blob: 7f36897c5f6bf7d8524ea8f4ae549d598a6540a9 [file] [log] [blame]
//===--- GenHeap.cpp - Layout of heap objects and their metadata ----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for arbitrary Swift-native heap objects,
// such as layout and reference-counting.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Compiler.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "swift/Basic/SourceLoc.h"
#include "swift/ABI/MetadataValues.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/IRGenOptions.h"
#include "Explosion.h"
#include "GenProto.h"
#include "GenType.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "HeapTypeInfo.h"
#include "IndirectTypeInfo.h"
#include "WeakTypeInfo.h"
#include "GenHeap.h"
using namespace swift;
using namespace irgen;
/// Produce a constant to place in a metatype's isa field
/// corresponding to the given metadata kind.
static llvm::ConstantInt *getMetadataKind(IRGenModule &IGM,
MetadataKind kind) {
return llvm::ConstantInt::get(IGM.MetadataKindTy, uint8_t(kind));
}
/// Perform the layout required for a heap object.
HeapLayout::HeapLayout(IRGenModule &IGM, LayoutStrategy strategy,
ArrayRef<SILType> fieldTypes,
ArrayRef<const TypeInfo *> fieldTypeInfos,
llvm::StructType *typeToFill,
NecessaryBindings &&bindings)
: StructLayout(IGM, CanType(), LayoutKind::HeapObject, strategy,
fieldTypeInfos, typeToFill),
ElementTypes(fieldTypes.begin(), fieldTypes.end()),
Bindings(std::move(bindings))
{
#ifndef NDEBUG
assert(fieldTypeInfos.size() == fieldTypes.size()
&& "type infos don't match types");
if (!Bindings.empty()) {
assert(fieldTypeInfos.size() >= 1 && "no field for bindings");
auto fixedBindingsField = dyn_cast<FixedTypeInfo>(fieldTypeInfos[0]);
assert(fixedBindingsField
&& "bindings field is not fixed size");
assert(fixedBindingsField->getFixedSize()
== Bindings.getBufferSize(IGM)
&& fixedBindingsField->getFixedAlignment()
== IGM.getPointerAlignment()
&& "bindings field doesn't fit bindings");
}
#endif
}
HeapNonFixedOffsets::HeapNonFixedOffsets(IRGenFunction &IGF,
const HeapLayout &layout) {
if (!layout.isFixedLayout()) {
// Calculate all the non-fixed layouts.
// TODO: We could be lazier about this.
llvm::Value *offset = nullptr;
llvm::Value *totalAlign = llvm::ConstantInt::get(IGF.IGM.SizeTy,
layout.getAlignment().getMaskValue());
for (unsigned i : indices(layout.getElements())) {
auto &elt = layout.getElement(i);
auto eltTy = layout.getElementTypes()[i];
switch (elt.getKind()) {
case ElementLayout::Kind::InitialNonFixedSize:
// Factor the non-fixed-size field's alignment into the total alignment.
totalAlign = IGF.Builder.CreateOr(totalAlign,
elt.getType().getAlignmentMask(IGF, eltTy));
LLVM_FALLTHROUGH;
case ElementLayout::Kind::Empty:
case ElementLayout::Kind::Fixed:
// Don't need to dynamically calculate this offset.
Offsets.push_back(nullptr);
break;
case ElementLayout::Kind::NonFixed:
// Start calculating non-fixed offsets from the end of the first fixed
// field.
if (i == 0) {
totalAlign = elt.getType().getAlignmentMask(IGF, eltTy);
offset = totalAlign;
Offsets.push_back(totalAlign);
break;
}
assert(i > 0 && "shouldn't begin with a non-fixed field");
auto &prevElt = layout.getElement(i-1);
auto prevType = layout.getElementTypes()[i-1];
// Start calculating offsets from the last fixed-offset field.
if (!offset) {
Size lastFixedOffset = layout.getElement(i-1).getByteOffset();
if (auto *fixedType = dyn_cast<FixedTypeInfo>(&prevElt.getType())) {
// If the last fixed-offset field is also fixed-size, we can
// statically compute the end of the fixed-offset fields.
auto fixedEnd = lastFixedOffset + fixedType->getFixedSize();
offset
= llvm::ConstantInt::get(IGF.IGM.SizeTy, fixedEnd.getValue());
} else {
// Otherwise, we need to add the dynamic size to the fixed start
// offset.
offset
= llvm::ConstantInt::get(IGF.IGM.SizeTy,
lastFixedOffset.getValue());
offset = IGF.Builder.CreateAdd(offset,
prevElt.getType().getSize(IGF, prevType));
}
}
// Round up to alignment to get the offset.
auto alignMask = elt.getType().getAlignmentMask(IGF, eltTy);
auto notAlignMask = IGF.Builder.CreateNot(alignMask);
offset = IGF.Builder.CreateAdd(offset, alignMask);
offset = IGF.Builder.CreateAnd(offset, notAlignMask);
Offsets.push_back(offset);
// Advance by the field's size to start the next field.
offset = IGF.Builder.CreateAdd(offset,
elt.getType().getSize(IGF, eltTy));
totalAlign = IGF.Builder.CreateOr(totalAlign, alignMask);
break;
}
}
TotalSize = offset;
TotalAlignMask = totalAlign;
} else {
TotalSize = layout.emitSize(IGF.IGM);
TotalAlignMask = layout.emitAlignMask(IGF.IGM);
}
}
void irgen::emitDeallocateHeapObject(IRGenFunction &IGF,
llvm::Value *object,
llvm::Value *size,
llvm::Value *alignMask) {
// FIXME: We should call a fast deallocator for heap objects with
// known size.
IGF.Builder.CreateCall(IGF.IGM.getDeallocObjectFn(),
{object, size, alignMask});
}
void irgen::emitDeallocateClassInstance(IRGenFunction &IGF,
llvm::Value *object,
llvm::Value *size,
llvm::Value *alignMask) {
// FIXME: We should call a fast deallocator for heap objects with
// known size.
IGF.Builder.CreateCall(IGF.IGM.getDeallocClassInstanceFn(),
{object, size, alignMask});
}
void irgen::emitDeallocatePartialClassInstance(IRGenFunction &IGF,
llvm::Value *object,
llvm::Value *metadata,
llvm::Value *size,
llvm::Value *alignMask) {
// FIXME: We should call a fast deallocator for heap objects with
// known size.
IGF.Builder.CreateCall(IGF.IGM.getDeallocPartialClassInstanceFn(),
{object, metadata, size, alignMask});
}
/// Create the destructor function for a layout.
/// TODO: give this some reasonable name and possibly linkage.
static llvm::Function *createDtorFn(IRGenModule &IGM,
const HeapLayout &layout) {
llvm::Function *fn =
llvm::Function::Create(IGM.DeallocatingDtorTy,
llvm::Function::PrivateLinkage,
"objectdestroy", &IGM.Module);
auto attrs = IGM.constructInitialAttributes();
IGM.addSwiftSelfAttributes(attrs, 0);
fn->setAttributes(attrs);
fn->setCallingConv(IGM.SwiftCC);
IRGenFunction IGF(IGM, fn);
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(IGF, fn);
Address structAddr = layout.emitCastTo(IGF, &*fn->arg_begin());
// Bind necessary bindings, if we have them.
if (layout.hasBindings()) {
// The type metadata bindings should be at a fixed offset, so we can pass
// None for NonFixedOffsets. If we didn't, we'd have a chicken-egg problem.
auto bindingsAddr = layout.getElement(0).project(IGF, structAddr, None);
layout.getBindings().restore(IGF, bindingsAddr);
}
// Figure out the non-fixed offsets.
HeapNonFixedOffsets offsets(IGF, layout);
// Destroy the fields.
for (unsigned i : indices(layout.getElements())) {
auto &field = layout.getElement(i);
auto fieldTy = layout.getElementTypes()[i];
if (field.isPOD())
continue;
field.getType().destroy(IGF, field.project(IGF, structAddr, offsets),
fieldTy);
}
emitDeallocateHeapObject(IGF, &*fn->arg_begin(), offsets.getSize(),
offsets.getAlignMask());
IGF.Builder.CreateRetVoid();
return fn;
}
/// Create the size function for a layout.
