOrError InputFileOrErr = llvm::MemoryBuffer::getFileOrSTDIN(File);
if (!InputFileOrErr) {
Diagnostics.diagnose(SourceLoc(), diag::error_open_input_file,
File, InputFileOrErr.getError().message());
return true;
}
if (serialization::isSerializedAST(InputFileOrErr.get()->getBuffer())) {
llvm::SmallString<128> ModuleDocFilePath(File);
llvm::sys::path::replace_extension(ModuleDocFilePath,
SERIALIZED_MODULE_DOC_EXTENSION);
FileOrError ModuleDocOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(ModuleDocFilePath.str());
if (!ModuleDocOrErr &&
ModuleDocOrErr.getError() != std::errc::no_such_file_or_directory) {
Diagnostics.diagnose(SourceLoc(), diag::error_open_input_file,
File, ModuleDocOrErr.getError().message());
return true;
}
PartialModules.push_back({ std::move(InputFileOrErr.get()),
ModuleDocOrErr? std::move(ModuleDocOrErr.get())
: nullptr });
continue;
}
// Transfer ownership of the MemoryBuffer to the SourceMgr.
unsigned BufferID =
SourceMgr.addNewSourceBuffer(std::move(InputFileOrErr.get()));
BufferIDs.push_back(BufferID);
if (SILMode || (MainMode && filename(File) == "main.swift"))
MainBufferID = BufferID;
if (PrimaryInput && PrimaryInput->isFilename() && PrimaryInput->Index == i)
PrimaryBufferID = BufferID;
}
// Set the primary file to the code-completion point if one exists.
if (CodeCompletionBufferID.hasValue())
PrimaryBufferID = *CodeCompletionBufferID;
if (MainMode && MainBufferID == NO_SUCH_BUFFER && BufferIDs.size() == 1)
MainBufferID = BufferIDs.front();
return false;
}
ModuleDecl *CompilerInstance::getMainModule() {
if (!MainModule) {
Identifier ID = Context->getIdentifier(Invocation.getModuleName());
MainModule = ModuleDecl::create(ID, *Context);
if (Invocation.getFrontendOptions().EnableTesting)
MainModule->setTestingEnabled();
if (Invocation.getFrontendOptions().EnableResilience)
MainModule->setResilienceStrategy(ResilienceStrategy::Resilient);
else if (Invocation.getSILOptions().SILSerializeAll)
MainModule->setResilienceStrategy(ResilienceStrategy::Fragile);
}
return MainModule;
}
static void addAdditionalInitialImportsTo(
SourceFile *SF, const CompilerInstance::ImplicitImports &implicitImports) {
using ImportPair =
std::pair<ModuleDecl::ImportedModule, SourceFile::ImportOptions>;
SmallVector<ImportPair, 4> additionalImports;
if (implicitImports.objCModuleUnderlyingMixedFramework)
additionalImports.push_back(
{{/*accessPath=*/{},
implicitImports.objCModuleUnderlyingMixedFramework},
SourceFile::ImportFlags::Exported});
if (implicitImports.headerModule)
additionalImports.push_back(
{{/*accessPath=*/{}, implicitImports.headerModule},
SourceFile::ImportFlags::Exported});
if (!implicitImports.modules.empty()) {
for (auto &importModule : implicitImports.modules) {
additionalImports.push_back({{/*accessPath=*/{}, importModule}, {}});
}
}
SF->addImports(additionalImports);
}
static bool shouldImportSwiftOnoneModuleIfNoneOrImplicitOptimization(
FrontendOptions::ActionType RequestedAction) {
return RequestedAction == FrontendOptions::ActionType::EmitObject ||
RequestedAction == FrontendOptions::ActionType::Immediate ||
RequestedAction == FrontendOptions::ActionType::EmitSIL;
}
/// Implicitly import the SwiftOnoneSupport module in non-optimized
/// builds. This allows for use of popular specialized functions
/// from the standard library, which makes the non-optimized builds
/// execute much faster.
static bool
shouldImplicityImportSwiftOnoneSupportModule(CompilerInvocation &Invocation) {
if (Invocation.getImplicitModuleImportKind() !=
SourceFile::ImplicitModuleImportKind::Stdlib)
return false;
SILOptions::SILOptMode optimization = Invocation.getSILOptions().Optimization;
if (optimization <= SILOptions::SILOptMode::None &&
shouldImportSwiftOnoneModuleIfNoneOrImplicitOptimization(
Invocation.getFrontendOptions().RequestedAction)) {
return true;
}
return optimization == SILOptions::SILOptMode::None &&
Invocation.getFrontendOptions().isCreatingSIL();
}
void CompilerInstance::performSema() {
SharedTimer timer("performSema");
Context->LoadedModules[MainModule->getName()] = getMainModule();
if (Invocation.getInputKind() == InputFileKind::IFK_SIL) {
assert(BufferIDs.size() == 1);
assert(MainBufferID != NO_SUCH_BUFFER);
createSILModule();
}
if (Invocation.getImplicitModuleImportKind() ==
SourceFile::ImplicitModuleImportKind::Stdlib) {
if (!loadStdlib())
return;
}
if (shouldImplicityImportSwiftOnoneSupportModule(Invocation)) {
Invocation.getFrontendOptions().ImplicitImportModuleNames.push_back(
SWIFT_ONONE_SUPPORT);
}
const ImplicitImports implicitImports(*this);
if (Invocation.getInputKind() == InputFileKind::IFK_Swift_REPL) {
createREPLFile(implicitImports);
return;
}
// Make sure the main file is the first file in the module, so do this now.
if (MainBufferID != NO_SUCH_BUFFER)
addMainFileToModule(implicitImports);
parseAndCheckTypes(implicitImports);
}
CompilerInstance::ImplicitImports::ImplicitImports(CompilerInstance &compiler) {
kind = compiler.Invocation.getImplicitModuleImportKind();
objCModuleUnderlyingMixedFramework =
compiler.Invocation.getFrontendOptions().ImportUnderlyingModule
? compiler.importUnderlyingModule()
: nullptr;
compiler.getImplicitlyImportedModules(modules);
headerModule = compiler.importBridgingHeader();
}
bool CompilerInstance::loadStdlib() {
SharedTimer timer("performSema-loadStdlib");
ModuleDecl *M = Context->getStdlibModule(true);
if (!M) {
Diagnostics.diagnose(SourceLoc(), diag::error_stdlib_not_found,
Invocation.getTargetTriple());
return false;
}
// If we failed to load, we should have already diagnosed
if (M->failedToLoad()) {
assert(Diagnostics.hadAnyError() &&
"Module failed to load but nothing was diagnosed?");
return false;
}
return true;
}
ModuleDecl *CompilerInstance::importUnderlyingModule() {
SharedTimer timer("performSema-importUnderlyingModule");
ModuleDecl *objCModuleUnderlyingMixedFramework =
static_cast<ClangImporter *>(Context->getClangModuleLoader())
->loadModule(SourceLoc(),
std::make_pair(MainModule->getName(), SourceLoc()));
if (objCModuleUnderlyingMixedFramework)
return objCModuleUnderlyingMixedFramework;
Diagnostics.diagnose(SourceLoc(), diag::error_underlying_module_not_found,
MainModule->getName());
return nullptr;
}
ModuleDecl *CompilerInstance::importBridgingHeader() {
SharedTimer timer("performSema-importBridgingHeader");
const StringRef implicitHeaderPath =
Invocation.getFrontendOptions().ImplicitObjCHeaderPath;
auto clangImporter =
static_cast<ClangImporter *>(Context->getClangModuleLoader());
if (implicitHeaderPath.empty() ||
clangImporter->importBridgingHeader(implicitHeaderPath, MainModule))
return nullptr;
ModuleDecl *importedHeaderModule = clangImporter->getImportedHeaderModule();
assert(importedHeaderModule);
return importedHeaderModule;
}
void CompilerInstance::getImplicitlyImportedModules(
SmallVectorImpl<ModuleDecl *> &importModules) {
SharedTimer timer("performSema-getImplicitlyImportedModules");
for (auto &ImplicitImportModuleName :
Invocation.getFrontendOptions().ImplicitImportModuleNames) {
