blob: 620662b1cac808b50f46026e52f2cafc598900c1 [file] [log] [blame]
//===--- Mangle.cpp - Swift Name Mangling ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements declaration name mangling in Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Mangle.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Demangle.h"
#include "swift/Basic/Punycode.h"
#include "clang/Basic/CharInfo.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
using namespace Mangle;
static bool isNonAscii(StringRef str) {
for (unsigned char c : str) {
if (c >= 0x80)
return true;
}
return false;
}
namespace {
/// A helpful little wrapper for a value that should be mangled
/// in a particular, compressed value.
class Index {
unsigned N;
public:
explicit Index(unsigned n) : N(n) {}
friend raw_ostream &operator<<(raw_ostream &out, Index n) {
if (n.N != 0) out << (n.N - 1);
return (out << '_');
}
};
} // end anonymous namespace
// Translates operator fixity to demangler operators.
static Demangle::OperatorKind TranslateOperator(OperatorFixity fixity) {
switch (fixity) {
case OperatorFixity::NotOperator:return Demangle::OperatorKind::NotOperator;
case OperatorFixity::Prefix: return Demangle::OperatorKind::Prefix;
case OperatorFixity::Postfix: return Demangle::OperatorKind::Postfix;
case OperatorFixity::Infix: return Demangle::OperatorKind::Infix;
}
llvm_unreachable("invalid operator fixity");
}
/// Finish the mangling of the symbol and return the mangled name.
std::string Mangler::finalize() {
assert(Storage.size() && "Mangling an empty name");
std::string result = std::string(Storage.data(), Storage.size());
Storage.clear();
return result;
}
/// Finish the mangling of the symbol and write the mangled name into
/// \p stream.
void Mangler::finalize(llvm::raw_ostream &stream) {
std::string result = finalize();
stream.write(result.data(), result.size());
}
/// Mangle a StringRef as an identifier into a buffer.
void Mangler::mangleIdentifier(StringRef str, OperatorFixity fixity,
bool isOperator) {
auto operatorKind = isOperator ? TranslateOperator(fixity) :
Demangle::OperatorKind::NotOperator;
std::string buf;
Demangle::mangleIdentifier(str.data(), str.size(), operatorKind, buf,
UsePunycode);
Buffer << buf;
}
/// Mangle an identifier into the buffer.
void Mangler::mangleIdentifier(Identifier ident, OperatorFixity fixity) {
StringRef str = ident.str();
assert(!str.empty() && "mangling an empty identifier!");
return mangleIdentifier(str, fixity, ident.isOperator());
}
bool Mangler::tryMangleSubstitution(const void *ptr) {
auto ir = Substitutions.find(ptr);
if (ir == Substitutions.end()) return false;
// substitution ::= 'S' integer? '_'
unsigned index = ir->second;
Buffer << 'S';
if (index) Buffer << (index - 1);
Buffer << '_';
return true;
}
void Mangler::addSubstitution(const void *ptr) {
Substitutions.insert(std::make_pair(ptr, Substitutions.size()));
}
/// Mangle the context of the given declaration as a <context.
/// This is the top-level entrypoint for mangling <context>.
void Mangler::mangleContextOf(const ValueDecl *decl) {
auto clangDecl = decl->getClangDecl();
// Classes and protocols implemented in Objective-C have a special context
// mangling.
// known-context ::= 'So'
if (isa<ClassDecl>(decl) && clangDecl) {
assert(isa<clang::ObjCInterfaceDecl>(clangDecl) ||
isa<clang::TypedefDecl>(clangDecl));
Buffer << "So";
return;
}
if (isa<ProtocolDecl>(decl) && clangDecl) {
assert(isa<clang::ObjCProtocolDecl>(clangDecl));
Buffer << "So";
return;
}
// Declarations provided by a C module have a special context mangling.
// known-context ::= 'SC'
// Do a dance to avoid a layering dependency.
if (auto file = dyn_cast<FileUnit>(decl->getDeclContext())) {
if (file->getKind() == FileUnitKind::ClangModule) {
Buffer << "SC";
return;
}
}
// Just mangle the decl's DC.
mangleContext(decl->getDeclContext());
}
namespace {
class FindFirstVariable :
public PatternVisitor<FindFirstVariable, VarDecl *> {
public:
VarDecl *visitNamedPattern(NamedPattern *P) {
return P->getDecl();
}
VarDecl *visitTuplePattern(TuplePattern *P) {
for (auto &elt : P->getElements()) {
VarDecl *var = visit(elt.getPattern());
if (var) return var;
}
return nullptr;
}
VarDecl *visitParenPattern(ParenPattern *P) {
return visit(P->getSubPattern());
}
VarDecl *visitVarPattern(VarPattern *P) {
return visit(P->getSubPattern());
}
VarDecl *visitTypedPattern(TypedPattern *P) {
return visit(P->getSubPattern());
}
VarDecl *visitAnyPattern(AnyPattern *P) {
return nullptr;
}
// Refutable patterns shouldn't ever come up.
#define REFUTABLE_PATTERN(ID, BASE) \
VarDecl *visit##ID##Pattern(ID##Pattern *P) { \
llvm_unreachable("shouldn't be visiting a refutable pattern here!"); \
}
#define PATTERN(ID, BASE)
#include "swift/AST/PatternNodes.def"
};
} // end anonymous namespace
/// Find the first identifier bound by the given binding. This
/// assumes that field and global-variable bindings always bind at
/// least one name, which is probably a reasonable assumption but may
/// not be adequately enforced.
static Optional<VarDecl*> findFirstVariable(PatternBindingDecl *binding) {
for (auto entry : binding->getPatternList()) {
auto var = FindFirstVariable().visit(entry.getPattern());
if (var) return var;
}
// Pattern-binding bound without variables exists in erroneous code, e.g.
// during code completion.
return None;
}
void Mangler::mangleContext(const DeclContext *ctx) {
switch (ctx->getContextKind()) {
case DeclContextKind::Module:
return mangleModule(cast<ModuleDecl>(ctx));
case DeclContextKind::FileUnit:
assert(!isa<BuiltinUnit>(ctx) && "mangling member of builtin module!");
mangleContext(ctx->getParent());
return;
case DeclContextKind::SerializedLocal: {
auto local = cast<SerializedLocalDeclContext>(ctx);
switch (local->getLocalDeclContextKind()) {
case LocalDeclContextKind::AbstractClosure:
mangleClosureEntity(cast<SerializedAbstractClosureExpr>(local),
/*uncurry*/ 0);
return;
case LocalDeclContextKind::DefaultArgumentInitializer: {
auto argInit = cast<SerializedDefaultArgumentInitializer>(local);
mangleDefaultArgumentEntity(ctx->getParent(), argInit->getIndex());
return;
}
case LocalDeclContextKind::PatternBindingInitializer: {
auto patternInit = cast<SerializedPatternBindingInitializer>(local);
if (auto var = findFirstVariable(patternInit->getBinding()))
mangleInitializerEntity(var.getValue());
return;
}
case LocalDeclContextKind::TopLevelCodeDecl:
return mangleContext(local->getParent());
}
}
case DeclContextKind::GenericTypeDecl:
if (auto nomctx = dyn_cast<NominalTypeDecl>(ctx))
mangleNominalType(nomctx);
else
mangleContext(ctx->getParent());
return;
case DeclContextKind::ExtensionDecl: {
auto ExtD = cast<ExtensionDecl>(ctx);
auto ExtTy = ExtD->getExtendedType();
// Recover from erroneous extension.
if (ExtTy.isNull() || ExtTy->hasError())
return mangleContext(ExtD->getDeclContext());
auto decl = ExtTy->getAnyNominal();
assert(decl && "extension of non-nominal type?");
// Mangle the module name if:
// - the extension is defined in a different module from the actual nominal
// type decl,
// - the extension is constrained, or
// - the extension is to a protocol.