/// TODO: give this some reasonable name and possibly linkage.
llvm::Constant *HeapLayout::createSizeFn(IRGenModule &IGM) const {
llvm::Function *fn =
llvm::Function::Create(IGM.DeallocatingDtorTy,
llvm::Function::PrivateLinkage,
"objectsize", &IGM.Module);
fn->setAttributes(IGM.constructInitialAttributes());
IRGenFunction IGF(IGM, fn);
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(IGF, fn);
// Ignore the object pointer; we aren't a dynamically-sized array,
// so it's pointless.
llvm::Value *size = emitSize(IGM);
IGF.Builder.CreateRet(size);
return fn;
}
static llvm::Constant *buildPrivateMetadata(IRGenModule &IGM,
const HeapLayout &layout,
llvm::Constant *dtorFn,
llvm::Constant *captureDescriptor,
MetadataKind kind) {
// Build the fields of the private metadata.
SmallVector<llvm::Constant*, 5> fields;
fields.push_back(dtorFn);
fields.push_back(llvm::ConstantPointerNull::get(IGM.WitnessTablePtrTy));
fields.push_back(llvm::ConstantStruct::get(IGM.TypeMetadataStructTy,
getMetadataKind(IGM, kind)));
// Figure out the offset to the first element, which is necessary to be able
// to polymorphically project as a generic box.
auto elements = layout.getElements();
Size offset;
if (!elements.empty()
&& elements[0].getKind() == ElementLayout::Kind::Fixed)
offset = elements[0].getByteOffset();
else
offset = Size(0);
fields.push_back(llvm::ConstantInt::get(IGM.Int32Ty, offset.getValue()));
fields.push_back(captureDescriptor);
llvm::Constant *init =
llvm::ConstantStruct::get(IGM.FullBoxMetadataStructTy, fields);
llvm::GlobalVariable *var =
new llvm::GlobalVariable(IGM.Module, IGM.FullBoxMetadataStructTy,
/*constant*/ true,
llvm::GlobalVariable::PrivateLinkage, init,
"metadata");
llvm::Constant *indices[] = {
llvm::ConstantInt::get(IGM.Int32Ty, 0),
llvm::ConstantInt::get(IGM.Int32Ty, 2)
};
return llvm::ConstantExpr::getInBoundsGetElementPtr(
/*Ty=*/nullptr, var, indices);
}
llvm::Constant *
HeapLayout::getPrivateMetadata(IRGenModule &IGM,
llvm::Constant *captureDescriptor) const {
if (!privateMetadata)
privateMetadata = buildPrivateMetadata(IGM, *this, createDtorFn(IGM, *this),
captureDescriptor,
MetadataKind::HeapLocalVariable);
return privateMetadata;
}
llvm::Value *IRGenFunction::emitUnmanagedAlloc(const HeapLayout &layout,
const llvm::Twine &name,
llvm::Constant *captureDescriptor,
const HeapNonFixedOffsets *offsets) {
llvm::Value *metadata = layout.getPrivateMetadata(IGM, captureDescriptor);
llvm::Value *size, *alignMask;
if (offsets) {
size = offsets->getSize();
alignMask = offsets->getAlignMask();
} else {
size = layout.emitSize(IGM);
alignMask = layout.emitAlignMask(IGM);
}
return emitAllocObjectCall(metadata, size, alignMask, name);
}
namespace {
class BuiltinNativeObjectTypeInfo
: public HeapTypeInfo<BuiltinNativeObjectTypeInfo> {
public:
BuiltinNativeObjectTypeInfo(llvm::PointerType *storage,
Size size, SpareBitVector spareBits,
Alignment align)
: HeapTypeInfo(storage, size, spareBits, align) {}
/// Builtin.NativeObject uses Swift native reference-counting.
ReferenceCounting getReferenceCounting() const {
return ReferenceCounting::Native;
}
};
} // end anonymous namespace
const LoadableTypeInfo *TypeConverter::convertBuiltinNativeObject() {
return new BuiltinNativeObjectTypeInfo(IGM.RefCountedPtrTy,
IGM.getPointerSize(),
IGM.getHeapObjectSpareBits(),
IGM.getPointerAlignment());
}
namespace {
/// A type implementation for an @unowned(unsafe) reference to an
/// object.
class UnmanagedReferenceTypeInfo
: public PODSingleScalarTypeInfo<UnmanagedReferenceTypeInfo,
LoadableTypeInfo> {
public:
UnmanagedReferenceTypeInfo(llvm::Type *type,
const SpareBitVector &spareBits,
Size size, Alignment alignment)
: PODSingleScalarTypeInfo(type, size, spareBits, alignment) {}
// Unmanaged types have the same spare bits as managed heap objects.
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return getHeapObjectExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return getHeapObjectFixedExtraInhabitantValue(IGM, bits, index, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T)
const override {
return getHeapObjectExtraInhabitantIndex(IGF, src);
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T) const override {
return storeHeapObjectExtraInhabitant(IGF, index, dest);
}
};
} // end anonymous namespace
const LoadableTypeInfo *
TypeConverter::createUnmanagedStorageType(llvm::Type *valueType) {
return new UnmanagedReferenceTypeInfo(valueType,
IGM.getHeapObjectSpareBits(),
IGM.getPointerSize(),
IGM.getPointerAlignment());
}
namespace {
/// A type implementation for an [unowned] reference to an object
/// with a known-Swift reference count.
class NativeUnownedReferenceTypeInfo
: public SingleScalarTypeInfo<NativeUnownedReferenceTypeInfo,
LoadableTypeInfo> {
llvm::Type *ValueType;
public:
NativeUnownedReferenceTypeInfo(llvm::Type *valueType,
llvm::Type *unownedType,
SpareBitVector &&spareBits,
Size size, Alignment alignment)
: SingleScalarTypeInfo(unownedType, size, std::move(spareBits),
alignment, IsNotPOD, IsFixedSize),
ValueType(valueType) {}
enum { IsScalarPOD = false };
llvm::Type *getScalarType() const {
return ValueType;
}
Address projectScalar(IRGenFunction &IGF, Address addr) const {
return IGF.Builder.CreateBitCast(addr, ValueType->getPointerTo());
}
void emitScalarRetain(IRGenFunction &IGF, llvm::Value *value,
Atomicity atomicity) const {
IGF.emitNativeUnownedRetain(value, atomicity);
}
void emitScalarRelease(IRGenFunction &IGF, llvm::Value *value,
Atomicity atomicity) const {
IGF.emitNativeUnownedRelease(value, atomicity);
}
void emitScalarFixLifetime(IRGenFunction &IGF, llvm::Value *value) const {
IGF.emitFixLifetime(value);
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return IGM.getUnownedExtraInhabitantCount(ReferenceCounting::Native);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return IGM.getUnownedExtraInhabitantValue(bits, index,
ReferenceCounting::Native);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T) const override {
return IGF.getUnownedExtraInhabitantIndex(src,
ReferenceCounting::Native);
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T) const override {
return IGF.storeUnownedExtraInhabitant(index, dest,
ReferenceCounting::Native);
}
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
return IGM.getUnownedExtraInhabitantMask(ReferenceCounting::Native);
}
};
/// A type implementation for a [weak] reference to an object
/// with a known-Swift reference count.
class NativeWeakReferenceTypeInfo
: public IndirectTypeInfo<NativeWeakReferenceTypeInfo,
WeakTypeInfo> {
llvm::Type *ValueType;
public:
NativeWeakReferenceTypeInfo(llvm::Type *valueType,
llvm::Type *weakType,
Size size, Alignment alignment,
SpareBitVector &&spareBits)
: IndirectTypeInfo(weakType, size, alignment, std::move(spareBits)),
ValueType(valueType) {}
void initializeWithCopy(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T) const override {
IGF.emitNativeWeakCopyInit(destAddr, srcAddr);
}
void initializeWithTake(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T) const override {
IGF.emitNativeWeakTakeInit(destAddr, srcAddr);
}
void assignWithCopy(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T) const override {
IGF.emitNativeWeakCopyAssign(destAddr, srcAddr);
}
void assignWithTake(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T) const override {
IGF.emitNativeWeakTakeAssign(destAddr, srcAddr);
}
void destroy(IRGenFunction &IGF, Address addr, SILType T) const override {
IGF.emitNativeWeakDestroy(addr);
}
llvm::Type *getOptionalIntType() const {
return llvm::IntegerType::get(ValueType->getContext(),
getFixedSize().getValueInBits());
}
void weakLoadStrong(IRGenFunction &IGF, Address addr,
Explosion &out) const override {
auto value = IGF.emitNativeWeakLoadStrong(addr, ValueType);
// The optional will be lowered to an integer type the size of the word.
out.add(IGF.Builder.CreatePtrToInt(value, getOptionalIntType()));
}
void weakTakeStrong(IRGenFunction &IGF, Address addr,
Explosion &out) const override {
auto value = IGF.emitNativeWeakTakeStrong(addr, ValueType);
// The optional will be lowered to an integer type the size of the word.
out.add(IGF.Builder.CreatePtrToInt(value, getOptionalIntType()));
}
void weakInit(IRGenFunction &IGF, Explosion &in,
Address dest) const override {
llvm::Value *value = in.claimNext();
// The optional will be lowered to an integer type the size of the word.
assert(value->getType() == getOptionalIntType());
value = IGF.Builder.CreateIntToPtr(value, ValueType);
IGF.emitNativeWeakInit(value, dest);
}
void weakAssign(IRGenFunction &IGF, Explosion &in,
Address dest) const override {
llvm::Value *value = in.claimNext();
// The optional will be lowered to an integer type the size of the word.
assert(value->getType() == getOptionalIntType());
value = IGF.Builder.CreateIntToPtr(value, ValueType);
IGF.emitNativeWeakAssign(value, dest);
}
};
} // end anonymous namespace
SpareBitVector IRGenModule::getWeakReferenceSpareBits() const {
// The runtime needs to be able to freely manipulate live weak
// references without worrying about us mucking around with their
// bits, so weak references are completely opaque.
return SpareBitVector::getConstant(getWeakReferenceSize().getValueInBits(),
false);
}
SpareBitVector
IRGenModule::getUnownedReferenceSpareBits(ReferenceCounting style) const {
// If unknown references don't exist, we can just use the same rules as
// regular pointers.
if (!ObjCInterop) {
assert(style == ReferenceCounting::Native);
return getHeapObjectSpareBits();
}
// Otherwise, we have to be conservative (even with native
// reference-counting) in order to interoperate with code that might
// be working more generically with the memory/type.
return SpareBitVector::getConstant(getPointerSize().getValueInBits(), false);
}
unsigned IRGenModule::getUnownedExtraInhabitantCount(ReferenceCounting style) {
if (!ObjCInterop) {
assert(style == ReferenceCounting::Native);
return getHeapObjectExtraInhabitantCount(*this);
}
return 1;
}
APInt IRGenModule::getUnownedExtraInhabitantValue(unsigned bits, unsigned index,
ReferenceCounting style) {
if (!ObjCInterop) {
assert(style == ReferenceCounting::Native);
return getHeapObjectFixedExtraInhabitantValue(*this, bits, index, 0);
}
assert(index == 0);
return APInt(bits, 0);
}
APInt IRGenModule::getUnownedExtraInhabitantMask(ReferenceCounting style) {
return APInt::getAllOnesValue(getPointerSize().getValueInBits());
}
llvm::Value *IRGenFunction::getUnownedExtraInhabitantIndex(Address src,
ReferenceCounting style) {
if (!IGM.ObjCInterop) {
assert(style == ReferenceCounting::Native);
return getHeapObjectExtraInhabitantIndex(*this, src);
}
assert(src.getAddress()->getType() == IGM.UnownedReferencePtrTy);
src = Builder.CreateStructGEP(src, 0, Size(0));
llvm::Value *ptr = Builder.CreateLoad(src);
llvm::Value *isNull = Builder.CreateIsNull(ptr);
llvm::Value *result =
Builder.CreateSelect(isNull, Builder.getInt32(0),
llvm::ConstantInt::getSigned(IGM.Int32Ty, -1));
return result;
}
void IRGenFunction::storeUnownedExtraInhabitant(llvm::Value *index,
Address dest,
ReferenceCounting style) {
if (!IGM.ObjCInterop) {
assert(style == ReferenceCounting::Native);
return storeHeapObjectExtraInhabitant(*this, index, dest);
}
// Since there's only one legal extra inhabitant, it has to have
// the null pattern.
assert(dest.getAddress()->getType() == IGM.UnownedReferencePtrTy);
dest = Builder.CreateStructGEP(dest, 0, Size(0));
llvm::Value *null = llvm::ConstantPointerNull::get(IGM.RefCountedPtrTy);
Builder.CreateStore(null, dest);
}
namespace {
/// A type implementation for an [unowned] reference to an object
/// that is not necessarily a Swift object.
class UnknownUnownedReferenceTypeInfo :
public IndirectTypeInfo<UnknownUnownedReferenceTypeInfo, FixedTypeInfo> {
public:
UnknownUnownedReferenceTypeInfo(llvm::Type *unownedType,
SpareBitVector &&spareBits,
Size size, Alignment alignment)
: IndirectTypeInfo(unownedType, size, std::move(spareBits), alignment,
IsNotPOD, IsNotBitwiseTakable, IsFixedSize) {
}
void assignWithCopy(IRGenFunction &IGF, Address dest,
Address src, SILType type) const override {
IGF.emitUnknownUnownedCopyAssign(dest, src);
}
void initializeWithCopy(IRGenFunction &IGF, Address dest,
Address src, SILType type) const override {
IGF.emitUnknownUnownedCopyInit(dest, src);
}
void assignWithTake(IRGenFunction &IGF, Address dest,
Address src, SILType type) const override {
IGF.emitUnknownUnownedTakeAssign(dest, src);
}
void initializeWithTake(IRGenFunction &IGF, Address dest,
Address src, SILType type) const override {
IGF.emitUnknownUnownedTakeInit(dest, src);
}
void destroy(IRGenFunction &IGF, Address addr,
SILType type) const override {
IGF.emitUnknownUnownedDestroy(addr);
}
// Unowned types have the same extra inhabitants as normal pointers.
// They do not, however, necessarily have any spare bits.
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return IGM.getUnownedExtraInhabitantCount(ReferenceCounting::Unknown);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return IGM.getUnownedExtraInhabitantValue(bits, index,
ReferenceCounting::Unknown);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T) const override {
return IGF.getUnownedExtraInhabitantIndex(src,
ReferenceCounting::Unknown);
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T) const override {
return IGF.storeUnownedExtraInhabitant(index, dest,
ReferenceCounting::Unknown);
}
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
return IGM.getUnownedExtraInhabitantMask(ReferenceCounting::Unknown);
}
};
/// A type implementation for a [weak] reference to an object
/// that is not necessarily a Swift object.
class UnknownWeakReferenceTypeInfo :
public IndirectTypeInfo<UnknownWeakReferenceTypeInfo,
WeakTypeInfo> {
/// We need to separately store the value type because we always
/// use the same type to store the weak reference struct.
llvm::Type *ValueType;
public:
UnknownWeakReferenceTypeInfo(llvm::Type *valueType,
llvm::Type *weakType,
Size size, Alignment alignment,
SpareBitVector &&spareBits)
: IndirectTypeInfo(weakType, size, alignment, std::move(spareBits)),
ValueType(valueType) {}
void initializeWithCopy(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T) const override {
IGF.emitUnknownWeakCopyInit(destAddr, srcAddr);
}
void initializeWithTake(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T) const override {
IGF.emitUnknownWeakTakeInit(destAddr, srcAddr);
}
void assignWithCopy(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T) const override {
IGF.emitUnknownWeakCopyAssign(destAddr, srcAddr);
}
void assignWithTake(IRGenFunction &IGF, Address destAddr,
Address srcAddr, SILType T) const override {
IGF.emitUnknownWeakTakeAssign(destAddr, srcAddr);
}
void destroy(IRGenFunction &IGF, Address addr, SILType T) const override {
IGF.emitUnknownWeakDestroy(addr);
}
llvm::Type *getOptionalIntType() const {
return llvm::IntegerType::get(ValueType->getContext(),
getFixedSize().getValueInBits());
}
void weakLoadStrong(IRGenFunction &IGF, Address addr,
Explosion &out) const override {
auto value = IGF.emitUnknownWeakLoadStrong(addr, ValueType);
// The optional will be lowered to an integer type the size of the word.
out.add(IGF.Builder.CreatePtrToInt(value, getOptionalIntType()));
}
void weakTakeStrong(IRGenFunction &IGF, Address addr,
Explosion &out) const override {
auto value = IGF.emitUnknownWeakTakeStrong(addr, ValueType);
// The optional will be lowered to an integer type the size of the word.
out.add(IGF.Builder.CreatePtrToInt(value, getOptionalIntType()));
}
void weakInit(IRGenFunction &IGF, Explosion &in,
Address dest) const override {
llvm::Value *value = in.claimNext();
// The optional will be lowered to an integer type the size of the word.
assert(value->getType() == getOptionalIntType());
value = IGF.Builder.CreateIntToPtr(value, ValueType);
IGF.emitUnknownWeakInit(value, dest);
}
void weakAssign(IRGenFunction &IGF, Explosion &in,
Address dest) const override {
llvm::Value *value = in.claimNext();
// The optional will be lowered to an integer type the size of the word.
assert(value->getType() == getOptionalIntType());
value = IGF.Builder.CreateIntToPtr(value, ValueType);
IGF.emitUnknownWeakAssign(value, dest);
}
};
} // end anonymous namespace
const TypeInfo *TypeConverter::createUnownedStorageType(llvm::Type *valueType,
ReferenceCounting style) {
auto &&spareBits = IGM.getUnownedReferenceSpareBits(style);
switch (style) {
case ReferenceCounting::Native:
return new NativeUnownedReferenceTypeInfo(valueType,
IGM.UnownedReferencePtrTy->getElementType(),
std::move(spareBits),
IGM.getPointerSize(),
IGM.getPointerAlignment());
case ReferenceCounting::ObjC:
case ReferenceCounting::Block:
case ReferenceCounting::Unknown:
return new UnknownUnownedReferenceTypeInfo(
IGM.UnownedReferencePtrTy->getElementType(),
std::move(spareBits),
IGM.getPointerSize(),
IGM.getPointerAlignment());
case ReferenceCounting::Bridge:
case ReferenceCounting::Error:
llvm_unreachable("not supported!");
}
llvm_unreachable("bad reference-counting style");
}
const WeakTypeInfo *TypeConverter::createWeakStorageType(llvm::Type *valueType,
ReferenceCounting style) {
switch (style) {
case ReferenceCounting::Native:
return new NativeWeakReferenceTypeInfo(valueType,
IGM.WeakReferencePtrTy->getElementType(),
IGM.getWeakReferenceSize(),
IGM.getWeakReferenceAlignment(),
IGM.getWeakReferenceSpareBits());
case ReferenceCounting::ObjC:
case ReferenceCounting::Block:
case ReferenceCounting::Unknown:
return new UnknownWeakReferenceTypeInfo(valueType,
IGM.WeakReferencePtrTy->getElementType(),
IGM.getWeakReferenceSize(),
IGM.getWeakReferenceAlignment(),
IGM.getWeakReferenceSpareBits());
case ReferenceCounting::Bridge:
case ReferenceCounting::Error:
llvm_unreachable("not supported!");
}
llvm_unreachable("bad reference-counting style");
}
/// Does the given value superficially not require reference-counting?
static bool doesNotRequireRefCounting(llvm::Value *value) {
// Constants never require reference-counting.
return isa<llvm::ConstantPointerNull>(value);
}
static llvm::FunctionType *getTypeOfFunction(llvm::Constant *fn) {
return cast<llvm::FunctionType>(fn->getType()->getPointerElementType());
}
/// Emit a unary call to perform a ref-counting operation.
///
/// \param fn - expected signature 'void (T)'
static void emitUnaryRefCountCall(IRGenFunction &IGF,
llvm::Constant *fn,
llvm::Value *value) {
auto cc = IGF.IGM.DefaultCC;
if (auto fun = dyn_cast<llvm::Function>(fn))
cc = fun->getCallingConv();
// Instead of casting the input, we cast the function type.
// This tends to produce less IR, but might be evil.
if (value->getType() != getTypeOfFunction(fn)->getParamType(0)) {
llvm::FunctionType *fnType =
llvm::FunctionType::get(IGF.IGM.VoidTy, value->getType(), false);
fn = llvm::ConstantExpr::getBitCast(fn, fnType->getPointerTo());
}
// Emit the call.
llvm::CallInst *call = IGF.Builder.CreateCall(fn, value);
call->setCallingConv(cc);
call->setDoesNotThrow();
}
/// Emit a copy-like call to perform a ref-counting operation.
///
/// \param fn - expected signature 'void (T, T)'
static void emitCopyLikeCall(IRGenFunction &IGF,
llvm::Constant *fn,
llvm::Value *dest,
llvm::Value *src) {
assert(dest->getType() == src->getType() &&
"type mismatch in binary refcounting operation");
auto cc = IGF.IGM.DefaultCC;
if (auto fun = dyn_cast<llvm::Function>(fn))
cc = fun->getCallingConv();
// Instead of casting the inputs, we cast the function type.
// This tends to produce less IR, but might be evil.
if (dest->getType() != getTypeOfFunction(fn)->getParamType(0)) {
llvm::Type *paramTypes[] = { dest->getType(), dest->getType() };
llvm::FunctionType *fnType =
llvm::FunctionType::get(IGF.IGM.VoidTy, paramTypes, false);
fn = llvm::ConstantExpr::getBitCast(fn, fnType->getPointerTo());
}
// Emit the call.
llvm::CallInst *call = IGF.Builder.CreateCall(fn, {dest, src});
call->setCallingConv(cc);
call->setDoesNotThrow();
}
/// Emit a call to a function with a loadWeak-like signature.
///
/// \param fn - expected signature 'T (Weak*)'
static llvm::Value *emitLoadWeakLikeCall(IRGenFunction &IGF,
llvm::Constant *fn,
llvm::Value *addr,
llvm::Type *resultType) {
assert((addr->getType() == IGF.IGM.WeakReferencePtrTy ||
addr->getType() == IGF.IGM.UnownedReferencePtrTy) &&
"address is not of a weak or unowned reference");
auto cc = IGF.IGM.DefaultCC;
if (auto fun = dyn_cast<llvm::Function>(fn))
cc = fun->getCallingConv();
// Instead of casting the output, we cast the function type.
// This tends to produce less IR, but might be evil.
if (resultType != getTypeOfFunction(fn)->getReturnType()) {
llvm::Type *paramTypes[] = { addr->getType() };
llvm::FunctionType *fnType =
llvm::FunctionType::get(resultType, paramTypes, false);
fn = llvm::ConstantExpr::getBitCast(fn, fnType->getPointerTo());
}
// Emit the call.
llvm::CallInst *call = IGF.Builder.CreateCall(fn, addr);
call->setCallingConv(cc);
call->setDoesNotThrow();
return call;
}
/// Emit a call to a function with a storeWeak-like signature.
///
/// \param fn - expected signature 'void (Weak*, T)'
static void emitStoreWeakLikeCall(IRGenFunction &IGF,
llvm::Constant *fn,
llvm::Value *addr,
llvm::Value *value) {
assert((addr->getType() == IGF.IGM.WeakReferencePtrTy ||
addr->getType() == IGF.IGM.UnownedReferencePtrTy) &&
"address is not of a weak or unowned reference");
auto cc = IGF.IGM.DefaultCC;
if (auto fun = dyn_cast<llvm::Function>(fn))
cc = fun->getCallingConv();
// Instead of casting the inputs, we cast the function type.
// This tends to produce less IR, but might be evil.
if (value->getType() != getTypeOfFunction(fn)->getParamType(1)) {
llvm::Type *paramTypes[] = { addr->getType(), value->getType() };
llvm::FunctionType *fnType =
llvm::FunctionType::get(IGF.IGM.VoidTy, paramTypes, false);
fn = llvm::ConstantExpr::getBitCast(fn, fnType->getPointerTo());
}
// Emit the call.
llvm::CallInst *call = IGF.Builder.CreateCall(fn, {addr, value});
call->setCallingConv(cc);
call->setDoesNotThrow();
}
/// Emit a call to swift_retain.
void IRGenFunction::emitNativeStrongRetain(llvm::Value *value,
Atomicity atomicity) {
if (doesNotRequireRefCounting(value))
return;
// Make sure the input pointer is the right type.
if (value->getType() != IGM.RefCountedPtrTy)
value = Builder.CreateBitCast(value, IGM.RefCountedPtrTy);
// Emit the call.
llvm::CallInst *call = Builder.CreateCall(
(atomicity == Atomicity::Atomic) ? IGM.getNativeStrongRetainFn()
: IGM.getNativeNonAtomicStrongRetainFn(),
value);
call->setDoesNotThrow();
}
/// Emit a store of a live value to the given retaining variable.
void IRGenFunction::emitNativeStrongAssign(llvm::Value *newValue,
Address address) {
// Pull the old value out of the address.
llvm::Value *oldValue = Builder.CreateLoad(address);
// We assume the new value is already retained.
Builder.CreateStore(newValue, address);
// Release the old value.
emitNativeStrongRelease(oldValue, getDefaultAtomicity());
}
/// Emit an initialize of a live value to the given retaining variable.
void IRGenFunction::emitNativeStrongInit(llvm::Value *newValue,
Address address) {
// We assume the new value is already retained.
Builder.CreateStore(newValue, address);
}
/// Emit a release of a live value with the given refcounting implementation.
void IRGenFunction::emitStrongRelease(llvm::Value *value,
ReferenceCounting refcounting,
Atomicity atomicity) {
switch (refcounting) {
case ReferenceCounting::Native:
return emitNativeStrongRelease(value, atomicity);
case ReferenceCounting::ObjC:
return emitObjCStrongRelease(value);
case ReferenceCounting::Block:
return emitBlockRelease(value);
case ReferenceCounting::Unknown:
return emitUnknownStrongRelease(value, atomicity);
case ReferenceCounting::Bridge:
return emitBridgeStrongRelease(value, atomicity);
case ReferenceCounting::Error:
return emitErrorStrongRelease(value);
}
}
void IRGenFunction::emitStrongRetain(llvm::Value *value,
ReferenceCounting refcounting,
Atomicity atomicity) {
switch (refcounting) {
case ReferenceCounting::Native:
emitNativeStrongRetain(value, atomicity);
return;
case ReferenceCounting::Bridge:
emitBridgeStrongRetain(value, atomicity);
return;
case ReferenceCounting::ObjC:
emitObjCStrongRetain(value);
return;
case ReferenceCounting::Block:
emitBlockCopyCall(value);
return;
case ReferenceCounting::Unknown:
emitUnknownStrongRetain(value, atomicity);
return;
case ReferenceCounting::Error:
emitErrorStrongRetain(value);
return;
}
}
llvm::Type *IRGenModule::getReferenceType(ReferenceCounting refcounting) {
switch (refcounting) {
case ReferenceCounting::Native:
return RefCountedPtrTy;
case ReferenceCounting::Bridge:
return BridgeObjectPtrTy;
case ReferenceCounting::ObjC:
return ObjCPtrTy;
case ReferenceCounting::Block:
return ObjCBlockPtrTy;
case ReferenceCounting::Unknown:
return UnknownRefCountedPtrTy;
case ReferenceCounting::Error:
return ErrorPtrTy;
}
llvm_unreachable("Not a valid ReferenceCounting.");
}
#define DEFINE_BINARY_OPERATION(KIND, RESULT, TYPE1, TYPE2) \
RESULT IRGenFunction::emit##KIND(TYPE1 val1, TYPE2 val2, \
ReferenceCounting style) { \
switch (style) { \
case ReferenceCounting::Native: \
return emitNative##KIND(val1, val2); \
case ReferenceCounting::ObjC: \
case ReferenceCounting::Unknown: \
return emitUnknown##KIND(val1, val2); \
case ReferenceCounting::Bridge: \
case ReferenceCounting::Block: \
case ReferenceCounting::Error: \
llvm_unreachable("this kind of reference does not support weak/unowned"); \
} \
llvm_unreachable("bad refcounting style"); \
}
#define DEFINE_UNARY_OPERATION(KIND, RESULT, TYPE1) \
RESULT IRGenFunction::emit##KIND(TYPE1 val1, ReferenceCounting style) { \
switch (style) { \
case ReferenceCounting::Native: \
return emitNative##KIND(val1); \
case ReferenceCounting::ObjC: \
case ReferenceCounting::Unknown: \
return emitUnknown##KIND(val1); \
case ReferenceCounting::Bridge: \
case ReferenceCounting::Block: \
case ReferenceCounting::Error: \
llvm_unreachable("this kind of reference does not support weak/unowned"); \
} \
llvm_unreachable("bad refcounting style"); \
}
DEFINE_BINARY_OPERATION(WeakCopyInit, void, Address, Address)
DEFINE_BINARY_OPERATION(WeakTakeInit, void, Address, Address)
DEFINE_BINARY_OPERATION(WeakCopyAssign, void, Address, Address)
DEFINE_BINARY_OPERATION(WeakTakeAssign, void, Address, Address)
DEFINE_BINARY_OPERATION(WeakInit, void, llvm::Value *, Address)
DEFINE_BINARY_OPERATION(WeakAssign, void, llvm::Value *, Address)
DEFINE_BINARY_OPERATION(WeakLoadStrong, llvm::Value *, Address, llvm::Type *)
DEFINE_BINARY_OPERATION(WeakTakeStrong, llvm::Value *, Address, llvm::Type *)
DEFINE_UNARY_OPERATION(WeakDestroy, void, Address)
DEFINE_BINARY_OPERATION(UnownedCopyInit, void, Address, Address)
DEFINE_BINARY_OPERATION(UnownedTakeInit, void, Address, Address)
DEFINE_BINARY_OPERATION(UnownedCopyAssign, void, Address, Address)
DEFINE_BINARY_OPERATION(UnownedTakeAssign, void, Address, Address)
DEFINE_BINARY_OPERATION(UnownedInit, void, llvm::Value *, Address)
DEFINE_BINARY_OPERATION(UnownedAssign, void, llvm::Value *, Address)
DEFINE_BINARY_OPERATION(UnownedLoadStrong, llvm::Value *, Address, llvm::Type *)
DEFINE_BINARY_OPERATION(UnownedTakeStrong, llvm::Value *, Address, llvm::Type *)
DEFINE_UNARY_OPERATION(UnownedDestroy, void, Address)
#undef DEFINE_UNARY_OPERATION
#undef DEFINE_BINARY_OPERATION
void IRGenFunction::emitUnownedRetain(llvm::Value *value,
ReferenceCounting style,
Atomicity atomicity) {
assert(style == ReferenceCounting::Native &&
"only native references support scalar unowned reference-counting");
emitNativeUnownedRetain(value, atomicity);
}
void IRGenFunction::emitUnownedRelease(llvm::Value *value,
ReferenceCounting style,
Atomicity atomicity) {
assert(style == ReferenceCounting::Native &&
"only native references support scalar unowned reference-counting");
emitNativeUnownedRelease(value, atomicity);
}
void IRGenFunction::emitStrongRetainUnowned(llvm::Value *value,
ReferenceCounting style,
Atomicity atomicity) {
assert(style == ReferenceCounting::Native &&
"only native references support scalar unowned reference-counting");
emitNativeStrongRetainUnowned(value, atomicity);
}
void IRGenFunction::emitStrongRetainAndUnownedRelease(llvm::Value *value,
ReferenceCounting style,
Atomicity atomicity) {
assert(style == ReferenceCounting::Native &&
"only native references support scalar unowned reference-counting");
emitNativeStrongRetainAndUnownedRelease(value, atomicity);
}
/// Emit a release of a live value.
