blob: 4ac9ad976c339faee0a82fe542531648183146d4 [file] [log] [blame]
//===--- ProtocolConformance.cpp - Swift protocol conformance checking ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Checking and caching of Swift protocol conformances.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Mutex.h"
#include "Private.h"
#if defined(__APPLE__) && defined(__MACH__)
#include <mach-o/dyld.h>
#include <mach-o/getsect.h>
#elif defined(__ELF__) || defined(__ANDROID__)
#include <elf.h>
#include <link.h>
#endif
#if defined(_MSC_VER)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#else
#include <dlfcn.h>
#endif
using namespace swift;
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
static const char *class_getName(const ClassMetadata* type) {
return class_getName(
reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
}
template<> void ProtocolConformanceRecord::dump() const {
auto symbolName = [&](const void *addr) -> const char * {
Dl_info info;
int ok = dladdr(addr, &info);
if (!ok)
return "<unknown addr>";
return info.dli_sname;
};
switch (auto kind = getTypeKind()) {
case TypeMetadataRecordKind::Universal:
printf("universal");
break;
case TypeMetadataRecordKind::UniqueDirectType:
case TypeMetadataRecordKind::NonuniqueDirectType:
printf("%s direct type ",
kind == TypeMetadataRecordKind::UniqueDirectType
? "unique" : "nonunique");
if (auto &ntd = getDirectType()->getNominalTypeDescriptor()) {
printf("%s", ntd->Name.get());
} else {
printf("<structural type>");
}
break;
case TypeMetadataRecordKind::UniqueDirectClass:
printf("unique direct class %s",
class_getName(getDirectClass()));
break;
case TypeMetadataRecordKind::UniqueIndirectClass:
printf("unique indirect class %s",
class_getName(*getIndirectClass()));
break;
case TypeMetadataRecordKind::UniqueNominalTypeDescriptor:
printf("unique nominal type descriptor %s", symbolName(getNominalTypeDescriptor()));
break;
}
printf(" => ");
switch (getConformanceKind()) {
case ProtocolConformanceReferenceKind::WitnessTable:
printf("witness table %s\n", symbolName(getStaticWitnessTable()));
break;
case ProtocolConformanceReferenceKind::WitnessTableAccessor:
printf("witness table accessor %s\n",
symbolName((const void *)(uintptr_t)getWitnessTableAccessor()));
break;
}
}
#endif
/// Take the type reference inside a protocol conformance record and fetch the
/// canonical metadata pointer for the type it refers to.
/// Returns nil for universal or generic type references.
template<> const Metadata *ProtocolConformanceRecord::getCanonicalTypeMetadata()
const {
switch (getTypeKind()) {
case TypeMetadataRecordKind::UniqueDirectType:
// Already unique.
return getDirectType();
case TypeMetadataRecordKind::NonuniqueDirectType:
// Ask the runtime for the unique metadata record we've canonized.
return swift_getForeignTypeMetadata((ForeignTypeMetadata*)getDirectType());
case TypeMetadataRecordKind::UniqueIndirectClass:
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata. The class additionally may be weak-linked, so we have to check
// for null.
if (auto *ClassMetadata = *getIndirectClass())
return swift_getObjCClassMetadata(ClassMetadata);
return nullptr;
case TypeMetadataRecordKind::UniqueDirectClass:
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata.
if (auto *ClassMetadata = getDirectClass())
return swift_getObjCClassMetadata(ClassMetadata);
return nullptr;
case TypeMetadataRecordKind::UniqueNominalTypeDescriptor:
case TypeMetadataRecordKind::Universal:
// The record does not apply to a single type.
return nullptr;
}
}
template<>
const WitnessTable *
ProtocolConformanceRecord::getWitnessTable(const Metadata *type)
const {
switch (getConformanceKind()) {
case ProtocolConformanceReferenceKind::WitnessTable:
return getStaticWitnessTable();
case ProtocolConformanceReferenceKind::WitnessTableAccessor:
return getWitnessTableAccessor()(type);
}
}
#if defined(__APPLE__) && defined(__MACH__)
#define SWIFT_PROTOCOL_CONFORMANCES_SECTION "__swift2_proto"
#elif defined(__ELF__)
#define SWIFT_PROTOCOL_CONFORMANCES_SECTION ".swift2_protocol_conformances_start"
#elif defined(__CYGWIN__) || defined(_MSC_VER)
#define SWIFT_PROTOCOL_CONFORMANCES_SECTION ".sw2prtc"
#endif
namespace {
struct ConformanceSection {
const ProtocolConformanceRecord *Begin, *End;
const ProtocolConformanceRecord *begin() const {
return Begin;
}
const ProtocolConformanceRecord *end() const {
return End;
}
};
struct ConformanceCacheKey {
/// Either a Metadata* or a NominalTypeDescriptor*.