// FIXME: In a world where protocol extensions are dynamically dispatched,
// "extension is to a protocol" would no longer be a reason to use the
// extension mangling, because an extension method implementation could be
// resiliently moved into the original protocol itself.
if (ExtD->getParentModule() != decl->getParentModule()
|| ExtD->isConstrainedExtension()
|| ExtD->getDeclaredInterfaceType()->isExistentialType()) {
auto sig = ExtD->getGenericSignature();
// If the extension is constrained, mangle the generic signature that
// constrains it.
bool mangleSignature = sig && ExtD->isConstrainedExtension();
Buffer << (mangleSignature ? 'e' : 'E');
mangleModule(ExtD->getParentModule());
if (mangleSignature) {
Mod = ExtD->getModuleContext();
mangleGenericSignature(sig);
}
}
mangleNominalType(decl);
return;
}
case DeclContextKind::AbstractClosureExpr:
return mangleClosureEntity(cast<AbstractClosureExpr>(ctx),
/*uncurry*/ 0);
case DeclContextKind::AbstractFunctionDecl: {
auto fn = cast<AbstractFunctionDecl>(ctx);
// Constructors and destructors as contexts are always mangled
// using the non-(de)allocating variants.
if (auto ctor = dyn_cast<ConstructorDecl>(fn)) {
return mangleConstructorEntity(ctor, /*allocating*/ false,
/*uncurry*/ 0);
}
if (auto dtor = dyn_cast<DestructorDecl>(fn))
return mangleDestructorEntity(dtor, /*deallocating*/ false);
return mangleEntity(fn, /*uncurry*/ 0);
}
case DeclContextKind::SubscriptDecl:
// FIXME: We may need to do something here if subscripts contain any symbols
// exposed with linkage names.
return mangleContext(ctx->getParent());
case DeclContextKind::Initializer:
switch (cast<Initializer>(ctx)->getInitializerKind()) {
case InitializerKind::DefaultArgument: {
auto argInit = cast<DefaultArgumentInitializer>(ctx);
mangleDefaultArgumentEntity(ctx->getParent(),
argInit->getIndex());
return;
}
case InitializerKind::PatternBinding: {
auto patternInit = cast<PatternBindingInitializer>(ctx);
if (auto var = findFirstVariable(patternInit->getBinding()))
mangleInitializerEntity(var.getValue());
return;
}
}
llvm_unreachable("bad initializer kind");
case DeclContextKind::TopLevelCodeDecl:
// Mangle the containing module context.
return mangleContext(ctx->getParent());
}
llvm_unreachable("bad decl context");
}
void Mangler::mangleModule(const ModuleDecl *module) {
assert(!module->getParent() && "cannot mangle nested modules!");
// Try the special 'swift' substitution.
// context ::= known-module
// known-module ::= 's'
if (module->isStdlibModule()) {
Buffer << "s";
return;
}
// context ::= substitution
if (tryMangleSubstitution(module)) return;
// context ::= identifier
mangleIdentifier(module->getName());
addSubstitution(module);
}
/// Bind the generic parameters from the given signature.
void Mangler::bindGenericParameters(CanGenericSignature sig) {
if (sig)
CurGenericSignature = sig;
}
/// Bind the generic parameters from the given context and its parents.
void Mangler::bindGenericParameters(const DeclContext *DC) {
if (auto sig = DC->getGenericSignatureOfContext())
bindGenericParameters(sig->getCanonicalSignature());
}
static OperatorFixity getDeclFixity(const ValueDecl *decl) {
if (!decl->getName().isOperator())
return OperatorFixity::NotOperator;
switch (decl->getAttrs().getUnaryOperatorKind()) {
case UnaryOperatorKind::Prefix: return OperatorFixity::Prefix;
case UnaryOperatorKind::Postfix: return OperatorFixity::Postfix;
case UnaryOperatorKind::None: return OperatorFixity::Infix;
}
llvm_unreachable("bad UnaryOperatorKind");
}
/// Returns true if one of the ancestor DeclContexts of \p D is either marked
/// private or is a local context.
static bool isInPrivateOrLocalContext(const ValueDecl *D) {
const DeclContext *DC = D->getDeclContext();
if (!DC->isTypeContext()) {
assert((DC->isModuleScopeContext() || DC->isLocalContext()) &&
"unexpected context kind");
return DC->isLocalContext();
}
auto declaredType = DC->getDeclaredTypeOfContext();
if (!declaredType || declaredType->hasError())
return false;
auto *nominal = declaredType->getAnyNominal();
if (nominal->getFormalAccess() <= Accessibility::FilePrivate)
return true;
return isInPrivateOrLocalContext(nominal);
}
void Mangler::mangleDeclName(const ValueDecl *decl) {
if (decl->getDeclContext()->isLocalContext()) {
// Mangle local declarations with a numeric discriminator.
// decl-name ::= 'L' index identifier
Buffer << 'L' << Index(decl->getLocalDiscriminator());
// Fall through to mangle the <identifier>.
} else if (decl->hasAccessibility() &&
decl->getFormalAccess() <= Accessibility::FilePrivate &&
!isInPrivateOrLocalContext(decl)) {
// Mangle non-local private declarations with a textual discriminator
// based on their enclosing file.
// decl-name ::= 'P' identifier identifier
// The first <identifier> is a discriminator string unique to the decl's
// original source file.
auto topLevelContext = decl->getDeclContext()->getModuleScopeContext();
auto fileUnit = cast<FileUnit>(topLevelContext);
Identifier discriminator =
fileUnit->getDiscriminatorForPrivateValue(decl);
assert(!discriminator.empty());
assert(!isNonAscii(discriminator.str()) &&
"discriminator contains non-ASCII characters");
(void)&isNonAscii;
assert(!clang::isDigit(discriminator.str().front()) &&
"not a valid identifier");
Buffer << 'P';
mangleIdentifier(discriminator);
// Fall through to mangle the name.
}
// decl-name ::= identifier
mangleIdentifier(decl->getName(), getDeclFixity(decl));
}
void Mangler::mangleTypeForDebugger(Type Ty, const DeclContext *DC) {
assert(DWARFMangling && "DWARFMangling expected when mangling for debugger");
Buffer << "_Tt";
if (DC)
bindGenericParameters(DC);
DeclCtx = DC;
mangleType(Ty, /*uncurry*/ 0);
}
void Mangler::mangleDeclTypeForDebugger(const ValueDecl *decl) {
assert(DWARFMangling && "DWARFMangling expected");
Buffer << "_Tt";
if (isa<TypeDecl>(decl)) return;
DeclCtx = decl->getInnermostDeclContext();
// Bind the generic parameters from that.
bindGenericParameters(DeclCtx);
mangleDeclType(decl, /*uncurry*/ 0);
}
/// Is this declaration a method for mangling purposes? If so, we'll leave the
/// Self type out of its mangling.
static bool isMethodDecl(const Decl *decl) {
return isa<AbstractFunctionDecl>(decl)
&& decl->getDeclContext()->isTypeContext();
}
static bool genericParamIsBelowDepth(Type type, unsigned methodDepth) {
if (auto gp = type->getAs<GenericTypeParamType>()) {
return gp->getDepth() >= methodDepth;
}
if (auto dm = type->getAs<DependentMemberType>()) {
return genericParamIsBelowDepth(dm->getBase(), methodDepth);
}
// Non-dependent types in a same-type requirement don't affect whether we
// mangle the requirement.