void IRGenFunction::emitNativeStrongRelease(llvm::Value *value,
Atomicity atomicity) {
if (doesNotRequireRefCounting(value))
return;
emitUnaryRefCountCall(*this, (atomicity == Atomicity::Atomic)
? IGM.getNativeStrongReleaseFn()
: IGM.getNativeNonAtomicStrongReleaseFn(),
value);
}
void IRGenFunction::emitNativeSetDeallocating(llvm::Value *value) {
if (doesNotRequireRefCounting(value)) return;
emitUnaryRefCountCall(*this, IGM.getNativeSetDeallocatingFn(), value);
}
void IRGenFunction::emitNativeUnownedInit(llvm::Value *value,
Address dest) {
value = Builder.CreateBitCast(value, IGM.RefCountedPtrTy);
dest = Builder.CreateStructGEP(dest, 0, Size(0));
Builder.CreateStore(value, dest);
emitNativeUnownedRetain(value, getDefaultAtomicity());
}
void IRGenFunction::emitNativeUnownedAssign(llvm::Value *value,
Address dest) {
value = Builder.CreateBitCast(value, IGM.RefCountedPtrTy);
dest = Builder.CreateStructGEP(dest, 0, Size(0));
auto oldValue = Builder.CreateLoad(dest);
Builder.CreateStore(value, dest);
emitNativeUnownedRetain(value, getDefaultAtomicity());
emitNativeUnownedRelease(oldValue, getDefaultAtomicity());
}
llvm::Value *IRGenFunction::emitNativeUnownedLoadStrong(Address src,
llvm::Type *type) {
src = Builder.CreateStructGEP(src, 0, Size(0));
llvm::Value *value = Builder.CreateLoad(src);
value = Builder.CreateBitCast(value, type);
emitNativeStrongRetainUnowned(value, getDefaultAtomicity());
return value;
}
llvm::Value *IRGenFunction::emitNativeUnownedTakeStrong(Address src,
llvm::Type *type) {
src = Builder.CreateStructGEP(src, 0, Size(0));
llvm::Value *value = Builder.CreateLoad(src);
value = Builder.CreateBitCast(value, type);
emitNativeStrongRetainAndUnownedRelease(value, getDefaultAtomicity());
return value;
}
void IRGenFunction::emitNativeUnownedDestroy(Address ref) {
ref = Builder.CreateStructGEP(ref, 0, Size(0));
llvm::Value *value = Builder.CreateLoad(ref);
emitNativeUnownedRelease(value, getDefaultAtomicity());
}
void IRGenFunction::emitNativeUnownedCopyInit(Address dest, Address src) {
src = Builder.CreateStructGEP(src, 0, Size(0));
dest = Builder.CreateStructGEP(dest, 0, Size(0));
llvm::Value *newValue = Builder.CreateLoad(src);
Builder.CreateStore(newValue, dest);
emitNativeUnownedRetain(newValue, getDefaultAtomicity());
}
void IRGenFunction::emitNativeUnownedTakeInit(Address dest, Address src) {
src = Builder.CreateStructGEP(src, 0, Size(0));
dest = Builder.CreateStructGEP(dest, 0, Size(0));
llvm::Value *newValue = Builder.CreateLoad(src);
Builder.CreateStore(newValue, dest);
}
void IRGenFunction::emitNativeUnownedCopyAssign(Address dest, Address src) {
src = Builder.CreateStructGEP(src, 0, Size(0));
dest = Builder.CreateStructGEP(dest, 0, Size(0));
llvm::Value *newValue = Builder.CreateLoad(src);
llvm::Value *oldValue = Builder.CreateLoad(dest);
Builder.CreateStore(newValue, dest);
emitNativeUnownedRetain(newValue, getDefaultAtomicity());
emitNativeUnownedRelease(oldValue, getDefaultAtomicity());
}
void IRGenFunction::emitNativeUnownedTakeAssign(Address dest, Address src) {
src = Builder.CreateStructGEP(src, 0, Size(0));
dest = Builder.CreateStructGEP(dest, 0, Size(0));
llvm::Value *newValue = Builder.CreateLoad(src);
llvm::Value *oldValue = Builder.CreateLoad(dest);
Builder.CreateStore(newValue, dest);
emitNativeUnownedRelease(oldValue, getDefaultAtomicity());
}
llvm::Constant *IRGenModule::getFixLifetimeFn() {
if (FixLifetimeFn)
return FixLifetimeFn;
// Generate a private stub function for the LLVM ARC optimizer to recognize.
auto fixLifetimeTy = llvm::FunctionType::get(VoidTy, RefCountedPtrTy,
/*isVarArg*/ false);
auto fixLifetime = llvm::Function::Create(fixLifetimeTy,
llvm::GlobalValue::PrivateLinkage,
"__swift_fixLifetime",
&Module);
assert(fixLifetime->getName().equals("__swift_fixLifetime")
&& "fixLifetime symbol name got mangled?!");
// Don't inline the function, so it stays as a signal to the ARC passes.
// The ARC passes will remove references to the function when they're
// no longer needed.
fixLifetime->addAttribute(llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoInline);
// Give the function an empty body.
auto entry = llvm::BasicBlock::Create(LLVMContext, "", fixLifetime);
llvm::ReturnInst::Create(LLVMContext, entry);
FixLifetimeFn = fixLifetime;
return fixLifetime;
}
/// Fix the lifetime of a live value. This communicates to the LLVM level ARC
/// optimizer not to touch this value.
void IRGenFunction::emitFixLifetime(llvm::Value *value) {
// If we aren't running the LLVM ARC optimizer, we don't need to emit this.
if (!IGM.IRGen.Opts.Optimize || IGM.IRGen.Opts.DisableLLVMARCOpts)
return;
if (doesNotRequireRefCounting(value)) return;
emitUnaryRefCountCall(*this, IGM.getFixLifetimeFn(), value);
}
void IRGenFunction::emitUnknownStrongRetain(llvm::Value *value,
Atomicity atomicity) {
if (doesNotRequireRefCounting(value))
return;
emitUnaryRefCountCall(*this, (atomicity == Atomicity::Atomic)
? IGM.getUnknownRetainFn()
: IGM.getNonAtomicUnknownRetainFn(),
value);
}
void IRGenFunction::emitUnknownStrongRelease(llvm::Value *value,
Atomicity atomicity) {
if (doesNotRequireRefCounting(value))
return;
emitUnaryRefCountCall(*this, (atomicity == Atomicity::Atomic)
? IGM.getUnknownReleaseFn()
: IGM.getNonAtomicUnknownReleaseFn(),
value);
}
void IRGenFunction::emitBridgeStrongRetain(llvm::Value *value,
Atomicity atomicity) {
emitUnaryRefCountCall(*this,
(atomicity == Atomicity::Atomic)
? IGM.getBridgeObjectStrongRetainFn()
: IGM.getNonAtomicBridgeObjectStrongRetainFn(),
value);
}
void IRGenFunction::emitBridgeStrongRelease(llvm::Value *value,
Atomicity atomicity) {
emitUnaryRefCountCall(*this,
(atomicity == Atomicity::Atomic)
? IGM.getBridgeObjectStrongReleaseFn()
: IGM.getNonAtomicBridgeObjectStrongReleaseFn(),
value);
}
void IRGenFunction::emitErrorStrongRetain(llvm::Value *value) {
emitUnaryRefCountCall(*this, IGM.getErrorStrongRetainFn(), value);
}
void IRGenFunction::emitErrorStrongRelease(llvm::Value *value) {
emitUnaryRefCountCall(*this, IGM.getErrorStrongReleaseFn(), value);
}
llvm::Value *IRGenFunction::emitNativeTryPin(llvm::Value *value,
Atomicity atomicity) {
llvm::CallInst *call =
(atomicity == Atomicity::Atomic)
? Builder.CreateCall(IGM.getNativeTryPinFn(), value)
: Builder.CreateCall(IGM.getNonAtomicNativeTryPinFn(), value);
call->setDoesNotThrow();
// Builtin.NativeObject? has representation i32/i64.
llvm::Value *handle = Builder.CreatePtrToInt(call, IGM.IntPtrTy);
return handle;
}
void IRGenFunction::emitNativeUnpin(llvm::Value *value, Atomicity atomicity) {
// Builtin.NativeObject? has representation i32/i64.