if (Lexer::isIdentifier(ImplicitImportModuleName)) {
auto moduleID = Context->getIdentifier(ImplicitImportModuleName);
ModuleDecl *importModule =
Context->getModule(std::make_pair(moduleID, SourceLoc()));
if (importModule) {
importModules.push_back(importModule);
} else {
Diagnostics.diagnose(SourceLoc(), diag::sema_no_import,
ImplicitImportModuleName);
if (Invocation.getSearchPathOptions().SDKPath.empty() &&
llvm::Triple(llvm::sys::getProcessTriple()).isMacOSX()) {
Diagnostics.diagnose(SourceLoc(), diag::sema_no_import_no_sdk);
Diagnostics.diagnose(SourceLoc(), diag::sema_no_import_no_sdk_xcrun);
}
}
} else {
Diagnostics.diagnose(SourceLoc(), diag::error_bad_module_name,
ImplicitImportModuleName, false);
}
}
}
void CompilerInstance::createREPLFile(
const ImplicitImports &implicitImports) const {
auto *SingleInputFile = new (*Context) SourceFile(
*MainModule, Invocation.getSourceFileKind(), None, implicitImports.kind,
Invocation.getLangOptions().KeepTokensInSourceFile);
MainModule->addFile(*SingleInputFile);
addAdditionalInitialImportsTo(SingleInputFile, implicitImports);
}
std::unique_ptr<DelayedParsingCallbacks>
CompilerInstance::computeDelayedParsingCallback() {
if (Invocation.isCodeCompletion())
return llvm::make_unique<CodeCompleteDelayedCallbacks>(
SourceMgr.getCodeCompletionLoc());
if (Invocation.isDelayedFunctionBodyParsing())
return llvm::make_unique<AlwaysDelayedCallbacks>();
return nullptr;
}
void CompilerInstance::addMainFileToModule(
const ImplicitImports &implicitImports) {
const InputFileKind Kind = Invocation.getInputKind();
assert(Kind == InputFileKind::IFK_Swift || Kind == InputFileKind::IFK_SIL);
if (Kind == InputFileKind::IFK_Swift)
SourceMgr.setHashbangBufferID(MainBufferID);
auto *MainFile = new (*Context) SourceFile(
*MainModule, Invocation.getSourceFileKind(), MainBufferID,
implicitImports.kind, Invocation.getLangOptions().KeepTokensInSourceFile);
MainModule->addFile(*MainFile);
addAdditionalInitialImportsTo(MainFile, implicitImports);
if (MainBufferID == PrimaryBufferID)
setPrimarySourceFile(MainFile);
}
void CompilerInstance::parseAndCheckTypes(
const ImplicitImports &implicitImports) {
SharedTimer timer("performSema-parseAndCheckTypes");
std::unique_ptr<DelayedParsingCallbacks> DelayedCB{
computeDelayedParsingCallback()};
PersistentParserState PersistentState;
bool hadLoadError = parsePartialModulesAndLibraryFiles(
implicitImports, PersistentState, DelayedCB.get());
if (Invocation.isCodeCompletion()) {
// When we are doing code completion, make sure to emit at least one
// diagnostic, so that ASTContext is marked as erroneous. In this case
// various parts of the compiler (for example, AST verifier) have less
// strict assumptions about the AST.
Diagnostics.diagnose(SourceLoc(), diag::error_doing_code_completion);
}
if (hadLoadError)
return;
OptionSet<TypeCheckingFlags> TypeCheckOptions = computeTypeCheckingOptions();
// Type-check main file after parsing all other files so that
// it can use declarations from other files.
// In addition, the main file has parsing and type-checking
// interwined.
if (MainBufferID != NO_SUCH_BUFFER) {
parseAndTypeCheckMainFile(PersistentState, DelayedCB.get(),
TypeCheckOptions);
}
const auto &options = Invocation.getFrontendOptions();
forEachFileToTypeCheck([&](SourceFile &SF) {
performTypeChecking(SF, PersistentState.getTopLevelContext(),
TypeCheckOptions, /*curElem*/ 0,
options.WarnLongFunctionBodies,
options.WarnLongExpressionTypeChecking,
options.SolverExpressionTimeThreshold);
});
// Even if there were no source files, we should still record known
// protocols.