const void *Type;
const ProtocolDescriptor *Proto;
ConformanceCacheKey(const void *type, const ProtocolDescriptor *proto)
: Type(type), Proto(proto) {}
};
struct ConformanceCacheEntry {
private:
const void *Type;
const ProtocolDescriptor *Proto;
std::atomic<const WitnessTable *> Table;
std::atomic<uintptr_t> FailureGeneration;
public:
ConformanceCacheEntry(ConformanceCacheKey key,
const WitnessTable *table,
uintptr_t failureGeneration)
: Type(key.Type), Proto(key.Proto), Table(table),
FailureGeneration(failureGeneration) {
}
int compareWithKey(const ConformanceCacheKey &key) const {
if (key.Type != Type) {
return (uintptr_t(key.Type) < uintptr_t(Type) ? -1 : 1);
} else if (key.Proto != Proto) {
return (uintptr_t(key.Proto) < uintptr_t(Proto) ? -1 : 1);
} else {
return 0;
}
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
bool isSuccessful() const {
return Table.load(std::memory_order_relaxed) != nullptr;
}
void makeSuccessful(const WitnessTable *table) {
Table.store(table, std::memory_order_release);
}
void updateFailureGeneration(uintptr_t failureGeneration) {
assert(!isSuccessful());
FailureGeneration.store(failureGeneration, std::memory_order_relaxed);
}
/// Get the cached witness table, if successful.
const WitnessTable *getWitnessTable() const {
assert(isSuccessful());
return Table.load(std::memory_order_acquire);
}
/// Get the generation number under which this lookup failed.
unsigned getFailureGeneration() const {
assert(!isSuccessful());
return FailureGeneration.load(std::memory_order_relaxed);
}
};
}
// Conformance Cache.
#if defined(__APPLE__) && defined(__MACH__)
static void _initializeCallbacksToInspectDylib();
#else
namespace swift {
void _swift_initializeCallbacksToInspectDylib(
void (*fnAddImageBlock)(const uint8_t *, size_t),
const char *sectionName);
}
static void _addImageProtocolConformancesBlock(const uint8_t *conformances,
size_t conformancesSize);
#endif
struct ConformanceState {
ConcurrentMap<ConformanceCacheEntry> Cache;
std::vector<ConformanceSection> SectionsToScan;
Mutex SectionsToScanLock;
ConformanceState() {
SectionsToScan.reserve(16);
#if defined(__APPLE__) && defined(__MACH__)
_initializeCallbacksToInspectDylib();
#else
_swift_initializeCallbacksToInspectDylib(
_addImageProtocolConformancesBlock,
SWIFT_PROTOCOL_CONFORMANCES_SECTION);
#endif
}
void cacheSuccess(const void *type, const ProtocolDescriptor *proto,
const WitnessTable *witness) {
auto result = Cache.getOrInsert(ConformanceCacheKey(type, proto),
witness, uintptr_t(0));
// If the entry was already present, we may need to update it.
if (!result.second) {
result.first->makeSuccessful(witness);
}
}
void cacheFailure(const void *type, const ProtocolDescriptor *proto) {
uintptr_t failureGeneration = SectionsToScan.size();
auto result = Cache.getOrInsert(ConformanceCacheKey(type, proto),
(const WitnessTable *) nullptr,
failureGeneration);
// If the entry was already present, we may need to update it.
if (!result.second) {
result.first->updateFailureGeneration(failureGeneration);
}
}
ConformanceCacheEntry *findCached(const void *type,
const ProtocolDescriptor *proto) {
return Cache.find(ConformanceCacheKey(type, proto));
}
};
static Lazy<ConformanceState> Conformances;
static void
_registerProtocolConformances(ConformanceState &C,
const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end) {
ScopedLock guard(C.SectionsToScanLock);
C.SectionsToScan.push_back(ConformanceSection{begin, end});
}
static void _addImageProtocolConformancesBlock(const uint8_t *conformances,
size_t conformancesSize) {
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0
&& "weird-sized conformances section?!");
// If we have a section, enqueue the conformances for lookup.
auto recordsBegin
= reinterpret_cast<const ProtocolConformanceRecord*>(conformances);
auto recordsEnd
= reinterpret_cast<const ProtocolConformanceRecord*>
(conformances + conformancesSize);
// Conformance cache should always be sufficiently initialized by this point.
_registerProtocolConformances(Conformances.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
#if !defined(__APPLE__) || !defined(__MACH__)
// Common Structure
struct InspectArgs {
void (*fnAddImageBlock)(const uint8_t *, size_t);
const char *sectionName;
};
#endif
#if defined(__APPLE__) && defined(__MACH__)
static void _addImageProtocolConformances(const mach_header *mh,
intptr_t vmaddr_slide) {
#ifdef __LP64__
using mach_header_platform = mach_header_64;
assert(mh->magic == MH_MAGIC_64 && "loaded non-64-bit image?!");
#else
using mach_header_platform = mach_header;
#endif
// Look for a __swift2_proto section.
unsigned long conformancesSize;
const uint8_t *conformances =
getsectiondata(reinterpret_cast<const mach_header_platform *>(mh),
SEG_TEXT, SWIFT_PROTOCOL_CONFORMANCES_SECTION,
&conformancesSize);
if (!conformances)
return;
_addImageProtocolConformancesBlock(conformances, conformancesSize);
}
static void _initializeCallbacksToInspectDylib() {
// Install our dyld callback.
// Dyld will invoke this on our behalf for all images that have already
// been loaded.
_dyld_register_func_for_add_image(_addImageProtocolConformances);
}
#elif defined(__ELF__) || defined(__ANDROID__)
static int _addImageProtocolConformances(struct dl_phdr_info *info,
size_t size, void *data) {
// inspectArgs contains addImage*Block function and the section name
InspectArgs *inspectArgs = reinterpret_cast<InspectArgs *>(data);
void *handle;
if (!info->dlpi_name || info->dlpi_name[0] == '\0') {
handle = dlopen(nullptr, RTLD_LAZY);
} else
handle = dlopen(info->dlpi_name, RTLD_LAZY | RTLD_NOLOAD);
if (!handle) {
// Not a shared library.
return 0;
}
auto conformances = reinterpret_cast<const uint8_t*>(
dlsym(handle, inspectArgs->sectionName));
if (!conformances) {
// if there are no conformances, don't hold this handle open.
dlclose(handle);
return 0;
}
// Extract the size of the conformances block from the head of the section
auto conformancesSize = *reinterpret_cast<const uint64_t*>(conformances);
conformances += sizeof(conformancesSize);
inspectArgs->fnAddImageBlock(conformances, conformancesSize);
dlclose(handle);
return 0;
}
void swift::_swift_initializeCallbacksToInspectDylib(
void (*fnAddImageBlock)(const uint8_t *, size_t),
const char *sectionName) {
InspectArgs inspectArgs = {fnAddImageBlock, sectionName};
// Search the loaded dls. Unlike the above, this only searches the already
// loaded ones.
// FIXME: Find a way to have this continue to happen after.
// rdar://problem/19045112
dl_iterate_phdr(_addImageProtocolConformances, &inspectArgs);
}
#elif defined(__CYGWIN__) || defined(_MSC_VER)
static int _addImageProtocolConformances(struct dl_phdr_info *info,
size_t size, void *data) {
InspectArgs *inspectArgs = (InspectArgs *)data;
// inspectArgs contains addImage*Block function and the section name
#if defined(_MSC_VER)
HMODULE handle;
if (!info->dlpi_name || info->dlpi_name[0] == '\0')
handle = GetModuleHandle(nullptr);
else
handle = GetModuleHandle(info->dlpi_name);
#else
void *handle;
if (!info->dlpi_name || info->dlpi_name[0] == '\0')
handle = dlopen(nullptr, RTLD_LAZY);
else
handle = dlopen(info->dlpi_name, RTLD_LAZY | RTLD_NOLOAD);
#endif
unsigned long conformancesSize;
const uint8_t *conformances =
_swift_getSectionDataPE(handle, inspectArgs->sectionName,
&conformancesSize);
if (conformances)
inspectArgs->fnAddImageBlock(conformances, conformancesSize);
#if defined(_MSC_VER)
FreeLibrary(handle);
#else
dlclose(handle);
#endif
return 0;
}
void swift::_swift_initializeCallbacksToInspectDylib(
void (*fnAddImageBlock)(const uint8_t *, size_t),
const char *sectionName) {
InspectArgs inspectArgs = {fnAddImageBlock, sectionName};
_swift_dl_iterate_phdr(_addImageProtocolConformances, &inspectArgs);
}
#else
# error No known mechanism to inspect dynamic libraries on this platform.
#endif
// This variable is used to signal when a cache was generated and
// it is correct to avoid a new scan.
static unsigned ConformanceCacheGeneration = 0;
void
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end){
auto &C = Conformances.get();
_registerProtocolConformances(C, begin, end);
}
/// Search the witness table in the ConformanceCache. \returns a pair of the
/// WitnessTable pointer and a boolean value True if a definitive value is
/// found. \returns false if the type or its superclasses were not found in
/// the cache.
static
std::pair<const WitnessTable *, bool>
searchInConformanceCache(const Metadata *type,
const ProtocolDescriptor *protocol,
ConformanceCacheEntry *&foundEntry) {
auto &C = Conformances.get();
auto origType = type;
foundEntry = nullptr;
recur_inside_cache_lock:
// See if we have a cached conformance. Try the specific type first.
{
// Check if the type-protocol entry exists in the cache entry that we found.
if (auto *Value = C.findCached(type, protocol)) {
if (Value->isSuccessful())
return std::make_pair(Value->getWitnessTable(), true);
// If we're still looking up for the original type, remember that
// we found an exact match.
if (type == origType)
foundEntry = Value;
// If we got a cached negative response, check the generation number.
if (Value->getFailureGeneration() == C.SectionsToScan.size()) {
// We found an entry with a negative value.
return std::make_pair(nullptr, true);
}
}
}
{
// For generic and resilient types, nondependent conformances
// are keyed by the nominal type descriptor rather than the
// metadata, so try that.
auto *description = type->getNominalTypeDescriptor().get();
// Hash and lookup the type-protocol pair in the cache.
if (auto *Value = C.findCached(description, protocol)) {
if (Value->isSuccessful())
return std::make_pair(Value->getWitnessTable(), true);
// We don't try to cache negative responses for generic
// patterns.
}
}
// If the type is a class, try its superclass.
if (const ClassMetadata *classType = type->getClassObject()) {
if (classHasSuperclass(classType)) {
type = swift_getObjCClassMetadata(classType->SuperClass);
goto recur_inside_cache_lock;
}
}
// We did not find an entry.
return std::make_pair(nullptr, false);
}
/// Checks if a given candidate is a type itself, one of its
/// superclasses or a related generic type.
///
/// This check is supposed to use the same logic that is used
/// by searchInConformanceCache.
///
/// \param candidate Pointer to a Metadata or a NominalTypeDescriptor.
///
static
bool isRelatedType(const Metadata *type, const void *candidate,
bool candidateIsMetadata) {
while (true) {
if (type == candidate && candidateIsMetadata)
return true;
// If the type is resilient or generic, see if there's a witness table
// keyed off the nominal type descriptor.
auto *description = type->getNominalTypeDescriptor().get();
if (description == candidate && !candidateIsMetadata)
return true;
// If the type is a class, try its superclass.
if (const ClassMetadata *classType = type->getClassObject()) {
if (classHasSuperclass(classType)) {
type = swift_getObjCClassMetadata(classType->SuperClass);
continue;
}
}
break;
}
return false;
}
const WitnessTable *
swift::swift_conformsToProtocol(const Metadata *type,
const ProtocolDescriptor *protocol) {
auto &C = Conformances.get();
auto origType = type;
unsigned numSections = 0;
ConformanceCacheEntry *foundEntry;
recur:
// See if we have a cached conformance. The ConcurrentMap data structure
// allows us to insert and search the map concurrently without locking.
// We do lock the slow path because the SectionsToScan data structure is not
// concurrent.
auto FoundConformance = searchInConformanceCache(type, protocol, foundEntry);
// The negative answer does not always mean that there is no conformance,
// unless it is an exact match on the type. If it is not an exact match,
// it may mean that all of the superclasses do not have this conformance,
// but the actual type may still have this conformance.
if (FoundConformance.second) {
if (FoundConformance.first || foundEntry)
return FoundConformance.first;
}
// If we didn't have an up-to-date cache entry, scan the conformance records.
C.SectionsToScanLock.lock();
unsigned failedGeneration = ConformanceCacheGeneration;
// If we have no new information to pull in (and nobody else pulled in
// new information while we waited on the lock), we're done.
if (C.SectionsToScan.size() == numSections) {
if (failedGeneration != ConformanceCacheGeneration) {
// Someone else pulled in new conformances while we were waiting.
// Start over with our newly-populated cache.
C.SectionsToScanLock.unlock();
type = origType;
goto recur;
}
// Save the failure for this type-protocol pair in the cache.
C.cacheFailure(type, protocol);
C.SectionsToScanLock.unlock();
return nullptr;
}
// Update the last known number of sections to scan.
numSections = C.SectionsToScan.size();
// Scan only sections that were not scanned yet.
unsigned sectionIdx = foundEntry ? foundEntry->getFailureGeneration() : 0;
unsigned endSectionIdx = C.SectionsToScan.size();
for (; sectionIdx < endSectionIdx; ++sectionIdx) {
auto &section = C.SectionsToScan[sectionIdx];
// Eagerly pull records for nondependent witnesses into our cache.
for (const auto &record : section) {
// If the record applies to a specific type, cache it.
if (auto metadata = record.getCanonicalTypeMetadata()) {
auto P = record.getProtocol();
// Look for an exact match.
if (protocol != P)
continue;
if (!isRelatedType(type, metadata, /*isMetadata=*/true))
continue;
// Store the type-protocol pair in the cache.
auto witness = record.getWitnessTable(metadata);
if (witness) {
C.cacheSuccess(metadata, P, witness);
} else {
C.cacheFailure(metadata, P);
}
// If the record provides a nondependent witness table for all instances
// of a generic type, cache it for the generic pattern.
// TODO: "Nondependent witness table" probably deserves its own flag.
// An accessor function might still be necessary even if the witness table
// can be shared.
} else if (record.getTypeKind()
== TypeMetadataRecordKind::UniqueNominalTypeDescriptor
&& record.getConformanceKind()
== ProtocolConformanceReferenceKind::WitnessTable) {
auto R = record.getNominalTypeDescriptor();
auto P = record.getProtocol();
// Look for an exact match.
if (protocol != P)
continue;
if (!isRelatedType(type, R, /*isMetadata=*/false))
continue;
// Store the type-protocol pair in the cache.
C.cacheSuccess(R, P, record.getStaticWitnessTable());
}
}
}
++ConformanceCacheGeneration;
C.SectionsToScanLock.unlock();
// Start over with our newly-populated cache.
type = origType;
goto recur;
}
const Metadata *
swift::_searchConformancesByMangledTypeName(const llvm::StringRef typeName) {
auto &C = Conformances.get();
const Metadata *foundMetadata = nullptr;
ScopedLock guard(C.SectionsToScanLock);
unsigned sectionIdx = 0;
unsigned endSectionIdx = C.SectionsToScan.size();
for (; sectionIdx < endSectionIdx; ++sectionIdx) {
auto &section = C.SectionsToScan[sectionIdx];
for (const auto &record : section) {
if (auto metadata = record.getCanonicalTypeMetadata())
foundMetadata = _matchMetadataByMangledTypeName(typeName, metadata, nullptr);
else if (auto ntd = record.getNominalTypeDescriptor())
foundMetadata = _matchMetadataByMangledTypeName(typeName, nullptr, ntd);
if (foundMetadata != nullptr)
break;
}
if (foundMetadata != nullptr)
break;
}
return foundMetadata;
}