value = Builder.CreateIntToPtr(value, IGM.RefCountedPtrTy);
llvm::CallInst *call =
(atomicity == Atomicity::Atomic)
? Builder.CreateCall(IGM.getNativeUnpinFn(), value)
: Builder.CreateCall(IGM.getNonAtomicNativeUnpinFn(), value);
call->setDoesNotThrow();
}
llvm::Value *IRGenFunction::emitLoadRefcountedPtr(Address addr,
ReferenceCounting style) {
Address src =
Builder.CreateBitCast(addr, IGM.getReferenceType(style)->getPointerTo());
return Builder.CreateLoad(src);
}
llvm::Value *IRGenFunction::
emitIsUniqueCall(llvm::Value *value, SourceLoc loc, bool isNonNull,
bool checkPinned) {
llvm::Constant *fn;
if (value->getType() == IGM.RefCountedPtrTy) {
if (checkPinned) {
if (isNonNull)
fn = IGM.getIsUniquelyReferencedOrPinned_nonNull_nativeFn();
else
fn = IGM.getIsUniquelyReferencedOrPinned_nativeFn();
}
else {
if (isNonNull)
fn = IGM.getIsUniquelyReferenced_nonNull_nativeFn();
else
fn = IGM.getIsUniquelyReferenced_nativeFn();
}
} else if (value->getType() == IGM.UnknownRefCountedPtrTy) {
if (checkPinned) {
if (!isNonNull)
unimplemented(loc, "optional objc ref");
fn = IGM.getIsUniquelyReferencedOrPinnedNonObjC_nonNullFn();
}
else {
if (isNonNull)
fn = IGM.getIsUniquelyReferencedNonObjC_nonNullFn();
else
fn = IGM.getIsUniquelyReferencedNonObjCFn();
}
} else if (value->getType() == IGM.BridgeObjectPtrTy) {
if (!isNonNull)
unimplemented(loc, "optional bridge ref");
if (checkPinned)
fn = IGM.getIsUniquelyReferencedOrPinnedNonObjC_nonNull_bridgeObjectFn();
else
fn = IGM.getIsUniquelyReferencedNonObjC_nonNull_bridgeObjectFn();
} else {
llvm_unreachable("Unexpected LLVM type for a refcounted pointer.");
}
llvm::CallInst *call = Builder.CreateCall(fn, value);
call->setDoesNotThrow();
return call;
}
namespace {
/// Basic layout and common operations for box types.
class BoxTypeInfo : public HeapTypeInfo<BoxTypeInfo> {
public:
BoxTypeInfo(IRGenModule &IGM)
: HeapTypeInfo(IGM.RefCountedPtrTy, IGM.getPointerSize(),
IGM.getHeapObjectSpareBits(), IGM.getPointerAlignment())
{}
ReferenceCounting getReferenceCounting() const {
// Boxes are always native-refcounted.
return ReferenceCounting::Native;
}
/// Allocate a box of the given type.
virtual OwnedAddress
allocate(IRGenFunction &IGF, SILType boxedType, GenericEnvironment *env,
const llvm::Twine &name) const = 0;
/// Deallocate an uninitialized box.
virtual void
deallocate(IRGenFunction &IGF, llvm::Value *box, SILType boxedType) const = 0;
/// Project the address of the contained value from a box.
virtual Address
project(IRGenFunction &IGF, llvm::Value *box, SILType boxedType) const = 0;
};
/// Common implementation for empty box type info.
class EmptyBoxTypeInfo final : public BoxTypeInfo {
public:
EmptyBoxTypeInfo(IRGenModule &IGM) : BoxTypeInfo(IGM) {}
OwnedAddress
allocate(IRGenFunction &IGF, SILType boxedType, GenericEnvironment *env,
const llvm::Twine &name) const override {
return OwnedAddress(IGF.getTypeInfo(boxedType).getUndefAddress(),
IGF.IGM.RefCountedNull);
}
void
deallocate(IRGenFunction &IGF, llvm::Value *box, SILType boxedType)
const override {
/* Nothing to do; the box should be nil. */
}
Address
project(IRGenFunction &IGF, llvm::Value *box, SILType boxedType)
const override {
return IGF.getTypeInfo(boxedType).getUndefAddress();
}
};
/// Common implementation for non-fixed box type info.
class NonFixedBoxTypeInfo final : public BoxTypeInfo {
public:
NonFixedBoxTypeInfo(IRGenModule &IGM) : BoxTypeInfo(IGM) {}
OwnedAddress
allocate(IRGenFunction &IGF, SILType boxedType, GenericEnvironment *env,
const llvm::Twine &name) const override {
auto &ti = IGF.getTypeInfo(boxedType);
// Use the runtime to allocate a box of the appropriate size.
auto metadata = IGF.emitTypeMetadataRefForLayout(boxedType);
llvm::Value *box, *address;
IGF.emitAllocBoxCall(metadata, box, address);
address = IGF.Builder.CreateBitCast(address,
ti.getStorageType()->getPointerTo());
return {ti.getAddressForPointer(address), box};
}
void
deallocate(IRGenFunction &IGF, llvm::Value *box, SILType boxedType)
const override {
auto metadata = IGF.emitTypeMetadataRefForLayout(boxedType);
IGF.emitDeallocBoxCall(box, metadata);
}
Address
project(IRGenFunction &IGF, llvm::Value *box, SILType boxedType)
const override {
auto &ti = IGF.getTypeInfo(boxedType);
auto metadata = IGF.emitTypeMetadataRefForLayout(boxedType);
llvm::Value *address = IGF.emitProjectBoxCall(box, metadata);
address = IGF.Builder.CreateBitCast(address,
ti.getStorageType()->getPointerTo());
return ti.getAddressForPointer(address);
}
};
/// Base implementation for fixed-sized boxes.
class FixedBoxTypeInfoBase : public BoxTypeInfo {
HeapLayout layout;
public:
FixedBoxTypeInfoBase(IRGenModule &IGM, HeapLayout &&layout)
: BoxTypeInfo(IGM), layout(std::move(layout))
{}
OwnedAddress
allocate(IRGenFunction &IGF, SILType boxedType, GenericEnvironment *env,
const llvm::Twine &name)
const override {
// Allocate a new object using the layout.
auto boxedInterfaceType = boxedType;
if (env) {
boxedInterfaceType = SILType::getPrimitiveType(
env->mapTypeOutOfContext(boxedType.getSwiftRValueType())
->getCanonicalType(),
boxedType.getCategory());
}
auto boxDescriptor = IGF.IGM.getAddrOfBoxDescriptor(
boxedInterfaceType.getSwiftRValueType());
llvm::Value *allocation = IGF.emitUnmanagedAlloc(layout, name,
boxDescriptor);
Address rawAddr = project(IGF, allocation, boxedType);
return {rawAddr, allocation};
}
void
deallocate(IRGenFunction &IGF, llvm::Value *box, SILType _)
const override {
auto size = layout.emitSize(IGF.IGM);
auto alignMask = layout.emitAlignMask(IGF.IGM);
emitDeallocateHeapObject(IGF, box, size, alignMask);
}
Address
project(IRGenFunction &IGF, llvm::Value *box, SILType boxedType)
const override {
Address rawAddr = layout.emitCastTo(IGF, box);
rawAddr = layout.getElement(0).project(IGF, rawAddr, None);
auto &ti = IGF.getTypeInfo(boxedType);
return IGF.Builder.CreateBitCast(rawAddr,
ti.getStorageType()->getPointerTo());
}
};
static HeapLayout getHeapLayoutForSingleTypeInfo(IRGenModule &IGM,
const TypeInfo &ti) {
return HeapLayout(IGM, LayoutStrategy::Optimal, SILType(), &ti);
}
/// Common implementation for POD boxes of a known stride and alignment.
class PODBoxTypeInfo final : public FixedBoxTypeInfoBase {
public:
PODBoxTypeInfo(IRGenModule &IGM, Size stride, Alignment alignment)
: FixedBoxTypeInfoBase(IGM, getHeapLayoutForSingleTypeInfo(IGM,
IGM.getOpaqueStorageTypeInfo(stride, alignment))) {
}
};
/// Common implementation for single-refcounted boxes.
class SingleRefcountedBoxTypeInfo final : public FixedBoxTypeInfoBase {
public:
SingleRefcountedBoxTypeInfo(IRGenModule &IGM, ReferenceCounting refcounting)
: FixedBoxTypeInfoBase(IGM, getHeapLayoutForSingleTypeInfo(IGM,
IGM.getReferenceObjectTypeInfo(refcounting)))
{
}
};
/// Implementation of a box for a specific type.
class FixedBoxTypeInfo final : public FixedBoxTypeInfoBase {
public:
FixedBoxTypeInfo(IRGenModule &IGM, SILType T)
: FixedBoxTypeInfoBase(IGM,
HeapLayout(IGM, LayoutStrategy::Optimal, T, &IGM.getTypeInfo(T)))
{}
};
} // end anonymous namespace
const TypeInfo *TypeConverter::convertBoxType(SILBoxType *T) {
// We can share a type info for all dynamic-sized heap metadata.