return false;
}
CanType Mangler::getDeclTypeForMangling(
const ValueDecl *decl,
ArrayRef<GenericTypeParamType *> &genericParams,
unsigned &initialParamDepth,
ArrayRef<Requirement> &requirements,
SmallVectorImpl<Requirement> &requirementsBuf) {
auto &C = decl->getASTContext();
if (!decl->hasInterfaceType())
return ErrorType::get(C)->getCanonicalType();
auto type = decl->getInterfaceType()->getCanonicalType();
initialParamDepth = 0;
CanGenericSignature sig;
if (auto gft = dyn_cast<GenericFunctionType>(type)) {
sig = gft.getGenericSignature();
CurGenericSignature = sig;
genericParams = sig->getGenericParams();
requirements = sig->getRequirements();
type = CanFunctionType::get(gft.getInput(), gft.getResult(),
gft->getExtInfo());
} else {
genericParams = {};
requirements = {};
}
// Shed the 'self' type and generic requirements from method manglings.
if (!type->hasError()) {
if (isMethodDecl(decl)) {
// Drop the Self argument clause from the type.
type = cast<AnyFunctionType>(type).getResult();
}
if (isMethodDecl(decl) || isa<SubscriptDecl>(decl)) {
// Drop generic parameters and requirements from the method's context.
auto parentGenericSig =
decl->getDeclContext()->getGenericSignatureOfContext();
if (parentGenericSig && sig) {
// The method's depth starts below the depth of the context.
if (!parentGenericSig->getGenericParams().empty())
initialParamDepth =
parentGenericSig->getGenericParams().back()->getDepth()+1;
while (!genericParams.empty()) {
if (genericParams.front()->getDepth() >= initialParamDepth)
break;
genericParams = genericParams.slice(1);
}
requirementsBuf.clear();
for (auto &reqt : sig->getRequirements()) {
switch (reqt.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Layout:
case RequirementKind::Superclass:
// We don't need the requirement if the constrained type is above the
// method depth.
if (!genericParamIsBelowDepth(reqt.getFirstType(), initialParamDepth))
continue;
break;
case RequirementKind::SameType:
// We don't need the requirement if both types are above the method
// depth, or non-dependent.
if (!genericParamIsBelowDepth(reqt.getFirstType(),initialParamDepth)&&
!genericParamIsBelowDepth(reqt.getSecondType(),initialParamDepth))
continue;
break;
}
// If we fell through the switch, mangle the requirement.
requirementsBuf.push_back(reqt);
}
requirements = requirementsBuf;
}
}
}
return type;
}
void Mangler::mangleDeclType(const ValueDecl *decl,
unsigned uncurryLevel) {
ArrayRef<GenericTypeParamType *> genericParams;
unsigned initialParamDepth;
ArrayRef<Requirement> requirements;
SmallVector<Requirement, 4> requirementsBuf;
Mod = decl->getModuleContext();
auto type = getDeclTypeForMangling(decl,
genericParams, initialParamDepth,
requirements, requirementsBuf);
// Mangle the generic signature, if any.
if (!genericParams.empty() || !requirements.empty()) {
Buffer << 'u';
mangleGenericSignatureParts(genericParams, initialParamDepth,
requirements);
}
mangleType(type->getCanonicalType(), uncurryLevel);
}
void Mangler::mangleConstrainedType(CanType type) {
// The type constrained by a generic requirement should always be a
// generic parameter or associated type thereof. Assuming this lets us save
// an introducer character in the common case when a generic parameter is
// constrained.
assert(isa<DependentMemberType>(type) || isa<GenericTypeParamType>(type));
if (auto gp = dyn_cast<GenericTypeParamType>(type)) {
mangleGenericParamIndex(gp);
return;
}
mangleType(type, 0);
}
void Mangler::mangleLayoutConstraint(LayoutConstraint layout) {
switch (layout->getKind()) {
case LayoutConstraintKind::UnknownLayout:
Buffer << "U";
break;
case LayoutConstraintKind::RefCountedObject:
Buffer << "R";
break;
case LayoutConstraintKind::NativeRefCountedObject:
Buffer << "N";
break;
case LayoutConstraintKind::Trivial:
Buffer << "T";
break;
case LayoutConstraintKind::TrivialOfExactSize:
if (layout->getAlignment())
Buffer << "E";
else
Buffer << "e";
Buffer << layout->getTrivialSizeInBits();
if (layout->getAlignment()) {
Buffer << "_";
Buffer << layout->getAlignment();
}
break;
case LayoutConstraintKind::TrivialOfAtMostSize:
if (layout->getAlignment())
Buffer << "M";
else
Buffer << "m";
Buffer << layout->getTrivialSizeInBits();
if (layout->getAlignment()) {
Buffer << "_";
Buffer << layout->getAlignment();
}
break;
}
}
void Mangler::mangleGenericSignatureParts(
ArrayRef<GenericTypeParamType*> params,
unsigned initialParamDepth,
ArrayRef<Requirement> requirements) {
// Mangle the number of parameters.
unsigned depth = 0;
unsigned count = 0;
// Since it's unlikely (but not impossible) to have zero generic parameters
// at a depth, encode indexes starting from 1, and use a special mangling
// for zero.
auto mangleGenericParamCount = [&](unsigned depth, unsigned count) {
if (depth < initialParamDepth)
return;
if (count == 0)
Buffer << 'z';
else
Buffer << Index(count - 1);
};
// As a special case, mangle nothing if there's a single generic parameter
// at the initial depth.
if (params.size() == 1 && params[0]->getDepth() == initialParamDepth)
goto mangle_requirements;
for (auto param : params) {
if (param->getDepth() != depth) {
assert(param->getDepth() > depth && "generic params not ordered");
while (depth < param->getDepth()) {
mangleGenericParamCount(depth, count);
++depth;
count = 0;
}
}
assert(param->getIndex() == count && "generic params not ordered");
++count;
}
mangleGenericParamCount(depth, count);
mangle_requirements:
bool didMangleRequirement = false;
// Mangle the requirements.
for (auto &reqt : requirements) {
switch (reqt.getKind()) {
case RequirementKind::Conformance:
if (!didMangleRequirement) {
Buffer << 'R';
didMangleRequirement = true;
}
// Protocol constraints are the common case, so mangle them more
// efficiently.
// TODO: We could golf this a little more by assuming the first type
// is a dependent type.
mangleConstrainedType(reqt.getFirstType()->getCanonicalType());
mangleProtocolName(
reqt.getSecondType()->castTo<ProtocolType>()->getDecl());
break;
case RequirementKind::Layout:
if (!didMangleRequirement) {
Buffer << 'R';
didMangleRequirement = true;
}
// TODO: We could golf this a little more by assuming the first type
// is a dependent type.
mangleConstrainedType(reqt.getFirstType()->getCanonicalType());
Buffer << 'l';
mangleLayoutConstraint(reqt.getLayoutConstraint());
break;
case RequirementKind::Superclass:
if (!didMangleRequirement) {
Buffer << 'R';
didMangleRequirement = true;
}
mangleConstrainedType(reqt.getFirstType()->getCanonicalType());
mangleType(reqt.getSecondType()->getCanonicalType(), 0);
break;
case RequirementKind::SameType:
if (!didMangleRequirement) {
Buffer << 'R';
didMangleRequirement = true;
}
mangleConstrainedType(reqt.getFirstType()->getCanonicalType());
Buffer << 'z';
mangleType(reqt.getSecondType()->getCanonicalType(), 0);
break;
}
}
// Mark end of requirements.
Buffer << 'r';
}
void Mangler::mangleGenericSignature(const GenericSignature *sig) {
auto canSig = sig->getCanonicalSignature();
CurGenericSignature = canSig;
mangleGenericSignatureParts(canSig->getGenericParams(), 0,
canSig->getRequirements());
}
static void mangleMetatypeRepresentation(raw_ostream &Buffer,
MetatypeRepresentation Rep) {
switch (Rep) {
case MetatypeRepresentation::Thin:
Buffer << 't';
break;
case MetatypeRepresentation::Thick:
Buffer << 'T';
break;
case MetatypeRepresentation::ObjC:
Buffer << 'o';
}
}
void Mangler::mangleGenericParamIndex(GenericTypeParamType *paramTy) {
if (paramTy->getDepth() > 0) {
Buffer << 'd';
Buffer << Index(paramTy->getDepth() - 1);
Buffer << Index(paramTy->getIndex());
return;
}
if (paramTy->getIndex() == 0) {
Buffer << 'x';
return;
}
Buffer << Index(paramTy->getIndex() - 1);
}
void Mangler::mangleAssociatedTypeName(DependentMemberType *dmt,
bool canAbbreviate) {
auto assocTy = dmt->getAssocType();
if (tryMangleSubstitution(assocTy))
return;
// If the base type is known to have a single protocol conformance
// in the current generic context, then we don't need to disambiguate the
// associated type name by protocol.
// FIXME: We ought to be able to get to the generic signature from a
// dependent type, but can't yet. Shouldn't need this side channel.
if (!canAbbreviate || !CurGenericSignature || !Mod
|| CurGenericSignature->getConformsTo(dmt->getBase(), *Mod).size() > 1) {
Buffer << 'P';
mangleProtocolName(assocTy->getProtocol());
}
mangleIdentifier(assocTy->getName());
addSubstitution(assocTy);
}
/// Mangle a type into the buffer.
///
/// Type manglings should never start with [0-9dz_] or end with [0-9].
///
/// <type> ::= A <natural> <type> # fixed-sized arrays
/// <type> ::= Bb # Builtin.UnsafeValueBuffer
/// <type> ::= Bf <natural> _ # Builtin.Float
/// <type> ::= Bi <natural> _ # Builtin.Integer
/// <type> ::= BO # Builtin.UnknownObject
/// <type> ::= Bo # Builtin.NativeObject
/// <type> ::= Bb # Builtin.BridgeObject
/// <type> ::= Bp # Builtin.RawPointer
/// <type> ::= Bv <natural> <type> # Builtin.Vector
/// <type> ::= C <decl> # class (substitutable)
/// <type> ::= D <type> # dynamic Self return
/// <type> ::= ERR # Error type
/// <type> ::= 'a' <context> <identifier> # Type alias (DWARF only)
/// <type> ::= F <type> <type> # function type
/// <type> ::= f <type> <type> # uncurried function type
/// <type> ::= G <type> <type>+ _ # bound generic type
/// <type> ::= O <decl> # enum (substitutable)
/// <type> ::= M <type> # metatype
/// <type> ::= P <protocol-list> _ # protocol composition
/// <type> ::= PM <type> # existential metatype
/// <type> ::= Q <index> # archetype with depth=0, index=N
/// <type> ::= Qd <index> <index> # archetype with depth=M+1, index=N
/// <type> ::= 'Qq' index context # archetype+context (DWARF only)
///
/// <type> ::= R <type> # inout
/// <type> ::= T <tuple-element>* _ # tuple
/// <type> ::= U <generic-parameter>+ _ <type>
/// <type> ::= V <decl> # struct (substitutable)
/// <type> ::= Xo <type> # unowned reference type
/// <type> ::= Xw <type> # weak reference type
/// <type> ::= XF <impl-function-type> # SIL function type
/// <type> ::= Xb <type> # SIL @box type
///
/// <index> ::= _ # 0
/// <index> ::= <natural> _ # N+1
///
/// <tuple-element> ::= <identifier>? <type>
void Mangler::mangleType(Type type, unsigned uncurryLevel) {
assert((DWARFMangling || type->isCanonical()) &&
"expecting canonical types when not mangling for the debugger");
TypeBase *tybase = type.getPointer();
switch (type->getKind()) {
case TypeKind::TypeVariable:
llvm_unreachable("mangling type variable");
case TypeKind::Module:
llvm_unreachable("Cannot mangle module type yet");
case TypeKind::Error:
case TypeKind::Unresolved:
Buffer << "ERR";
return;
// We don't care about these types being a bit verbose because we
// don't expect them to come up that often in API names.
case TypeKind::BuiltinFloat:
switch (cast<BuiltinFloatType>(tybase)->getFPKind()) {
case BuiltinFloatType::IEEE16: Buffer << "Bf16_"; return;
case BuiltinFloatType::IEEE32: Buffer << "Bf32_"; return;
case BuiltinFloatType::IEEE64: Buffer << "Bf64_"; return;
case BuiltinFloatType::IEEE80: Buffer << "Bf80_"; return;
case BuiltinFloatType::IEEE128: Buffer << "Bf128_"; return;
case BuiltinFloatType::PPC128: llvm_unreachable("ppc128 not supported");
}
llvm_unreachable("bad floating-point kind");
case TypeKind::BuiltinInteger: {
auto width = cast<BuiltinIntegerType>(tybase)->getWidth();
if (width.isFixedWidth())
Buffer << "Bi" << width.getFixedWidth() << '_';
else if (width.isPointerWidth())
Buffer << "Bw";
else
llvm_unreachable("impossible width value");
return;
}
case TypeKind::BuiltinRawPointer:
Buffer << "Bp";
return;
case TypeKind::BuiltinNativeObject:
Buffer << "Bo";
return;
case TypeKind::BuiltinBridgeObject:
Buffer << "Bb";
return;
case TypeKind::BuiltinUnknownObject:
Buffer << "BO";
return;
case TypeKind::BuiltinUnsafeValueBuffer:
Buffer << "BB";
return;
case TypeKind::BuiltinVector:
Buffer << "Bv" << cast<BuiltinVectorType>(tybase)->getNumElements();
mangleType(cast<BuiltinVectorType>(tybase)->getElementType(), uncurryLevel);
return;
case TypeKind::NameAlias: {
assert(DWARFMangling && "sugared types are only legal for the debugger");
auto NameAliasTy = cast<NameAliasType>(tybase);
TypeAliasDecl *decl = NameAliasTy->getDecl();
if (decl->getModuleContext() == decl->getASTContext().TheBuiltinModule) {
// It's not possible to mangle the context of the builtin module.
return mangleType(NameAliasTy->getSinglyDesugaredType(), uncurryLevel);
}
Buffer << "a";
// For the DWARF output we want to mangle the type alias + context,
// unless the type alias references a builtin type.
mangleContextOf(decl);
mangleDeclName(decl);
return;
}
case TypeKind::Paren:
return mangleSugaredType<ParenType>(type);
case TypeKind::ArraySlice: /* fallthrough */
case TypeKind::Optional:
return mangleSugaredType<SyntaxSugarType>(type);
case TypeKind::Dictionary:
return mangleSugaredType<DictionaryType>(type);
case TypeKind::ImplicitlyUnwrappedOptional: {
assert(DWARFMangling && "sugared types are only legal for the debugger");
auto *IUO = cast<ImplicitlyUnwrappedOptionalType>(tybase);
auto implDecl = tybase->getASTContext().getImplicitlyUnwrappedOptionalDecl();
auto GenTy = BoundGenericType::get(implDecl, Type(), IUO->getBaseType());
return mangleType(GenTy, 0);
}
case TypeKind::ExistentialMetatype: {
ExistentialMetatypeType *EMT = cast<ExistentialMetatypeType>(tybase);
if (EMT->hasRepresentation()) {
Buffer << 'X' << 'P' << 'M';
mangleMetatypeRepresentation(Buffer, EMT->getRepresentation());
} else {
Buffer << 'P' << 'M';
}
return mangleType(EMT->getInstanceType(), 0);
}
case TypeKind::Metatype: {
MetatypeType *MT = cast<MetatypeType>(tybase);
if (MT->hasRepresentation()) {
Buffer << 'X' << 'M';
mangleMetatypeRepresentation(Buffer, MT->getRepresentation());
} else {
Buffer << 'M';
}
return mangleType(MT->getInstanceType(), 0);
}
case TypeKind::LValue:
llvm_unreachable("@lvalue types should not occur in function interfaces");
case TypeKind::InOut:
Buffer << 'R';
return mangleType(cast<InOutType>(tybase)->getObjectType(), 0);
case TypeKind::UnmanagedStorage:
Buffer << "Xu";
return mangleType(cast<UnmanagedStorageType>(tybase)->getReferentType(), 0);
case TypeKind::UnownedStorage:
Buffer << "Xo";
return mangleType(cast<UnownedStorageType>(tybase)->getReferentType(), 0);
case TypeKind::WeakStorage:
Buffer << "Xw";
return mangleType(cast<WeakStorageType>(tybase)->getReferentType(), 0);
case TypeKind::Tuple: {
auto tuple = cast<TupleType>(tybase);
// type ::= 'T' tuple-field+ '_' // tuple
// type ::= 't' tuple-field+ '_' // variadic tuple
// tuple-field ::= identifier? type
if (tuple->getNumElements() > 0
&& tuple->getElements().back().isVararg())
Buffer << 't';
else
Buffer << 'T';
for (auto &field : tuple->getElements()) {
if (field.hasName())
mangleIdentifier(field.getName());
mangleType(field.getType(), 0);
}
Buffer << '_';
return;
}
case TypeKind::Protocol:
// Protocol type manglings have a variable number of protocol names
// follow the 'P' sigil, so a trailing underscore is needed after the
// type name, unlike protocols as contexts.
Buffer << 'P';
mangleProtocolList(type);
Buffer << '_';
return;
case TypeKind::UnboundGeneric:
case TypeKind::Class:
case TypeKind::Enum:
case TypeKind::Struct:
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericEnum:
case TypeKind::BoundGenericStruct: {
if (type->isSpecialized())
mangleBoundGenericType(type);
else
mangleNominalType(tybase->getAnyNominal());
return;
}
case TypeKind::SILFunction: {
// <type> ::= 'XF' <impl-function-type>
// <impl-function-type> ::= <impl-callee-convention>
// <impl-function-attribute>* <generics>? '_'
// <impl-parameter>* '_' <impl-result>* '_'
// <impl-callee-convention> ::= 't' // thin
// <impl-callee-convention> ::= <impl-convention> // thick
// <impl-convention> ::= 'a' // direct, autoreleased
// <impl-convention> ::= 'd' // direct, no ownership transfer
// <impl-convention> ::= 'g' // direct, guaranteed
// <impl-convention> ::= 'e' // direct, deallocating
// <impl-convention> ::= 'i' // indirect, ownership transfer
// <impl-convention> ::= 'l' // indirect, inout
// <impl-convention> ::= 'L' // indirect, inout, aliasable
// <impl-convention> ::= 'g' // direct, guaranteed
// <impl-convention> ::= 'G' // indirect, guaranteed
// <impl-convention> ::= 'z' <impl-convention> // error result
// <impl-function-attribute> ::= 'Cb' // block invocation function
// <impl-function-attribute> ::= 'Cc' // C global function
// <impl-function-attribute> ::= 'Cm' // Swift method
// <impl-function-attribute> ::= 'CO' // ObjC method
// <impl-function-attribute> ::= 'g' // pseudogeneric
// <impl-function-attribute> ::= 'G' // generic
// <impl-parameter> ::= <impl-convention> <type>
// <impl-result> ::= <impl-convention> <type>
auto fn = cast<SILFunctionType>(tybase);
Buffer << "XF";
auto mangleParameterConvention = [](ParameterConvention conv) {
// @in and @out are mangled the same because they're put in
// different places.
switch (conv) {
case ParameterConvention::Indirect_In: return 'i';
case ParameterConvention::Indirect_Inout: return 'l';
case ParameterConvention::Indirect_InoutAliasable: return 'L';
case ParameterConvention::Indirect_In_Guaranteed: return 'G';
case ParameterConvention::Direct_Owned: return 'o';
case ParameterConvention::Direct_Unowned: return 'd';
case ParameterConvention::Direct_Guaranteed: return 'g';
}
llvm_unreachable("bad parameter convention");
};
auto mangleResultConvention = [](ResultConvention conv) {
switch (conv) {
case ResultConvention::Indirect: return 'i';
case ResultConvention::Owned: return 'o';
case ResultConvention::Unowned: return 'd';
case ResultConvention::UnownedInnerPointer: return 'D';
case ResultConvention::Autoreleased: return 'a';
}
llvm_unreachable("bad result convention");
};
// <impl-callee-convention>
if (!fn->getExtInfo().hasContext()) {
Buffer << 't';
} else {
Buffer << mangleParameterConvention(fn->getCalleeConvention());
}
// <impl-function-attribute>*
switch (fn->getRepresentation()) {
case SILFunctionTypeRepresentation::Block:
Buffer << "Cb";
break;
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::Thin:
break;
case SILFunctionTypeRepresentation::CFunctionPointer:
Buffer << "Cc";
break;
case SILFunctionTypeRepresentation::ObjCMethod:
Buffer << "CO";
break;
case SILFunctionTypeRepresentation::Method:
Buffer << "Cm";
break;
case SILFunctionTypeRepresentation::Closure:
Buffer << "Ck";
break;
case SILFunctionTypeRepresentation::WitnessMethod:
Buffer << "Cw";
break;
}
if (fn->isPolymorphic()) {
Buffer << (fn->isPseudogeneric() ? 'g' : 'G');
mangleGenericSignature(fn->getGenericSignature());
}
Buffer << '_';
// Mangle the parameters.
for (auto param : fn->getParameters()) {
Buffer << mangleParameterConvention(param.getConvention());
mangleType(param.getType(), 0);
}
Buffer << '_';
// Mangle the results.
for (auto result : fn->getResults()) {
Buffer << mangleResultConvention(result.getConvention());
mangleType(result.getType(), 0);
}
// Mangle the error result if present.
if (fn->hasErrorResult()) {
auto error = fn->getErrorResult();
Buffer << 'z' << mangleResultConvention(error.getConvention());
mangleType(error.getType(), 0);
}
Buffer << '_';
return;
}
// type ::= archetype
case TypeKind::Archetype: {
auto *archetype = cast<ArchetypeType>(tybase);
assert(DWARFMangling && "Cannot mangle free-standing archetypes");
// archetype ::= associated-type
// associated-type ::= substitution
if (tryMangleSubstitution(archetype))
return;
Buffer << 'Q';
// associated-type ::= 'Q' archetype identifier
// Mangle the associated type of a parent archetype.
if (auto parent = archetype->getParent()) {
assert(archetype->getAssocType()
&& "child archetype has no associated type?!");
mangleType(parent, 0);
mangleIdentifier(archetype->getName());
addSubstitution(archetype);
return;
}
// archetype ::= 'Q' <index> # archetype with depth=0, index=N
// archetype ::= 'Qd' <index> <index> # archetype with depth=M+1, index=N
// Mangle generic parameter archetypes.
// Find the archetype information.
const DeclContext *DC = DeclCtx;
auto GTPT = DC->mapTypeOutOfContext(archetype)
->castTo<GenericTypeParamType>();
Buffer << 'q' << Index(GTPT->getIndex());
{
// The DWARF output created by Swift is intentionally flat,
// therefore archetypes are emitted with their DeclContext if
// they appear at the top level of a type (_Tt).
// Clone a new, non-DWARF Mangler for the DeclContext.
Mangler ContextMangler(/*DWARFMangling=*/false);
SmallVector<const void *, 4> SortedSubsts(Substitutions.size());
for (auto S : Substitutions) SortedSubsts[S.second] = S.first;
for (auto S : SortedSubsts) ContextMangler.addSubstitution(S);
while (DC && DC->isGenericContext()) {
if (DC->isInnermostContextGeneric() &&
DC->getGenericParamsOfContext()->getDepth() == GTPT->getDepth())
break;
DC = DC->getParent();
}
assert(DC && "no decl context for archetype found");
if (!DC) return;
ContextMangler.mangleContext(DC);
ContextMangler.finalize(Buffer);
}
return;
}
case TypeKind::DynamicSelf: {
auto dynamicSelf = cast<DynamicSelfType>(tybase);
if (dynamicSelf->getSelfType()->getAnyNominal()) {
Buffer << 'D';
mangleType(dynamicSelf->getSelfType(), uncurryLevel);
} else {
// Mangle DynamicSelf as Self within a protocol.
mangleType(dynamicSelf->getSelfType(), uncurryLevel);
}
return;
}
case TypeKind::GenericFunction: {
auto genFunc = cast<GenericFunctionType>(tybase);
Buffer << 'u';
mangleGenericSignature(genFunc->getGenericSignature());
mangleFunctionType(genFunc, uncurryLevel);
return;
}
case TypeKind::GenericTypeParam: {
auto paramTy = cast<GenericTypeParamType>(tybase);
// FIXME: Notion of depth is reversed from that for archetypes.
// A special mangling for the very first generic parameter. This shows up
// frequently because it corresponds to 'Self' in protocol requirement
// generic signatures.
if (paramTy->getDepth() == 0 && paramTy->getIndex() == 0) {
Buffer << 'x';
return;
}
Buffer << 'q';
mangleGenericParamIndex(paramTy);
return;
}
case TypeKind::DependentMember: {
auto memTy = cast<DependentMemberType>(tybase);
auto base = memTy->getBase()->getCanonicalType();
// type ::= 'w' generic-param-index associated-type-name
// 't_0_0.Member'
if (auto gpBase = dyn_cast<GenericTypeParamType>(base)) {
Buffer << 'w';
mangleGenericParamIndex(gpBase);
mangleAssociatedTypeName(memTy, OptimizeProtocolNames);
return;
}
// type ::= 'W' generic-param-index associated-type-name+ '_'
// 't_0_0.Member.Member...'
SmallVector<DependentMemberType*, 2> path;
path.push_back(memTy);
while (auto dmBase = dyn_cast<DependentMemberType>(base)) {
path.push_back(dmBase);
base = dmBase.getBase();
}
if (auto gpRoot = dyn_cast<GenericTypeParamType>(base)) {
Buffer << 'W';
mangleGenericParamIndex(gpRoot);
for (auto *member : reversed(path)) {
mangleAssociatedTypeName(member, OptimizeProtocolNames);
}
Buffer << '_';
return;
}
// type ::= 'q' type associated-type-name
// Dependent members of non-generic-param types are not canonical, but
// we may still want to mangle them for debugging or indexing purposes.
Buffer << 'q';
mangleType(memTy->getBase(), 0);
mangleAssociatedTypeName(memTy, OptimizeProtocolNames);
return;
}
case TypeKind::Function:
mangleFunctionType(cast<FunctionType>(tybase), uncurryLevel);
return;
case TypeKind::ProtocolComposition: {
// We mangle ProtocolType and ProtocolCompositionType using the
// same production:
// <type> ::= P <protocol-list> _
auto protocols = cast<ProtocolCompositionType>(tybase)->getProtocols();
Buffer << 'P';
mangleProtocolList(protocols);
Buffer << '_';
return;
}
case TypeKind::SILBox: {
Buffer << 'X' << 'B';
auto boxTy = cast<SILBoxType>(tybase);
// TODO: Should layouts get substitutions?
auto layout = boxTy->getLayout();
if (auto sig = layout->getGenericSignature()) {
Buffer << 'G';
mangleGenericSignature(sig);
}
for (auto &field : layout->getFields()) {
Buffer << (field.isMutable() ? 'm' : 'i');
mangleType(field.getLoweredType(), 0);
}
Buffer << '_';
if (!boxTy->getGenericArgs().empty()) {
for (auto &arg : boxTy->getGenericArgs()) {
mangleType(arg.getReplacement(), 0);
}
Buffer << '_';
}
return;
}
case TypeKind::SILBlockStorage:
llvm_unreachable("should never be mangled");
}
llvm_unreachable("bad type kind");
}
void Mangler::mangleLegacyBoxType(CanType fieldType) {
Buffer << 'X' << 'b';
mangleType(fieldType, 0);
}
/// Mangle a list of protocols. Each protocol is a substitution
/// candidate.
/// <protocol-list> ::= <protocol-name>+
void Mangler::mangleProtocolList(ArrayRef<Type> protocols) {
for (auto protoTy : protocols)
if (auto composition = protoTy->getAs<ProtocolCompositionType>())
mangleProtocolList(composition->getProtocols());
else
mangleProtocolName(protoTy->castTo<ProtocolType>()->getDecl());
}
void Mangler::mangleProtocolList(ArrayRef<ProtocolDecl*> protocols) {
for (auto protocol : protocols)
mangleProtocolName(protocol);
}
/// Mangle the name of a protocol as a substitution candidate.
void Mangler::mangleProtocolName(const ProtocolDecl *protocol) {
// <protocol-name> ::= <decl> # substitutable
// The <decl> in a protocol-name is the same substitution
// candidate as a protocol <type>, but it is mangled without
// the surrounding 'P'...'_'.
ProtocolType *type = cast<ProtocolType>(protocol->getDeclaredType());
if (tryMangleSubstitution(type))
return;
mangleContextOf(protocol);
mangleDeclName(protocol);
addSubstitution(type);
}
static char getSpecifierForNominalType(const NominalTypeDecl *decl) {
switch (decl->getKind()) {
#define NOMINAL_TYPE_DECL(id, parent)
#define DECL(id, parent) \
case DeclKind::id:
#include "swift/AST/DeclNodes.def"
llvm_unreachable("not a nominal type");
case DeclKind::Protocol: return 'P';
case DeclKind::Class: return 'C';
case DeclKind::Enum: return 'O';
case DeclKind::Struct: return 'V';
}
llvm_unreachable("bad decl kind");
}
void Mangler::mangleNominalType(const NominalTypeDecl *decl) {
// Check for certain standard types.
if (tryMangleStandardSubstitution(decl))
return;
// For generic types, this uses the unbound type.
TypeBase *key = decl->getDeclaredType().getPointer();
// Try to mangle the entire name as a substitution.
// type ::= substitution
if (tryMangleSubstitution(key))
return;
Buffer << getSpecifierForNominalType(decl);
mangleContextOf(decl);
mangleDeclName(decl);
addSubstitution(key);
}
static void
collectBoundGenericArgs(Type type,
SmallVectorImpl<SmallVector<Type, 2>> &genericArgs) {
if (auto *unboundType = type->getAs<UnboundGenericType>()) {
if (auto parent = unboundType->getParent())
collectBoundGenericArgs(parent, genericArgs);
genericArgs.push_back({});
} else if (auto *nominalType = type->getAs<NominalType>()) {
if (auto parent = nominalType->getParent())
collectBoundGenericArgs(parent, genericArgs);
genericArgs.push_back({});
} else {
auto *boundType = type->castTo<BoundGenericType>();
if (auto parent = boundType->getParent())
collectBoundGenericArgs(parent, genericArgs);
SmallVector<Type, 2> args;
for (auto arg : boundType->getGenericArgs())
args.push_back(arg);
genericArgs.push_back(args);
}
}
void Mangler::mangleBoundGenericType(Type type) {
// type ::= 'G' <type> (<type>+ '_')+
Buffer << 'G';
auto *nominal = type->getAnyNominal();
mangleNominalType(nominal);
SmallVector<SmallVector<Type, 2>, 2> genericArgs;
collectBoundGenericArgs(type, genericArgs);
assert(!genericArgs.empty());
for (auto args : genericArgs) {
for (auto arg : args)
mangleType(arg, /*uncurry*/ 0);
Buffer << '_';
}
}
void Mangler::mangleProtocolDecl(const ProtocolDecl *protocol) {
Buffer << 'P';
mangleContextOf(protocol);
mangleDeclName(protocol);
Buffer << '_';
}
bool Mangler::tryMangleStandardSubstitution(const NominalTypeDecl *decl) {
// Bail out if our parent isn't the swift standard library.
DeclContext *dc = decl->getDeclContext();
if (!dc->isModuleScopeContext() || !dc->getParentModule()->isStdlibModule())
return false;
// Standard substitutions shouldn't start with 's' (because that's
// reserved for the swift module itself) or a digit or '_'.
StringRef name = decl->getName().str();
if (name == "Int") {
Buffer << "Si";
return true;
} else if (name == "UInt") {
Buffer << "Su";
return true;
} else if (name == "Bool") {
Buffer << "Sb";
return true;
} else if (name == "UnicodeScalar") {
Buffer << "Sc";
return true;
} else if (name == "Double") {
Buffer << "Sd";
return true;
} else if (name == "Float") {
Buffer << "Sf";
return true;
} else if (name == "UnsafeRawPointer") {
Buffer << "SV";
return true;
} else if (name == "UnsafeMutableRawPointer") {
Buffer << "Sv";
return true;
} else if (name == "UnsafePointer") {
Buffer << "SP";
return true;
} else if (name == "UnsafeMutablePointer") {
Buffer << "Sp";
return true;
} else if (name == "Optional") {
Buffer << "Sq";
return true;
} else if (name == "ImplicitlyUnwrappedOptional") {
Buffer << "SQ";
return true;
} else if (name == "UnsafeBufferPointer") {
Buffer << "SR";
return true;
} else if (name == "UnsafeMutableBufferPointer") {
Buffer << "Sr";
return true;
} else if (name == "Array") {
Buffer << "Sa";
return true;
} else if (name == "String") {
Buffer << "SS";
return true;
} else {
return false;
}
}
void Mangler::mangleFunctionType(AnyFunctionType *fn,
unsigned uncurryLevel) {
assert((DWARFMangling || fn->isCanonical()) &&
"expecting canonical types when not mangling for the debugger");
// type ::= 'F' type type (curried)
// type ::= 'f' type type (uncurried)
// type ::= 'b' type type (objc block)
// type ::= 'c' type type (c function pointer)
// type ::= 'Xf' type type (thin)
// type ::= 'K' type type (auto closure)
//
// Note that we do not currently use thin representations in the AST
// for the types of function decls. This may need to change at some
// point, in which case the uncurry logic can probably migrate to that
// case.
//
// It would have been cleverer if we'd used 'f' for thin functions
// and something else for uncurried functions, but oh well.
//
// Or maybe we can change the mangling at the same time we make
// changes to better support thin functions.
switch (fn->getRepresentation()) {
case AnyFunctionType::Representation::Block:
Buffer << 'b';
break;
case AnyFunctionType::Representation::Thin:
Buffer << "Xf";
break;
case AnyFunctionType::Representation::Swift:
if (fn->isAutoClosure())
Buffer << 'K';
else
Buffer << (uncurryLevel > 0 ? 'f' : 'F');
break;
case AnyFunctionType::Representation::CFunctionPointer:
Buffer << 'c';
break;
}
if (fn->throws())
Buffer << 'z';
mangleType(fn->getInput(), 0);
mangleType(fn->getResult(), (uncurryLevel > 0 ? uncurryLevel - 1 : 0));
}
void Mangler::mangleClosureComponents(Type Ty, unsigned discriminator,
bool isImplicit,
const DeclContext *parentContext,
const DeclContext *localContext) {
// entity-name ::= 'U' index type // explicit anonymous closure
// entity-name ::= 'u' index type // implicit anonymous closure
if (!DeclCtx) DeclCtx = localContext;
assert(discriminator != AbstractClosureExpr::InvalidDiscriminator
&& "closure must be marked correctly with discriminator");
Buffer << 'F';
mangleContext(parentContext);
Buffer << (isImplicit ? 'u' : 'U') << Index(discriminator);
if (!Ty)
Ty = ErrorType::get(localContext->getASTContext());
Ty = parentContext->mapTypeOutOfContext(Ty);
mangleType(Ty->getCanonicalType(), /*uncurry*/ 0);
}
void Mangler::mangleClosureEntity(const SerializedAbstractClosureExpr *closure,
unsigned uncurryingLevel) {
mangleClosureComponents(closure->getType(), closure->getDiscriminator(),
closure->isImplicit(), closure->getParent(),
closure->getLocalContext());
}
void Mangler::mangleClosureEntity(const AbstractClosureExpr *closure,
unsigned uncurryLevel) {
mangleClosureComponents(closure->getType(), closure->getDiscriminator(),
isa<AutoClosureExpr>(closure), closure->getParent(),
closure->getLocalContext());
}
void Mangler::mangleConstructorEntity(const ConstructorDecl *ctor,
bool isAllocating,
unsigned uncurryLevel) {
Buffer << 'F';
mangleContextOf(ctor);
Buffer << (isAllocating ? 'C' : 'c');
mangleDeclType(ctor, uncurryLevel);
}
void Mangler::mangleDestructorEntity(const DestructorDecl *dtor,
bool isDeallocating) {
Buffer << 'F';
mangleContextOf(dtor);
Buffer << (isDeallocating ? 'D' : 'd');
}
void Mangler::mangleIVarInitDestroyEntity(const ClassDecl *decl,
bool isDestroyer) {
Buffer << 'F';
mangleContext(decl);
Buffer << (isDestroyer ? 'E' : 'e');
}
static StringRef getCodeForAccessorKind(AccessorKind kind,
AddressorKind addressorKind) {
switch (kind) {
case AccessorKind::NotAccessor: llvm_unreachable("bad accessor kind!");
case AccessorKind::IsGetter: return "g";
case AccessorKind::IsSetter: return "s";
case AccessorKind::IsWillSet: return "w";
case AccessorKind::IsDidSet: return "W";
case AccessorKind::IsAddressor:
// 'l' is for location. 'A' was taken.
switch (addressorKind) {
case AddressorKind::NotAddressor: llvm_unreachable("bad combo");
case AddressorKind::Unsafe: return "lu";
case AddressorKind::Owning: return "lO";
case AddressorKind::NativeOwning: return "lo";
case AddressorKind::NativePinning: return "lp";
}
llvm_unreachable("bad addressor kind");
case AccessorKind::IsMutableAddressor:
switch (addressorKind) {
case AddressorKind::NotAddressor: llvm_unreachable("bad combo");
case AddressorKind::Unsafe: return "au";
case AddressorKind::Owning: return "aO";
case AddressorKind::NativeOwning: return "ao";
case AddressorKind::NativePinning: return "ap";
}
llvm_unreachable("bad addressor kind");
case AccessorKind::IsMaterializeForSet: return "m";
}
llvm_unreachable("bad accessor kind");
}
void Mangler::mangleAccessorEntity(AccessorKind kind,
AddressorKind addressorKind,
const AbstractStorageDecl *decl) {
assert(kind != AccessorKind::NotAccessor);
Buffer << 'F';
mangleContextOf(decl);
Buffer << getCodeForAccessorKind(kind, addressorKind);
bindGenericParameters(decl->getDeclContext());
mangleDeclName(decl);
mangleDeclType(decl, 0);
}
void Mangler::mangleAddressorEntity(const ValueDecl *decl) {
Buffer << 'F';
mangleContextOf(decl);
Buffer << "au";
mangleDeclName(decl);
mangleDeclType(decl, 0);
}
void Mangler::mangleGlobalGetterEntity(ValueDecl *decl) {
Buffer << 'F';
mangleContextOf(decl);
Buffer << 'G';
mangleDeclName(decl);
mangleDeclType(decl, 0);
}
void Mangler::mangleDefaultArgumentEntity(const DeclContext *func,
unsigned index) {
Buffer << 'I';
mangleContext(func);
Buffer << 'A' << Index(index);
}
void Mangler::mangleInitializerEntity(const VarDecl *var) {
// The initializer is its own entity whose context is the variable.
Buffer << 'I';
mangleEntity(var, /*uncurry*/ 0);
Buffer << 'i';
}
void Mangler::mangleEntity(const ValueDecl *decl,
unsigned uncurryLevel) {
assert(!isa<ConstructorDecl>(decl));
assert(!isa<DestructorDecl>(decl));
// entity ::= static? entity-kind context entity-name
if (decl->isStatic())
Buffer << 'Z';
// Handle accessors specially, they are mangled as modifiers on the accessed
// declaration.
if (auto func = dyn_cast<FuncDecl>(decl)) {
auto accessorKind = func->getAccessorKind();
if (accessorKind != AccessorKind::NotAccessor)
return mangleAccessorEntity(accessorKind, func->getAddressorKind(),
func->getAccessorStorageDecl());
}
// Avoid mangling nameless entity. This may happen in erroneous code as code
// completion.
if (!decl->hasName())
return;
if (isa<VarDecl>(decl)) {
Buffer << 'v';
} else if (isa<SubscriptDecl>(decl)) {
Buffer << 'i';
} else if (isa<GenericTypeParamDecl>(decl)) {
Buffer << 't';
} else {
assert(isa<AbstractFunctionDecl>(decl) ||
isa<EnumElementDecl>(decl));
Buffer << 'F';
}
if (!DeclCtx) DeclCtx = decl->getInnermostDeclContext();
mangleContextOf(decl);
mangleDeclName(decl);
mangleDeclType(decl, uncurryLevel);
}
void Mangler::mangleDirectness(bool isIndirect) {
Buffer << (isIndirect ? 'i': 'd');
}
void Mangler::mangleProtocolConformance(const ProtocolConformance *conformance){
// protocol-conformance ::= ('u' generic-parameters '_')?
// type protocol module
// FIXME: explosion level?
// If the conformance is generic, mangle its generic parameters.
Mod = conformance->getDeclContext()->getParentModule();
if (auto sig = conformance->getGenericSignature()) {
Buffer << 'u';
mangleGenericSignature(sig);
}
if (auto behaviorStorage = conformance->getBehaviorDecl()) {
Buffer << 'b';
auto topLevelContext =
conformance->getDeclContext()->getModuleScopeContext();
auto fileUnit = cast<FileUnit>(topLevelContext);
mangleIdentifier(
fileUnit->getDiscriminatorForPrivateValue(behaviorStorage));
mangleContextOf(behaviorStorage);
mangleIdentifier(behaviorStorage->getName());
mangleProtocolName(conformance->getProtocol());
return;
}
mangleType(conformance->getInterfaceType()->getCanonicalType(), 0);
mangleProtocolName(conformance->getProtocol());
mangleModule(conformance->getDeclContext()->getParentModule());
}
void Mangler::mangleFieldOffsetFull(const ValueDecl *decl, bool isIndirect) {
Buffer << "_TWv";
mangleDirectness(isIndirect);
mangleEntity(decl, 0);
}
void Mangler::mangleTypeFullMetadataFull(CanType ty) {
Buffer << "_TMf";
mangleType(ty, 0);
}
void Mangler::mangleTypeMetadataFull(CanType ty, bool isPattern) {
Buffer << "_TM";
if (isPattern)
Buffer << 'P';
mangleType(ty, 0);
}
void Mangler::append(StringRef S) {
Buffer << S;
}
void Mangler::append(char C) {
Buffer << C;
}
void Mangler::mangleNatural(const APInt &Nat) {
Buffer << Nat;
}
void Mangler::mangleIdentifierSymbol(StringRef Name) {
// Mangle normal identifiers as:
// count identifier-char+
// where the count is the number of characters in the identifier,
// and where individual identifier characters represent themselves.
Buffer << Name.size() << Name;
}
void Mangler::appendSymbol(StringRef Name) {
Buffer << Name;
}
void Mangler::mangleGlobalVariableFull(const VarDecl *decl) {
// As a special case, Clang functions and globals don't get mangled at all.
// FIXME: When we can import C++, use Clang's mangler.
if (auto clangDecl =
dyn_cast_or_null<clang::DeclaratorDecl>(decl->getClangDecl())) {
if (auto asmLabel = clangDecl->getAttr<clang::AsmLabelAttr>()) {
Buffer << '\01' << asmLabel->getLabel();
} else {
Buffer << clangDecl->getName();
}
return;
}
Buffer << "_T";
mangleEntity(decl, 0);
}
void Mangler::mangleGlobalInit(const VarDecl *decl, int counter,
bool isInitFunc) {
auto topLevelContext = decl->getDeclContext()->getModuleScopeContext();
auto fileUnit = cast<FileUnit>(topLevelContext);
Identifier discriminator = fileUnit->getDiscriminatorForPrivateValue(decl);
assert(!discriminator.empty());
assert(!isNonAscii(discriminator.str()) &&
"discriminator contains non-ASCII characters");
assert(!clang::isDigit(discriminator.str().front()) &&
"not a valid identifier");
Buffer << "globalinit_";
mangleIdentifier(discriminator);
Buffer << (isInitFunc ? "_func" : "_token");
Buffer << counter;
}
void Mangler::mangleBehaviorInitThunk(const VarDecl *decl) {
auto topLevelContext = decl->getDeclContext()->getModuleScopeContext();
auto fileUnit = cast<FileUnit>(topLevelContext);
Identifier discriminator = fileUnit->getDiscriminatorForPrivateValue(decl);
assert(!discriminator.empty());
assert(!isNonAscii(discriminator.str()) &&
"discriminator contains non-ASCII characters");
assert(!clang::isDigit(discriminator.str().front()) &&
"not a valid identifier");
Buffer << "_TTB";
mangleIdentifier(discriminator);
mangleContextOf(decl);
mangleIdentifier(decl->getName());
}