if (auto *stdlib = Context->getStdlibModule())
Context->recordKnownProtocols(stdlib);
if (DelayedCB.get()) {
performDelayedParsing(MainModule, PersistentState,
Invocation.getCodeCompletionFactory());
}
finishTypeChecking(TypeCheckOptions);
}
void CompilerInstance::parseLibraryFile(
unsigned BufferID, const ImplicitImports &implicitImports,
PersistentParserState &PersistentState,
DelayedParsingCallbacks *DelayedParseCB) {
SharedTimer timer("performSema-parseLibraryFile");
auto *NextInput = new (*Context) SourceFile(
*MainModule, SourceFileKind::Library, BufferID, implicitImports.kind,
Invocation.getLangOptions().KeepTokensInSourceFile);
MainModule->addFile(*NextInput);
addAdditionalInitialImportsTo(NextInput, implicitImports);
if (BufferID == PrimaryBufferID)
setPrimarySourceFile(NextInput);
auto &Diags = NextInput->getASTContext().Diags;
auto DidSuppressWarnings = Diags.getSuppressWarnings();
auto IsPrimary = isWholeModuleCompilation() || BufferID == PrimaryBufferID;
Diags.setSuppressWarnings(DidSuppressWarnings || !IsPrimary);
bool Done;
do {
// Parser may stop at some erroneous constructions like #else, #endif
// or '}' in some cases, continue parsing until we are done
parseIntoSourceFile(*NextInput, BufferID, &Done, nullptr, &PersistentState,
DelayedParseCB);
} while (!Done);
Diags.setSuppressWarnings(DidSuppressWarnings);
performNameBinding(*NextInput);
}
OptionSet<TypeCheckingFlags> CompilerInstance::computeTypeCheckingOptions() {
OptionSet<TypeCheckingFlags> TypeCheckOptions;
if (isWholeModuleCompilation()) {
TypeCheckOptions |= TypeCheckingFlags::DelayWholeModuleChecking;
}
const auto &options = Invocation.getFrontendOptions();
if (options.DebugTimeFunctionBodies) {
TypeCheckOptions |= TypeCheckingFlags::DebugTimeFunctionBodies;
}
if (options.actionIsImmediate()) {
TypeCheckOptions |= TypeCheckingFlags::ForImmediateMode;
}
if (options.DebugTimeExpressionTypeChecking) {
TypeCheckOptions |= TypeCheckingFlags::DebugTimeExpressions;
}
return TypeCheckOptions;
}
bool CompilerInstance::parsePartialModulesAndLibraryFiles(
const ImplicitImports &implicitImports,
PersistentParserState &PersistentState,
DelayedParsingCallbacks *DelayedParseCB) {
SharedTimer timer("performSema-parsePartialModulesAndLibraryFiles");
bool hadLoadError = false;
// Parse all the partial modules first.
for (auto &PM : PartialModules) {
assert(PM.ModuleBuffer);
if (!SML->loadAST(*MainModule, SourceLoc(), std::move(PM.ModuleBuffer),
std::move(PM.ModuleDocBuffer)))
hadLoadError = true;
}
// Then parse all the library files.
for (auto BufferID : BufferIDs) {
if (BufferID != MainBufferID) {
parseLibraryFile(BufferID, implicitImports, PersistentState,
DelayedParseCB);
}
}
return hadLoadError;
}
void CompilerInstance::parseAndTypeCheckMainFile(
PersistentParserState &PersistentState,
DelayedParsingCallbacks *DelayedParseCB,
OptionSet<TypeCheckingFlags> TypeCheckOptions) {
SharedTimer timer(
"performSema-checkTypesWhileParsingMain-parseAndTypeCheckMainFile");
bool mainIsPrimary =
(isWholeModuleCompilation() || MainBufferID == PrimaryBufferID);
SourceFile &MainFile =
MainModule->getMainSourceFile(Invocation.getSourceFileKind());
auto &Diags = MainFile.getASTContext().Diags;
auto DidSuppressWarnings = Diags.getSuppressWarnings();
Diags.setSuppressWarnings(DidSuppressWarnings || !mainIsPrimary);
SILParserState SILContext(TheSILModule.get());
unsigned CurTUElem = 0;
bool Done;
do {
// Pump the parser multiple times if necessary. It will return early
// after parsing any top level code in a main module, or in SIL mode when
// there are chunks of swift decls (e.g. imports and types) interspersed
// with 'sil' definitions.
parseIntoSourceFile(MainFile, MainFile.getBufferID().getValue(), &Done,
TheSILModule ? &SILContext : nullptr, &PersistentState,
DelayedParseCB);
if (mainIsPrimary) {
const auto &options = Invocation.getFrontendOptions();
performTypeChecking(MainFile, PersistentState.getTopLevelContext(),
TypeCheckOptions, CurTUElem,
options.WarnLongFunctionBodies,
options.WarnLongExpressionTypeChecking,
options.SolverExpressionTimeThreshold);
}
CurTUElem = MainFile.Decls.size();
} while (!Done);
Diags.setSuppressWarnings(DidSuppressWarnings);
if (mainIsPrimary && !Context->hadError() &&
Invocation.getFrontendOptions().PCMacro) {
performPCMacro(MainFile, PersistentState.getTopLevelContext());
}
// Playground transform knows to look out for PCMacro's changes and not
// to playground log them.
if (mainIsPrimary && !Context->hadError() &&
Invocation.getFrontendOptions().PlaygroundTransform)
performPlaygroundTransform(
MainFile, Invocation.getFrontendOptions().PlaygroundHighPerformance);
if (!mainIsPrimary) {
performNameBinding(MainFile);
}
}
static void
forEachSourceFileIn(ModuleDecl *module,
llvm::function_ref<void(SourceFile &)> fn) {
for (auto File : module->getFiles()) {
if (auto SF = dyn_cast<SourceFile>(File))
fn(*SF);
}
}
void CompilerInstance::forEachFileToTypeCheck(
llvm::function_ref<void(SourceFile &)> fn) {
if (isWholeModuleCompilation()) {
forEachSourceFileIn(MainModule, [&](SourceFile &SF) { fn(SF); });
} else {
fn(*PrimarySourceFile);
}
}
void CompilerInstance::finishTypeChecking(
OptionSet<TypeCheckingFlags> TypeCheckOptions) {
if (TypeCheckOptions & TypeCheckingFlags::DelayWholeModuleChecking) {
forEachSourceFileIn(MainModule, [&](SourceFile &SF) {
performWholeModuleTypeChecking(SF);
});
}
forEachFileToTypeCheck([&](SourceFile &SF) { finishTypeCheckingFile(SF); });
}
void CompilerInstance::performParseOnly(bool EvaluateConditionals) {
const InputFileKind Kind = Invocation.getInputKind();
ModuleDecl *MainModule = getMainModule();
Context->LoadedModules[MainModule->getName()] = MainModule;
bool KeepTokens = Invocation.getLangOptions().KeepTokensInSourceFile;
assert((Kind == InputFileKind::IFK_Swift ||
Kind == InputFileKind::IFK_Swift_Library) &&
"only supports parsing .swift files");
(void)Kind;
auto implicitModuleImportKind = SourceFile::ImplicitModuleImportKind::None;
// Make sure the main file is the first file in the module but parse it last,
// to match the parsing logic used when performing Sema.
if (MainBufferID != NO_SUCH_BUFFER) {
assert(Kind == InputFileKind::IFK_Swift);
SourceMgr.setHashbangBufferID(MainBufferID);
auto *MainFile = new (*Context)
SourceFile(*MainModule, Invocation.getSourceFileKind(), MainBufferID,
implicitModuleImportKind, KeepTokens);
MainModule->addFile(*MainFile);
if (MainBufferID == PrimaryBufferID)
setPrimarySourceFile(MainFile);
}
PersistentParserState PersistentState;
PersistentState.PerformConditionEvaluation = EvaluateConditionals;
// Parse all the library files.
for (auto BufferID : BufferIDs) {
if (BufferID == MainBufferID)
continue;
auto *NextInput = new (*Context)
SourceFile(*MainModule, SourceFileKind::Library, BufferID,
implicitModuleImportKind, KeepTokens);
MainModule->addFile(*NextInput);
if (BufferID == PrimaryBufferID)
setPrimarySourceFile(NextInput);
bool Done;
do {
// Parser may stop at some erroneous constructions like #else, #endif
// or '}' in some cases, continue parsing until we are done
parseIntoSourceFile(*NextInput, BufferID, &Done, nullptr,
&PersistentState, nullptr);
} while (!Done);
}
// Now parse the main file.
if (MainBufferID != NO_SUCH_BUFFER) {
SourceFile &MainFile =
MainModule->getMainSourceFile(Invocation.getSourceFileKind());
bool Done;
do {
parseIntoSourceFile(MainFile, MainFile.getBufferID().getValue(), &Done,
nullptr, &PersistentState, nullptr);
} while (!Done);
}
assert(Context->LoadedModules.size() == 1 &&
"Loaded a module during parse-only");
}
void CompilerInstance::freeContextAndSIL() {
Context.reset();
TheSILModule.reset();
MainModule = nullptr;
SML = nullptr;
PrimarySourceFile = nullptr;
}