blob: 34bd5443fe6fe2a1fb9d62f5665470bc7aff43c6 [file] [log] [blame]
//===--- tgmath.swift.gyb -------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// Generic functions implementable directly on FloatingPoint.
@_transparent
public func fabs<T: FloatingPoint>(_ x: T) -> T
where T.Magnitude == T {
return x.magnitude
}
@_transparent
public func sqrt<T: FloatingPoint>(_ x: T) -> T {
return x.squareRoot()
}
@_transparent
public func fma<T: FloatingPoint>(_ x: T, _ y: T, _ z: T) -> T {
return z.addingProduct(x, y)
}
@_transparent
public func remainder<T: FloatingPoint>(_ x: T, _ y: T) -> T {
return x.remainder(dividingBy: y)
}
@_transparent
public func fmod<T: FloatingPoint>(_ x: T, _ y: T) -> T {
return x.truncatingRemainder(dividingBy: y)
}
@_transparent
public func ceil<T: FloatingPoint>(_ x: T) -> T {
return x.rounded(.up)
}
@_transparent
public func floor<T: FloatingPoint>(_ x: T) -> T {
return x.rounded(.down)
}
@_transparent
public func round<T: FloatingPoint>(_ x: T) -> T {
return x.rounded()
}
@_transparent
public func trunc<T: FloatingPoint>(_ x: T) -> T {
return x.rounded(.towardZero)
}
%{
# Don't need 64-bit (Double/CDouble) overlays. The ordinary C imports work fine.
# FIXME: need 80-bit (Float80/long double) versions when long double is imported
overlayFloatBits = [32] # 80
allFloatBits = [32, 64] # 80
def floatName(bits):
if bits == 32:
return 'Float'
if bits == 64:
return 'Double'
if bits == 80:
return 'Float80'
def cFloatName(bits):
if bits == 32:
return 'CFloat'
if bits == 64:
return 'CDouble'
if bits == 80:
return 'CLongDouble'
def cFuncSuffix(bits):
if bits == 32:
return 'f'
if bits == 64:
return ''
if bits == 80:
return 'l'
# Each of the following lists is ordered to match math.h
# (T) -> T
# These functions do not have a corresponding LLVM intrinsic
UnaryFunctions = [
'acos', 'asin', 'atan', 'tan',
'acosh', 'asinh', 'atanh', 'cosh', 'sinh', 'tanh',
'expm1',
'log1p', 'logb',
'cbrt', 'erf', 'erfc', 'tgamma',
]
# These functions have a corresponding LLVM intrinsic
# We call this intrinsic via the Builtin method so keep this list in
# sync with core/BuiltinMath.swift.gyb
UnaryIntrinsicFunctions = [
'cos', 'sin',
'exp', 'exp2',
'log', 'log10', 'log2',
'nearbyint', 'rint',
]
# (T, T) -> T
BinaryFunctions = [
'atan2', 'hypot', 'pow',
'copysign', 'nextafter', 'fdim', 'fmax', 'fmin'
]
# These functions have special implementations.
OtherFunctions = [
'fpclassify',
'isnormal', 'isfinite', 'isinf', 'isnan', 'signbit',
'modf', 'ldexp', 'frexp', 'ilogb', 'scalbn', 'lgamma',
'remquo', 'nan',
'jn', 'yn'
]
# These functions are imported correctly as-is.
OkayFunctions = ['j0', 'j1', 'y0', 'y1']
# These functions are not supported for various reasons.
UnhandledFunctions = [
'math_errhandling', 'scalbln',
'lrint', 'lround', 'llrint', 'llround', 'nexttoward',
'isgreater', 'isgreaterequal', 'isless', 'islessequal',
'islessgreater', 'isunordered', '__exp10',
'__sincos', '__cospi', '__sinpi', '__tanpi', '__sincospi'
]
def AllFloatTypes():
for bits in allFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def OverlayFloatTypes():
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def TypedUnaryFunctions():
for ufunc in UnaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), ufunc
def TypedUnaryIntrinsicFunctions():
for ufunc in UnaryIntrinsicFunctions:
for bits in allFloatBits:
yield floatName(bits), ufunc
def TypedBinaryFunctions():
for bfunc in BinaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), bfunc
}%
// Unary functions
// Note these do not have a corresponding LLVM intrinsic
% for T, CT, f, ufunc in TypedUnaryFunctions():
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return ${T}(${ufunc}${f}(${CT}(x)))
}
% end
#if os(OSX) || os(iOS) || os(tvOS) || os(watchOS)
// Unary intrinsic functions
// Note these have a corresponding LLVM intrinsic
% for T, ufunc in TypedUnaryIntrinsicFunctions():
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return _${ufunc}(x)
}
% end
#else
// FIXME: As of now, we cannot declare 64-bit (Double/CDouble) overlays here.
// Since CoreFoundation also exports libc functions, they will conflict with
// Swift overlays when building Foundation. For now, just like normal
// UnaryFunctions, we define overlays only for OverlayFloatTypes.