// TODO: Multi-field boxes
assert(T->getLayout()->getFields().size() == 1
&& "multi-field boxes not implemented yet");
auto &eltTI = IGM.getTypeInfoForLowered(
T->getFieldLoweredType(IGM.getSILModule(), 0));
if (!eltTI.isFixedSize()) {
if (!NonFixedBoxTI)
NonFixedBoxTI = new NonFixedBoxTypeInfo(IGM);
return NonFixedBoxTI;
}
// For fixed-sized types, we can emit concrete box metadata.
auto &fixedTI = cast<FixedTypeInfo>(eltTI);
// For empty types, we don't really need to allocate anything.
if (fixedTI.isKnownEmpty(ResilienceExpansion::Maximal)) {
if (!EmptyBoxTI)
EmptyBoxTI = new EmptyBoxTypeInfo(IGM);
return EmptyBoxTI;
}
// We can share box info for all similarly-shaped POD types.
if (fixedTI.isPOD(ResilienceExpansion::Maximal)) {
auto stride = fixedTI.getFixedStride();
auto align = fixedTI.getFixedAlignment();
auto foundPOD = PODBoxTI.find({stride.getValue(),align.getValue()});
if (foundPOD == PODBoxTI.end()) {
auto newPOD = new PODBoxTypeInfo(IGM, stride, align);
PODBoxTI.insert({{stride.getValue(), align.getValue()}, newPOD});
return newPOD;
}
return foundPOD->second;
}
// We can share box info for all single-refcounted types.
if (fixedTI.isSingleSwiftRetainablePointer(ResilienceExpansion::Maximal)) {
if (!SwiftRetainablePointerBoxTI)
SwiftRetainablePointerBoxTI
= new SingleRefcountedBoxTypeInfo(IGM, ReferenceCounting::Native);
return SwiftRetainablePointerBoxTI;
}
// TODO: Other common shapes? Optional-of-Refcounted would be nice.
// Produce a tailored box metadata for the type.
assert(T->getLayout()->getFields().size() == 1
&& "multi-field boxes not implemented yet");
return new FixedBoxTypeInfo(IGM, T->getFieldType(IGM.getSILModule(), 0));
}
OwnedAddress
irgen::emitAllocateBox(IRGenFunction &IGF, CanSILBoxType boxType,
GenericEnvironment *env,
const llvm::Twine &name) {
auto &boxTI = IGF.getTypeInfoForLowered(boxType).as<BoxTypeInfo>();
assert(boxType->getLayout()->getFields().size() == 1
&& "multi-field boxes not implemented yet");
return boxTI.allocate(IGF,
boxType->getFieldType(IGF.IGM.getSILModule(), 0), env,
name);
}
void irgen::emitDeallocateBox(IRGenFunction &IGF,
llvm::Value *box,
CanSILBoxType boxType) {
auto &boxTI = IGF.getTypeInfoForLowered(boxType).as<BoxTypeInfo>();
assert(boxType->getLayout()->getFields().size() == 1
&& "multi-field boxes not implemented yet");
return boxTI.deallocate(IGF, box,
boxType->getFieldType(IGF.IGM.getSILModule(), 0));
}
Address irgen::emitProjectBox(IRGenFunction &IGF,
llvm::Value *box,
CanSILBoxType boxType) {
auto &boxTI = IGF.getTypeInfoForLowered(boxType).as<BoxTypeInfo>();
assert(boxType->getLayout()->getFields().size() == 1
&& "multi-field boxes not implemented yet");
return boxTI.project(IGF, box,
boxType->getFieldType(IGF.IGM.getSILModule(), 0));
}
#define DEFINE_VALUE_OP(ID) \
void IRGenFunction::emit##ID(llvm::Value *value, Atomicity atomicity) { \
if (doesNotRequireRefCounting(value)) return; \
emitUnaryRefCountCall(*this, (atomicity == Atomicity::Atomic) \
? IGM.get##ID##Fn() : IGM.getNonAtomic##ID##Fn(), \
value); \
}
#define DEFINE_ADDR_OP(ID) \
void IRGenFunction::emit##ID(Address addr) { \
emitUnaryRefCountCall(*this, IGM.get##ID##Fn(), addr.getAddress()); \
}
#define DEFINE_COPY_OP(ID) \
void IRGenFunction::emit##ID(Address dest, Address src) { \
emitCopyLikeCall(*this, IGM.get##ID##Fn(), dest.getAddress(), \
src.getAddress()); \
}
#define DEFINE_LOAD_WEAK_OP(ID) \
llvm::Value *IRGenFunction::emit##ID(Address src, llvm::Type *type) { \
return emitLoadWeakLikeCall(*this, IGM.get##ID##Fn(), \
src.getAddress(), type); \
}
#define DEFINE_STORE_WEAK_OP(ID) \
void IRGenFunction::emit##ID(llvm::Value *value, Address src) { \
emitStoreWeakLikeCall(*this, IGM.get##ID##Fn(), \
src.getAddress(), value); \
}
DEFINE_VALUE_OP(NativeStrongRetainUnowned)
DEFINE_VALUE_OP(NativeStrongRetainAndUnownedRelease)
DEFINE_VALUE_OP(NativeUnownedRelease)
DEFINE_VALUE_OP(NativeUnownedRetain)
DEFINE_LOAD_WEAK_OP(NativeWeakLoadStrong)
DEFINE_LOAD_WEAK_OP(NativeWeakTakeStrong)
DEFINE_STORE_WEAK_OP(NativeWeakInit)
DEFINE_STORE_WEAK_OP(NativeWeakAssign)
DEFINE_ADDR_OP(NativeWeakDestroy)
DEFINE_COPY_OP(NativeWeakCopyInit)
DEFINE_COPY_OP(NativeWeakCopyAssign)
DEFINE_COPY_OP(NativeWeakTakeInit)
DEFINE_COPY_OP(NativeWeakTakeAssign)
DEFINE_LOAD_WEAK_OP(UnknownUnownedLoadStrong)
DEFINE_LOAD_WEAK_OP(UnknownUnownedTakeStrong)
DEFINE_STORE_WEAK_OP(UnknownUnownedInit)
DEFINE_STORE_WEAK_OP(UnknownUnownedAssign)
DEFINE_ADDR_OP(UnknownUnownedDestroy)
DEFINE_COPY_OP(UnknownUnownedCopyInit)
DEFINE_COPY_OP(UnknownUnownedCopyAssign)
DEFINE_COPY_OP(UnknownUnownedTakeInit)
DEFINE_COPY_OP(UnknownUnownedTakeAssign)
DEFINE_LOAD_WEAK_OP(UnknownWeakLoadStrong)
DEFINE_LOAD_WEAK_OP(UnknownWeakTakeStrong)
DEFINE_STORE_WEAK_OP(UnknownWeakInit)
DEFINE_STORE_WEAK_OP(UnknownWeakAssign)
DEFINE_ADDR_OP(UnknownWeakDestroy)
DEFINE_COPY_OP(UnknownWeakCopyInit)
DEFINE_COPY_OP(UnknownWeakCopyAssign)
DEFINE_COPY_OP(UnknownWeakTakeInit)
DEFINE_COPY_OP(UnknownWeakTakeAssign)