% for ufunc in UnaryIntrinsicFunctions:
% for T, CT, f in OverlayFloatTypes():
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return ${T}(${ufunc}${f}(${CT}(x)))
}
% end
% end
#endif
// Binary functions
% for T, CT, f, bfunc in TypedBinaryFunctions():
@_transparent
public func ${bfunc}(_ lhs: ${T}, _ rhs: ${T}) -> ${T} {
return ${T}(${bfunc}${f}(${CT}(lhs), ${CT}(rhs)))
}
% end
// Other functions
% for T, CT, f in AllFloatTypes():
@available(*, deprecated, message: "use the floatingPointClass property.")
public func fpclassify(_ value: ${T}) -> Int {
%if T == 'Double':
#if os(Linux)
return Int(__fpclassify(CDouble(value)))
#elseif os(Windows)
return Int(_dclass(CDouble(value)))
#else
return Int(__fpclassifyd(CDouble(value)))
#endif
%else:
#if os(Windows)
return Int(_${f}dclass(${CT}(value)))
#else
return Int(__fpclassify${f}(${CT}(value)))
#endif
%end
}
@available(*, unavailable, message: "use the isNormal property.")
public func isnormal(_ value: ${T}) -> Bool { return value.isNormal }
@available(*, unavailable, message: "use the isFinite property.")
public func isfinite(_ value: ${T}) -> Bool { return value.isFinite }
@available(*, unavailable, message: "use the isInfinite property.")
public func isinf(_ value: ${T}) -> Bool { return value.isInfinite }
@available(*, unavailable, message: "use the isNaN property.")
public func isnan(_ value: ${T}) -> Bool { return value.isNaN }
@available(*, unavailable, message: "use the sign property.")
public func signbit(_ value: ${T}) -> Int { return value.sign.rawValue }
% end
% # These are AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@_transparent
public func modf(_ value: ${T}) -> (${T}, ${T}) {
var ipart = ${CT}(0)
let fpart = modf${f}(${CT}(value), &ipart)
return (${T}(ipart), ${T}(fpart))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the Int parameter.
% for T, CT, f in AllFloatTypes():
@_transparent
public func ldexp(_ x: ${T}, _ n: Int) -> ${T} {
return ${T}(ldexp${f}(${CT}(x), Int32(n)))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@_transparent
public func frexp(_ value: ${T}) -> (${T}, Int) {
var exp = Int32(0)
let frac = frexp${f}(${CT}(value), &exp)
return (${T}(frac), Int(exp))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the Int return.
% for T, CT, f in AllFloatTypes():
@_transparent
public func ilogb(_ x: ${T}) -> Int {
return Int(ilogb${f}(${CT}(x)) as Int32)
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the Int parameter.
% for T, CT, f in AllFloatTypes():
@_transparent
public func scalbn(_ x: ${T}, _ n: Int) -> ${T} {
return ${T}(scalbn${f}(${CT}(x), Int32(n)))
}
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
#if os(Linux) || os(FreeBSD) || os(PS4) || os(Android) || os(Cygwin)
@_transparent
public func lgamma(_ x: ${T}) -> (${T}, Int) {
var sign = Int32(0)
let value = lgamma${f}_r(${CT}(x), &sign)
return (${T}(value), Int(sign))
}
#elseif os(Windows)
// TODO(compnerd): implement
#else
% # On Darwin platform,
% # The real lgamma_r is not imported because it hides behind macro _REENTRANT.
@_versioned
@_silgen_name("_swift_Darwin_lgamma${f}_r")
func _swift_Darwin_lgamma${f}_r(_: ${CT},
_: UnsafeMutablePointer<Int32>) -> ${CT}
@_transparent
public func lgamma(_ x: ${T}) -> (${T}, Int) {
var sign = Int32(0)
let value = withUnsafeMutablePointer(to: &sign) {
(signp: UnsafeMutablePointer<Int32>) -> ${CT} in
return _swift_Darwin_lgamma${f}_r(${CT}(x), signp)
}
return (${T}(value), Int(sign))
}
#endif
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
@_transparent
public func remquo(_ x: ${T}, _ y: ${T}) -> (${T}, Int) {
var quo = Int32(0)
let rem = remquo${f}(${CT}(x), ${CT}(y), &quo)
return (${T}(rem), Int(quo))
}
% end
% for T, CT, f in OverlayFloatTypes():
@_transparent
public func nan(_ tag: String) -> ${T} {
return ${T}(nan${f}(tag))
}
% end
% # These C functions only support double. The overlay fixes the Int parameter.
@_transparent
public func jn(_ n: Int, _ x: Double) -> Double {
#if os(Windows)
return _jn(Int32(n), x)
#else
return jn(Int32(n), x)
#endif
}
@_transparent
public func yn(_ n: Int, _ x: Double) -> Double {
#if os(Windows)
return _yn(Int32(n), x)
#else
return yn(Int32(n), x)
#endif
}
% end
// ${'Local Variables'}:
// eval: (read-only-mode 1)
// End: