blob: 38d2a1010c89529a4eedb0ae053d551a5039772a [file] [log] [blame]
//===--- ImporterImpl.h - Import Clang Modules: Implementation --*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides the implementation class definitions for the Clang
// module loader.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_CLANG_IMPORTER_IMPL_H
#define SWIFT_CLANG_IMPORTER_IMPL_H
#include "ImportEnumInfo.h"
#include "SwiftLookupTable.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/Type.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/Basic/StringExtras.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Serialization/ModuleFileExtension.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include <set>
namespace llvm {
class SmallBitVector;
}
namespace clang {
class APValue;
class Decl;
class DeclarationName;
class EnumDecl;
class MacroInfo;
class MangleContext;
class NamedDecl;
class ObjCInterfaceDecl;
class ObjCMethodDecl;
class ObjCPropertyDecl;
class ParmVarDecl;
class Parser;
class QualType;
class TypedefNameDecl;
}
namespace swift {
class ASTContext;
class ClassDecl;
class ConstructorDecl;
class Decl;
class DeclContext;
class Expr;
class ExtensionDecl;
class FuncDecl;
class Identifier;
class Pattern;
class SubscriptDecl;
class ValueDecl;
/// \brief Describes the kind of conversion to apply to a constant value.
enum class ConstantConvertKind {
/// \brief No conversion required.
None,
/// \brief Coerce the constant to the given type.
Coerce,
/// \brief Construct the given type from the constant value.
Construction,
/// \brief Construct the given type from the constant value, using an
/// optional initializer.
ConstructionWithUnwrap,
/// \brief Perform an unchecked downcast to the given type.
Downcast
};
/// \brief Describes the kind of type import we're performing.
enum class ImportTypeKind {
/// \brief Import a type in its most abstract form, without any adjustment.
Abstract,
/// \brief Import the underlying type of a typedef.
Typedef,
/// \brief Import the type of a literal value.
Value,
/// \brief Import the type of a literal value that can be bridged.
BridgedValue,
/// \brief Import the declared type of a variable.
Variable,
/// \brief Import the declared type of an audited variable.
///
/// This is exactly like ImportTypeKind::Variable, except it
/// disables wrapping CF class types in Unmanaged.
AuditedVariable,
/// \brief Import the declared type of a struct or union field.
RecordField,
/// \brief Import the result type of a function.
///
/// This provides special treatment for 'void', among other things, and
/// enables the conversion of bridged types.
Result,
/// \brief Import the result type of an audited function.
///
/// This is exactly like ImportTypeKind::Result, except it
/// disables wrapping CF class types in Unmanaged.
AuditedResult,
/// \brief Import the type of a function parameter.
///
/// This provides special treatment for C++ references (which become
/// [inout] parameters) and C pointers (which become magic [inout]-able types),
/// among other things, and enables the conversion of bridged types.
/// Parameters are always considered CF-audited.
Parameter,
/// \brief Import the type of a parameter declared with
/// \c CF_RETURNS_RETAINED.
///
/// This ensures that the parameter is not marked as Unmanaged.
CFRetainedOutParameter,
/// \brief Import the type of a parameter declared with
/// \c CF_RETURNS_NON_RETAINED.
///
/// This ensures that the parameter is not marked as Unmanaged.
CFUnretainedOutParameter,
/// \brief Import the type pointed to by a pointer or reference.
///
/// This provides special treatment for pointer-to-ObjC-pointer
/// types, which get imported as pointers to *checked* optional,
/// *Pointer<NSFoo?>, instead of implicitly unwrapped optional as usual.
Pointee,
/// \brief Import the type of an ObjC property.
///
/// This enables the conversion of bridged types. Properties are always
/// considered CF-audited.
Property,
/// \brief Import the type of an ObjC property accessor marked 'weak',
/// 'assign', or 'unsafe_unretained'.
///
/// Like Property, but doesn't allow bridging to a value type, since that
/// would discard the ownership.
PropertyWithReferenceSemantics,
/// \brief Import the underlying type of an enum.
///
/// This provides special treatment for 'NSUInteger'.
Enum
};
/// \brief Describes the kind of the C type that can be mapped to a stdlib
/// swift type.
enum class MappedCTypeKind {
UnsignedInt,
SignedInt,
UnsignedWord,
SignedWord,
FloatIEEEsingle,
FloatIEEEdouble,
FloatX87DoubleExtended,
VaList,
ObjCBool,
ObjCSel,
ObjCId,
ObjCClass,
CGFloat,
Block,
};
/// \brief Describes what to do with the C name of a type that can be mapped to
/// a Swift standard library type.
enum class MappedTypeNameKind {
DoNothing,
DefineOnly,
DefineAndUse
};
/// \brief Describes certain kinds of methods that need to be specially
/// handled by the importer.
enum class SpecialMethodKind {
Regular,
Constructor,
PropertyAccessor,
NSDictionarySubscriptGetter
};
#define SWIFT_NATIVE_ANNOTATION_STRING "__swift native"
#define SWIFT_PROTOCOL_SUFFIX "Protocol"
#define SWIFT_CFTYPE_SUFFIX "Ref"
/// Describes whether to classify a factory method as an initializer.
enum class FactoryAsInitKind {
/// Infer based on name and type (the default).
Infer,
/// Treat as a class method.
AsClassMethod,
/// Treat as an initializer.
AsInitializer
};
/// \brief Implementation of the Clang importer.
class LLVM_LIBRARY_VISIBILITY ClangImporter::Implementation
: public LazyMemberLoader
{
friend class ClangImporter;
class SwiftNameLookupExtension : public clang::ModuleFileExtension {
Implementation &Impl;
public:
SwiftNameLookupExtension(Implementation &impl) : Impl(impl) { }
clang::ModuleFileExtensionMetadata getExtensionMetadata() const override;
llvm::hash_code hashExtension(llvm::hash_code code) const override;
std::unique_ptr<clang::ModuleFileExtensionWriter>
createExtensionWriter(clang::ASTWriter &writer) override;
std::unique_ptr<clang::ModuleFileExtensionReader>
createExtensionReader(const clang::ModuleFileExtensionMetadata &metadata,
clang::ASTReader &reader,
clang::serialization::ModuleFile &mod,
const llvm::BitstreamCursor &stream) override;
};
friend class SwiftNameLookupExtension;
public:
Implementation(ASTContext &ctx, const ClangImporterOptions &opts);
~Implementation();
/// \brief Swift AST context.
ASTContext &SwiftContext;
const bool ImportForwardDeclarations;
const bool InferImportAsMember;
const bool DisableSwiftBridgeAttr;
const bool HonorSwiftNewtypeAttr;
constexpr static const char * const moduleImportBufferName =
"<swift-imported-modules>";
constexpr static const char * const bridgingHeaderBufferName =
"<bridging-header-import>";
private:
/// The Swift lookup table for the bridging header.
SwiftLookupTable BridgingHeaderLookupTable;
/// The Swift lookup tables, per module.
///
/// Annoyingly, we list this table early so that it gets torn down after
/// the underlying Clang instances that reference it
/// (through the Swift name lookup module file extension).
llvm::StringMap<std::unique_ptr<SwiftLookupTable>> LookupTables;
/// \brief A count of the number of load module operations.
/// FIXME: Horrible, horrible hack for \c loadModule().
unsigned ImportCounter = 0;
/// \brief The value of \c ImportCounter last time when imported modules were
/// verified.
unsigned VerifiedImportCounter = 0;
/// \brief Clang compiler invocation.
llvm::IntrusiveRefCntPtr<clang::CompilerInvocation> Invocation;
/// \brief Clang compiler instance, which is used to actually load Clang
/// modules.
std::unique_ptr<clang::CompilerInstance> Instance;
/// \brief Clang compiler action, which is used to actually run the
/// parser.
std::unique_ptr<clang::FrontendAction> Action;
/// \brief Clang parser, which is used to load textual headers.
std::unique_ptr<clang::Parser> Parser;
/// \brief Clang parser, which is used to load textual headers.
std::unique_ptr<clang::MangleContext> Mangler;
/// The active type checker, or null if there is no active type checker.
///
/// The flag is \c true if there has ever been a type resolver assigned, i.e.
/// if type checking has begun.
llvm::PointerIntPair<LazyResolver *, 1, bool> typeResolver;
public:
/// \brief Mapping of already-imported declarations.
///
/// The "char" in the key is a "bool" in disguise that indicates whether this
/// is a Swift 2 name vs. a Swift 3 name.
llvm::DenseMap<std::pair<const clang::Decl *, char>, Decl *> ImportedDecls;
/// \brief The set of "special" typedef-name declarations, which are
/// mapped to specific Swift types.
///
/// Normal typedef-name declarations imported into Swift will maintain
/// equality between the imported declaration's underlying type and the
/// import of the underlying type. A typedef-name declaration is special
/// when this is not the case, e.g., Objective-C's "BOOL" has an underlying
/// type of "signed char", but is mapped to a special Swift struct type
/// ObjCBool.
llvm::SmallDenseMap<const clang::TypedefNameDecl *, MappedTypeNameKind, 16>
SpecialTypedefNames;
/// A mapping from module names to the prefixes placed on global names
/// in that module, e.g., the Foundation module uses the "NS" prefix.
llvm::StringMap<std::string> ModulePrefixes;
/// \brief Provide a single extension point for any given type per clang
/// submodule
llvm::DenseMap<std::pair<NominalTypeDecl *, const clang::Module *>,
ExtensionDecl *> extensionPoints;
/// Is the given identifier a reserved name in Swift?
static bool isSwiftReservedName(StringRef name);
/// Translation API nullability from an API note into an optional kind.
static OptionalTypeKind translateNullability(clang::NullabilityKind kind);
/// Determine whether the given class has designated initializers,
/// consulting
bool hasDesignatedInitializers(const clang::ObjCInterfaceDecl *classDecl);
/// Determine whether the given method is a designated initializer
/// of the given class.
bool isDesignatedInitializer(const clang::ObjCInterfaceDecl *classDecl,
const clang::ObjCMethodDecl *method);
/// Determine whether the given method is a required initializer
/// of the given class.
bool isRequiredInitializer(const clang::ObjCMethodDecl *method);
/// Determine whether the given class method should be imported as
/// an initializer.
FactoryAsInitKind getFactoryAsInit(const clang::ObjCInterfaceDecl *classDecl,
const clang::ObjCMethodDecl *method);
/// \brief Typedefs that we should not be importing. We should be importing
/// underlying decls instead.
llvm::DenseSet<const clang::Decl *> SuperfluousTypedefs;
/// Tag decls whose typedefs were imported instead.
///
/// \sa SuperfluousTypedefs
llvm::DenseSet<const clang::Decl *> DeclsWithSuperfluousTypedefs;
/// \brief Mapping of already-imported declarations from protocols, which
/// can (and do) get replicated into classes.
llvm::DenseMap<std::tuple<const clang::Decl *, DeclContext *, char>, Decl *>
ImportedProtocolDecls;
/// Mapping from identifiers to the set of macros that have that name along
/// with their corresponding Swift declaration.
///
/// Multiple macro definitions can map to the same declaration if the
/// macros are identically defined.
llvm::DenseMap<Identifier,
SmallVector<std::pair<clang::MacroInfo *, ValueDecl *>, 2>>
ImportedMacros;
// Mapping from macro to value for macros that expand to constant values.
llvm::DenseMap<const clang::MacroInfo *, std::pair<clang::APValue, Type>>
ImportedMacroConstants;
/// Keeps track of active selector-based lookups, so that we don't infinitely
/// recurse when checking whether a method with a given selector has already
/// been imported.
llvm::DenseMap<std::pair<ObjCSelector, char>, unsigned>
ActiveSelectors;
/// Whether we should suppress the import of the given Clang declaration.
static bool shouldSuppressDeclImport(const clang::Decl *decl);
/// Whether we should suppress importing the Objective-C generic type params
/// of this class as Swift generic type params.
static bool shouldSuppressGenericParamsImport(
const clang::ObjCInterfaceDecl *decl);
/// \brief Check if the declaration is one of the specially handled
/// accessibility APIs.
///
/// These appear as both properties and methods in ObjC and should be
/// imported as methods into Swift.
static bool isAccessibilityDecl(const clang::Decl *objCMethodOrProp);
/// Determine whether this method is an Objective-C "init" method
/// that will be imported as a Swift initializer.
bool isInitMethod(const clang::ObjCMethodDecl *method);
/// Determine whether this Objective-C method should be imported as
/// an initializer.
///
/// \param prefixLength Will be set to the length of the prefix that
/// should be stripped from the first selector piece, e.g., "init"
/// or the restated name of the class in a factory method.
///
/// \param kind Will be set to the kind of initializer being
/// imported. Note that this does not distinguish designated
/// vs. convenience; both will be classified as "designated".
bool shouldImportAsInitializer(const clang::ObjCMethodDecl *method,
unsigned &prefixLength,
CtorInitializerKind &kind);
private:
/// \brief Generation number that is used for crude versioning.
///
/// This value is incremented every time a new module is imported.
unsigned Generation = 1;
void bumpGeneration() {
++Generation;
SwiftContext.bumpGeneration();
}
/// \brief Cache enum infos, referenced with a dotted Clang name
/// "ModuleName.EnumName".
llvm::StringMap<importer::EnumInfo> enumInfos;
public:
/// \brief Keep track of subscript declarations based on getter/setter
/// pairs.
llvm::DenseMap<std::pair<FuncDecl *, FuncDecl *>, SubscriptDecl *> Subscripts;
/// Keeps track of the Clang functions that have been turned into
/// properties.
llvm::DenseMap<const clang::FunctionDecl *, VarDecl *> FunctionsAsProperties;
/// Retrieve the key to use when looking for enum information.
StringRef getEnumInfoKey(const clang::EnumDecl *decl,
SmallVectorImpl<char> &scratch) {
StringRef moduleName;
if (auto moduleOpt = getClangSubmoduleForDecl(decl)) {
if (*moduleOpt)
moduleName = (*moduleOpt)->getTopLevelModuleName();
}
if (moduleName.empty())
moduleName = decl->getASTContext().getLangOpts().CurrentModule;
StringRef enumName =
decl->getDeclName() ? decl->getName()
: decl->getTypedefNameForAnonDecl()->getName();
if (moduleName.empty()) return enumName;
scratch.append(moduleName.begin(), moduleName.end());
scratch.push_back('.');
scratch.append(enumName.begin(), enumName.end());
return StringRef(scratch.data(), scratch.size());
}
importer::EnumInfo getEnumInfo(const clang::EnumDecl *decl,
clang::Preprocessor *ppOverride = nullptr) {
// Due to the semaOverride present in importFullName(), we might be using a
// decl from a different context.
auto &preprocessor = ppOverride ? *ppOverride : getClangPreprocessor();
// If there is no name for linkage, the computation is trivial and we
// wouldn't be able to perform name-based caching anyway.
if (!decl->hasNameForLinkage())
return importer::EnumInfo(SwiftContext, decl, preprocessor);
SmallString<32> keyScratch;
auto key = getEnumInfoKey(decl, keyScratch);
auto known = enumInfos.find(key);
if (known != enumInfos.end())
return known->second;
importer::EnumInfo enumInfo(SwiftContext, decl, preprocessor);
enumInfos[key] = enumInfo;
return enumInfo;
}
importer::EnumKind getEnumKind(const clang::EnumDecl *decl,
clang::Preprocessor *ppOverride = nullptr) {
return getEnumInfo(decl, ppOverride).getKind();
}
/// \brief the prefix to be stripped from the names of the enum constants
/// within the given enum.
StringRef
getEnumConstantNamePrefix(const clang::EnumDecl *decl,
clang::Preprocessor *ppOverride = nullptr) {
return getEnumInfo(decl, ppOverride).getConstantNamePrefix();
}
private:
class EnumConstantDenseMapInfo {
public:
using PairTy = std::pair<const clang::EnumDecl *, llvm::APSInt>;
using PointerInfo = llvm::DenseMapInfo<const clang::EnumDecl *>;
static inline PairTy getEmptyKey() {
return {PointerInfo::getEmptyKey(), llvm::APSInt(/*bitwidth=*/1)};
}
static inline PairTy getTombstoneKey() {
return {PointerInfo::getTombstoneKey(), llvm::APSInt(/*bitwidth=*/1)};
}
static unsigned getHashValue(const PairTy &pair) {
return llvm::combineHashValue(PointerInfo::getHashValue(pair.first),
llvm::hash_value(pair.second));
}
static bool isEqual(const PairTy &lhs, const PairTy &rhs) {
return lhs == rhs;
}
};
public:
/// \brief Keep track of enum constant values that have been imported.
llvm::DenseMap<std::pair<const clang::EnumDecl *, llvm::APSInt>,
EnumElementDecl *,
EnumConstantDenseMapInfo>
EnumConstantValues;
/// \brief Keep track of initializer declarations that correspond to
/// imported methods.
llvm::DenseMap<std::tuple<const clang::ObjCMethodDecl *, DeclContext *, char>,
ConstructorDecl *>
Constructors;
/// A mapping from imported declarations to their "alternate" declarations,
/// for cases where a single Clang declaration is imported to two
/// different Swift declarations.
llvm::DenseMap<Decl *, ValueDecl *> AlternateDecls;
/// Retrieve the alternative declaration for the given imported
/// Swift declaration.
ValueDecl *getAlternateDecl(Decl *decl) {
auto known = AlternateDecls.find(decl);
if (known == AlternateDecls.end()) return nullptr;
return known->second;
}
private:
/// \brief NSObject, imported into Swift.
Type NSObjectTy;
/// A pair containing a ClangModuleUnit,
/// and whether the adapters of its re-exported modules have all been forced
/// to load already.
using ModuleInitPair = llvm::PointerIntPair<ClangModuleUnit *, 1, bool>;
public:
/// A map from Clang modules to their Swift wrapper modules.
llvm::SmallDenseMap<const clang::Module *, ModuleInitPair, 16> ModuleWrappers;
/// The module unit that contains declarations from imported headers.
ClangModuleUnit *ImportedHeaderUnit = nullptr;
/// The modules re-exported by imported headers.
llvm::SmallVector<Module::ImportedModule, 8> ImportedHeaderExports;
/// The modules that requested imported headers.
///
/// These are used to look up Swift classes forward-declared with \@class.
TinyPtrVector<Module *> ImportedHeaderOwners;
/// \brief Clang's objectAtIndexedSubscript: selector.
clang::Selector objectAtIndexedSubscript;
/// \brief Clang's setObjectAt:indexedSubscript: selector.
clang::Selector setObjectAtIndexedSubscript;
/// \brief Clang's objectForKeyedSubscript: selector.
clang::Selector objectForKeyedSubscript;
/// \brief Clang's setObject:forKeyedSubscript: selector.
clang::Selector setObjectForKeyedSubscript;
private:
/// Records those modules that we have looked up.
llvm::DenseMap<Identifier, Module *> checkedModules;
/// External Decls that we have imported but not passed to the ASTContext yet.
SmallVector<Decl *, 4> RegisteredExternalDecls;
/// Protocol conformances that may be missing witnesses.
SmallVector<NormalProtocolConformance *, 4> DelayedProtocolConformances;
unsigned NumCurrentImportingEntities = 0;
/// Mapping from delayed conformance IDs to the set of delayed
/// protocol conformances.
llvm::DenseMap<unsigned, SmallVector<ProtocolConformance *, 4>>
DelayedConformances;
/// The next delayed conformance ID to use with \c DelayedConformances.
unsigned NextDelayedConformanceID = 0;
/// The set of imported protocols for a declaration, used only to
/// load all members of the declaration.
llvm::DenseMap<const Decl *, SmallVector<ProtocolDecl *, 4>>
ImportedProtocols;
void startedImportingEntity();
void finishedImportingEntity();
void finishPendingActions();
void finishProtocolConformance(NormalProtocolConformance *conformance);
struct ImportingEntityRAII {
Implementation &Impl;
ImportingEntityRAII(Implementation &Impl) : Impl(Impl) {
Impl.startedImportingEntity();
}
~ImportingEntityRAII() {
Impl.finishedImportingEntity();
}
};
public:
/// A predicate that indicates if the given platform should be
/// considered for availability.
std::function<bool (StringRef PlatformName)>
PlatformAvailabilityFilter;
/// A predicate that indicates if the given platform version should
/// should be included in the cutoff of deprecated APIs marked unavailable.
std::function<bool (unsigned major, llvm::Optional<unsigned> minor)>
DeprecatedAsUnavailableFilter;
/// The message to embed for implicitly unavailability if a deprecated
/// API is now unavailable.
std::string DeprecatedAsUnavailableMessage;
/// Tracks top level decls from the bridging header.
std::vector<clang::Decl *> BridgeHeaderTopLevelDecls;
std::vector<llvm::PointerUnion<clang::ImportDecl *, ImportDecl *>>
BridgeHeaderTopLevelImports;
/// Tracks macro definitions from the bridging header.
std::vector<clang::IdentifierInfo *> BridgeHeaderMacros;
/// Tracks included headers from the bridging header.
llvm::DenseSet<const clang::FileEntry *> BridgeHeaderFiles;
void addBridgeHeaderTopLevelDecls(clang::Decl *D);
bool shouldIgnoreBridgeHeaderTopLevelDecl(clang::Decl *D);
/// Add the given named declaration as an entry to the given Swift name
/// lookup table, including any of its child entries.
void addEntryToLookupTable(clang::Sema &clangSema, SwiftLookupTable &table,
clang::NamedDecl *named);
/// Add the macros from the given Clang preprocessor to the given
/// Swift name lookup table.
void addMacrosToLookupTable(clang::ASTContext &clangCtx,
clang::Preprocessor &pp, SwiftLookupTable &table);
/// Finalize a lookup table, handling any as-yet-unresolved entries
/// and emitting diagnostics if necessary.
void finalizeLookupTable(clang::ASTContext &clangCtx,
clang::Preprocessor &pp, SwiftLookupTable &table);
public:
void registerExternalDecl(Decl *D) {
RegisteredExternalDecls.push_back(D);
}
void scheduleFinishProtocolConformance(NormalProtocolConformance *C) {
DelayedProtocolConformances.push_back(C);
}
/// \brief Retrieve the Clang AST context.
clang::ASTContext &getClangASTContext() const {
return Instance->getASTContext();
}
/// \brief Retrieve the Clang Sema object.
clang::Sema &getClangSema() const {
return Instance->getSema();
}
/// \brief Retrieve the Clang AST context.
clang::Preprocessor &getClangPreprocessor() const {
return Instance->getPreprocessor();
}
clang::CodeGenOptions &getClangCodeGenOpts() const {
return Instance->getCodeGenOpts();
}
/// Imports the given header contents into the Clang context.
bool importHeader(Module *adapter, StringRef headerName, SourceLoc diagLoc,
bool trackParsedSymbols,
std::unique_ptr<llvm::MemoryBuffer> contents);
/// Returns the redeclaration of \p D that contains its definition for any
/// tag type decl (struct, enum, or union) or Objective-C class or protocol.
///
/// Returns \c None if \p D is not a redeclarable type declaration.
/// Returns null if \p D is a redeclarable type, but it does not have a
/// definition yet.
Optional<const clang::Decl *>
getDefinitionForClangTypeDecl(const clang::Decl *D);
/// Returns the module \p D comes from, or \c None if \p D does not have
/// a valid associated module.
///
/// The returned module may be null (but not \c None) if \p D comes from
/// an imported header.
Optional<clang::Module *>
getClangSubmoduleForDecl(const clang::Decl *D,
bool allowForwardDeclaration = false);
/// \brief Retrieve the imported module that should contain the given
/// Clang decl.
ClangModuleUnit *getClangModuleForDecl(const clang::Decl *D,
bool allowForwardDeclaration = false);
/// Returns the module \p MI comes from, or \c None if \p MI does not have
/// a valid associated module.
///
/// The returned module may be null (but not \c None) if \p MI comes from
/// an imported header.
Optional<clang::Module *>
getClangSubmoduleForMacro(const clang::MacroInfo *MI);
ClangModuleUnit *getClangModuleForMacro(const clang::MacroInfo *MI);
/// Retrieve the type of an instance of the given Clang declaration context,
/// or a null type if the DeclContext does not have a corresponding type.
static clang::QualType getClangDeclContextType(const clang::DeclContext *dc);
/// Determine whether this typedef is a CF type.
static bool isCFTypeDecl(const clang::TypedefNameDecl *Decl);
/// Determine the imported CF type for the given typedef-name, or the empty
/// string if this is not an imported CF type name.
static StringRef getCFTypeName(const clang::TypedefNameDecl *decl);
/// Retrieve the type name of a Clang type for the purposes of
/// omitting unneeded words.
static OmissionTypeName getClangTypeNameForOmission(clang::ASTContext &ctx,
clang::QualType type);
/// Whether NSUInteger can be imported as Int in certain contexts. If false,
/// should always be imported as UInt.
static bool shouldAllowNSUIntegerAsInt(bool isFromSystemModule,
const clang::NamedDecl *decl);
/// Omit needless words in a function name.
bool omitNeedlessWordsInFunctionName(
clang::Sema &clangSema,
StringRef &baseName,
SmallVectorImpl<StringRef> &argumentNames,
ArrayRef<const clang::ParmVarDecl *> params,
clang::QualType resultType,
const clang::DeclContext *dc,
const llvm::SmallBitVector &nonNullArgs,
Optional<unsigned> errorParamIndex,
bool returnsSelf,
bool isInstanceMethod,
StringScratchSpace &scratch);
/// \brief Converts the given Swift identifier for Clang.
clang::DeclarationName exportName(Identifier name);
/// Information about imported error parameters.
struct ImportedErrorInfo {
ForeignErrorConvention::Kind Kind;
ForeignErrorConvention::IsOwned_t IsOwned;
/// The index of the error parameter.
unsigned ParamIndex;
/// Whether the parameter is being replaced with "void"
/// (vs. removed).
bool ReplaceParamWithVoid;
};
/// The kind of accessor that an entity will be imported as.
enum class ImportedAccessorKind {
None = 0,
PropertyGetter,
PropertySetter,
SubscriptGetter,
SubscriptSetter,
};
/// Describes a name that was imported from Clang.
struct ImportedName {
/// The imported name.
DeclName Imported;
/// Whether this name was explicitly specified via a Clang
/// swift_name attribute.
bool HasCustomName = false;
/// Whether this was one of a special class of Objective-C
/// initializers for which we drop the variadic argument rather
/// than refuse to import the initializer.
bool DroppedVariadic = false;
/// Whether this is a global being imported as a member
bool ImportAsMember = false;
/// What kind of accessor this name refers to, if any.
ImportedAccessorKind AccessorKind = ImportedAccessorKind::None;
/// For an initializer, the kind of initializer to import.
CtorInitializerKind InitKind = CtorInitializerKind::Designated;
/// The context into which this declaration will be imported.
///
/// When the context into which the declaration will be imported
/// matches a Clang declaration context (the common case), the
/// result will be expressed as a declaration context. Otherwise,
/// if the Clang type is not itself a declaration context (for
/// example, a typedef that comes into Swift as a strong type),
/// the type declaration will be provided.
EffectiveClangContext EffectiveContext;
/// For names that map Objective-C error handling conventions into
/// throwing Swift methods, describes how the mapping is performed.
Optional<ImportedErrorInfo> ErrorInfo;
/// For a declaration name that makes the declaration into an
/// instance member, the index of the "Self" parameter.
Optional<unsigned> SelfIndex = None;
/// Produce just the imported name, for clients that don't care
/// about the details.
operator DeclName() const { return Imported; }
/// Whether any name was imported.
explicit operator bool() const { return static_cast<bool>(Imported); }
/// Whether this declaration is a property accessor (getter or setter).
bool isPropertyAccessor() const {
switch (AccessorKind) {
case ImportedAccessorKind::None:
case ImportedAccessorKind::SubscriptGetter:
case ImportedAccessorKind::SubscriptSetter:
return false;
case ImportedAccessorKind::PropertyGetter:
case ImportedAccessorKind::PropertySetter:
return true;
}
}
/// Whether this declaration is a subscript accessor (getter or setter).
bool isSubscriptAccessor() const {
switch (AccessorKind) {
case ImportedAccessorKind::None:
case ImportedAccessorKind::PropertyGetter:
case ImportedAccessorKind::PropertySetter:
return false;
case ImportedAccessorKind::SubscriptGetter:
case ImportedAccessorKind::SubscriptSetter:
return true;
}
}
};
/// Flags that control the import of names in importFullName.
enum class ImportNameFlags {
/// Suppress the factory-method-as-initializer transformation.
SuppressFactoryMethodAsInit = 0x01,
/// Produce the Swift 2 name of the given entity.
Swift2Name = 0x02,
};
/// Options that control the import of names in importFullName.
typedef OptionSet<ImportNameFlags> ImportNameOptions;
/// Imports the full name of the given Clang declaration into Swift.
///
/// Note that this may result in a name very different from the Clang name,
/// so it should not be used when referencing Clang symbols.
///
/// \param D The Clang declaration whose name should be imported.
ImportedName importFullName(const clang::NamedDecl *D,
ImportNameOptions options = None,
clang::Sema *clangSemaOverride = nullptr);
/// Imports the name of the given Clang macro into Swift.
Identifier importMacroName(const clang::IdentifierInfo *clangIdentifier,
const clang::MacroInfo *macro,
clang::ASTContext &clangCtx);
/// Print an imported name as a string suitable for the swift_name attribute,
/// or the 'Rename' field of AvailableAttr.
void printSwiftName(ImportedName, bool fullyQualified, llvm::raw_ostream &os);
/// Retrieve the property type as determined by the given accessor.
static clang::QualType
getAccessorPropertyType(const clang::FunctionDecl *accessor, bool isSetter,
Optional<unsigned> selfIndex);
/// \brief Import the given Clang identifier into Swift.
///
/// \param identifier The Clang identifier to map into Swift.
///
/// \param removePrefix The prefix to remove from the Clang name to produce
/// the Swift name. If the Clang name does not start with this prefix,
/// nothing is removed.
Identifier importIdentifier(const clang::IdentifierInfo *identifier,
StringRef removePrefix = "");
/// Import an Objective-C selector.
ObjCSelector importSelector(clang::Selector selector);
/// Import a Swift name as a Clang selector.
clang::Selector exportSelector(DeclName name, bool allowSimpleName = true);
/// Export a Swift Objective-C selector as a Clang Objective-C selector.
clang::Selector exportSelector(ObjCSelector selector);
/// \brief Import the given Swift source location into Clang.
clang::SourceLocation exportSourceLoc(SourceLoc loc);
/// \brief Import the given Clang source location into Swift.
SourceLoc importSourceLoc(clang::SourceLocation loc);
/// \brief Import the given Clang source range into Swift.
SourceRange importSourceRange(clang::SourceRange loc);
/// \brief Import the given Clang preprocessor macro as a Swift value decl.
///
/// \returns The imported declaration, or null if the macro could not be
/// translated into Swift.
ValueDecl *importMacro(Identifier name, clang::MacroInfo *macro);
/// Find the swift_newtype attribute on the given typedef, if present.
clang::SwiftNewtypeAttr *getSwiftNewtypeAttr(
const clang::TypedefNameDecl *decl,
bool useSwift2Name);
/// Map a Clang identifier name to its imported Swift equivalent.
StringRef getSwiftNameFromClangName(StringRef name);
/// Import attributes from the given Clang declaration to its Swift
/// equivalent.
///
/// \param ClangDecl The decl being imported.
/// \param MappedDecl The decl to attach attributes to.
/// \param NewContext If present, the Clang node for the context the decl is
/// being imported into, which may affect info from API notes.
void importAttributes(const clang::NamedDecl *ClangDecl, Decl *MappedDecl,
const clang::ObjCContainerDecl *NewContext = nullptr);
/// If we already imported a given decl, return the corresponding Swift decl.
/// Otherwise, return nullptr.
Decl *importDeclCached(const clang::NamedDecl *ClangDecl, bool useSwift2Name);
Decl *importDeclImpl(const clang::NamedDecl *ClangDecl,
bool useSwift2Name,
bool &TypedefIsSuperfluous,
bool &HadForwardDeclaration);
Decl *importDeclAndCacheImpl(const clang::NamedDecl *ClangDecl,
bool useSwift2Name,
bool SuperfluousTypedefsAreTransparent);
/// \brief Same as \c importDeclReal, but for use inside importer
/// implementation.
///
/// Unlike \c importDeclReal, this function for convenience transparently
/// looks through superfluous typedefs and returns the imported underlying
/// decl in that case.
Decl *importDecl(const clang::NamedDecl *ClangDecl, bool useSwift2Name) {
return importDeclAndCacheImpl(ClangDecl, useSwift2Name,
/*SuperfluousTypedefsAreTransparent=*/true);
}
/// \brief Import the given Clang declaration into Swift. Use this function
/// outside of the importer implementation, when importing a decl requested by
/// Swift code.
///
/// \returns The imported declaration, or null if this declaration could
/// not be represented in Swift.
Decl *importDeclReal(const clang::NamedDecl *ClangDecl, bool useSwift2Name) {
return importDeclAndCacheImpl(ClangDecl, useSwift2Name,
/*SuperfluousTypedefsAreTransparent=*/false);
}
/// \brief Import a cloned version of the given declaration, which is part of
/// an Objective-C protocol and currently must be a method or property, into
/// the given declaration context.
///
/// \returns The imported declaration, or null if this declaration could not
/// be represented in Swift.
Decl *importMirroredDecl(const clang::NamedDecl *decl, DeclContext *dc,
bool useSwift2Name, ProtocolDecl *proto);
/// \brief Import the given Clang declaration context into Swift.
///
/// Usually one will use \c importDeclContextOf instead.
///
/// \returns The imported declaration context, or null if it could not
/// be converted.
DeclContext *importDeclContextImpl(const clang::DeclContext *dc);
/// \brief Import the declaration context of a given Clang declaration into
/// Swift.
///
/// \param context The effective context as determined by importFullName.
///
/// \returns The imported declaration context, or null if it could not
/// be converted.
DeclContext *importDeclContextOf(const clang::Decl *D,
EffectiveClangContext context);
/// \brief Create a new named constant with the given value.
///
/// \param name The name of the constant.
/// \param dc The declaration context into which the name will be introduced.
/// \param type The type of the named constant.
/// \param value The value of the named constant.
/// \param convertKind How to convert the constant to the given type.
/// \param isStatic Whether the constant should be a static member of \p dc.
ValueDecl *createConstant(Identifier name, DeclContext *dc,
Type type, const clang::APValue &value,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN);
/// \brief Create a new named constant with the given value.
///
/// \param name The name of the constant.
/// \param dc The declaration context into which the name will be introduced.
/// \param type The type of the named constant.
/// \param value The value of the named constant.
/// \param convertKind How to convert the constant to the given type.
/// \param isStatic Whether the constant should be a static member of \p dc.
ValueDecl *createConstant(Identifier name, DeclContext *dc,
Type type, StringRef value,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN);
/// \brief Create a new named constant using the given expression.
///
/// \param name The name of the constant.
/// \param dc The declaration context into which the name will be introduced.
/// \param type The type of the named constant.
/// \param valueExpr An expression to use as the value of the constant.
/// \param convertKind How to convert the constant to the given type.
/// \param isStatic Whether the constant should be a static member of \p dc.
ValueDecl *createConstant(Identifier name, DeclContext *dc,
Type type, Expr *valueExpr,
ConstantConvertKind convertKind,
bool isStatic,
ClangNode ClangN);
/// Determine whether the given declaration is considered
/// 'unavailable' in Swift.
bool isUnavailableInSwift(const clang::Decl *decl);
/// \brief Add "Unavailable" annotation to the swift declaration.
void markUnavailable(ValueDecl *decl, StringRef unavailabilityMsg);
/// \brief Create a decl with error type and an "unavailable" attribute on it
/// with the specified message.
ValueDecl *createUnavailableDecl(Identifier name, DeclContext *dc,
Type type, StringRef UnavailableMessage,
bool isStatic, ClangNode ClangN);
/// \brief Retrieve the standard library module.
Module *getStdlibModule();
/// \brief Retrieve the named module.
///
/// \param name The name of the module.
///
/// \returns The named module, or null if the module has not been imported.
Module *getNamedModule(StringRef name);
/// \brief Returns the "Foundation" module, if it can be loaded.
///
/// After this has been called, the Foundation module will or won't be loaded
/// into the ASTContext.
Module *tryLoadFoundationModule();
/// \brief Returns the "SIMD" module, if it can be loaded.
///
/// After this has been called, the SIMD module will or won't be loaded
/// into the ASTContext.
Module *tryLoadSIMDModule();
/// \brief Retrieves the Swift wrapper for the given Clang module, creating
/// it if necessary.
ClangModuleUnit *getWrapperForModule(ClangImporter &importer,
const clang::Module *underlying);
/// \brief Constructs a Swift module for the given Clang module.
Module *finishLoadingClangModule(ClangImporter &importer,
const clang::Module *clangModule,
bool preferAdapter);
/// \brief Retrieve the named Swift type, e.g., Int32.
///
/// \param moduleName The name of the module in which the type should occur.
///
/// \param name The name of the type to find.
///
/// \returns The named type, or null if the type could not be found.
Type getNamedSwiftType(StringRef moduleName, StringRef name);
/// \brief Retrieve the named Swift type, e.g., Int32.
///
/// \param module The module in which the type should occur.
///
/// \param name The name of the type to find.
///
/// \returns The named type, or null if the type could not be found.
Type getNamedSwiftType(Module *module, StringRef name);
/// \brief Retrieve a specialization of the named Swift type, e.g.,
/// UnsafeMutablePointer<T>.
///
/// \param module The name of the module in which the type should occur.
///
/// \param name The name of the type to find.
///
/// \param args The arguments to use in the specialization.
///
/// \returns The named type, or null if the type could not be found.
Type getNamedSwiftTypeSpecialization(Module *module, StringRef name,
ArrayRef<Type> args);
/// \brief Retrieve the NSObject type.
Type getNSObjectType();
/// \brief Retrieve the NSObject protocol type.
Type getNSObjectProtocolType();
/// \brief Retrieve the NSCopying protocol type.
Type getNSCopyingType();
/// \brief Retrieve the CFStringRef typealias.
Type getCFStringRefType();
/// \brief Determines whether the given type matches an implicit type
/// bound of "Hashable", which is used to validate NSDictionary/NSSet.
bool matchesNSObjectBound(Type type);
/// \brief Look up and attempt to import a Clang declaration with
/// the given name.
Decl *importDeclByName(StringRef name);
/// \brief Import the given Clang type into Swift.
///
/// \param type The Clang type to import.
///
/// \param kind The kind of type import we're performing.
///
/// \param allowNSUIntegerAsInt If true, NSUInteger will be imported as Int
/// in certain contexts. If false, it will always be imported as UInt.
///
/// \param canFullyBridgeTypes True if we can bridge types losslessly.
/// This is an additional guarantee on top of the ImportTypeKind
/// cases that allow bridging, and applies to the entire type.
///
/// \returns The imported type, or null if this type could
/// not be represented in Swift.
Type importType(clang::QualType type,
ImportTypeKind kind,
bool allowNSUIntegerAsInt,
bool canFullyBridgeTypes,
OptionalTypeKind optional = OTK_ImplicitlyUnwrappedOptional);
/// \brief Import the given function type.
///
/// This routine should be preferred when importing function types for
/// which we have actual function parameters, e.g., when dealing with a
/// function declaration, because it produces a function type whose input
/// tuple has argument names.
///
/// \param clangDecl The underlying declaration, if any; should only be
/// considered for any attributes it might carry.
/// \param resultType The result type of the function.
/// \param params The parameter types to the function.
/// \param isVariadic Whether the function is variadic.
/// \param isNoReturn Whether the function is noreturn.
/// \param parameterList The parameters visible inside the function body.
///
/// \returns the imported function type, or null if the type cannot be
/// imported.
Type importFunctionType(DeclContext *dc,
const clang::FunctionDecl *clangDecl,
clang::QualType resultType,
ArrayRef<const clang::ParmVarDecl *> params,
bool isVariadic, bool isNoReturn,
bool isFromSystemModule,
bool hasCustomName,
ParameterList *&parameterList,
DeclName &name);
/// \brief Import the given function return type.
///
/// \param clangDecl The underlying declaration, if any; should only be
/// considered for any attributes it might carry.
/// \param resultType The result type of the function.
/// \param allowNSUIntegerAsInt If true, NSUInteger will be imported as Int
/// in certain contexts. If false, it will always be imported as UInt.
///
/// \returns the imported function return type, or null if the type cannot be
/// imported.
Type importFunctionReturnType(DeclContext *dc,
const clang::FunctionDecl *clangDecl,
clang::QualType resultType,
bool allowNSUIntegerAsInt);
/// \brief Import the parameter list for a function
///
/// \param clangDecl The underlying declaration, if any; should only be
/// considered for any attributes it might carry.
/// \param params The parameter types to the function.
/// \param isVariadic Whether the function is variadic.
/// \param allowNSUIntegerAsInt If true, NSUInteger will be imported as Int
/// in certain contexts. If false, it will always be imported as UInt.
/// \param argNames The argument names
///
/// \returns The imported parameter list on success, or null on failure
ParameterList *
importFunctionParameterList(DeclContext *dc,
const clang::FunctionDecl *clangDecl,
ArrayRef<const clang::ParmVarDecl *> params,
bool isVariadic, bool allowNSUIntegerAsInt,
ArrayRef<Identifier> argNames);
Type importPropertyType(const clang::ObjCPropertyDecl *clangDecl,
bool isFromSystemModule);
/// Attempt to infer a default argument for a parameter with the
/// given Clang \c type, \c baseName, and optionality.
DefaultArgumentKind inferDefaultArgument(clang::Preprocessor &pp,
clang::QualType type,
OptionalTypeKind clangOptionality,
Identifier baseName,
unsigned numParams,
StringRef argumentLabel,
bool isFirstParameter,
bool isLastParameter);
/// Retrieve a bit vector containing the non-null argument
/// annotations for the given declaration.
llvm::SmallBitVector getNonNullArgs(
const clang::Decl *decl,
ArrayRef<const clang::ParmVarDecl *> params);
/// \brief Import the type of an Objective-C method.
///
/// This routine should be preferred when importing function types for
/// which we have actual function parameters, e.g., when dealing with a
/// function declaration, because it produces a function type whose input
/// tuple has argument names.
///
/// \param clangDecl The underlying declaration, if any; should only be
/// considered for any attributes it might carry.
/// \param resultType The result type of the function.
/// \param params The parameter types to the function.
/// \param isVariadic Whether the function is variadic.
/// \param isNoReturn Whether the function is noreturn.
/// \param isFromSystemModule Whether to apply special rules that only apply
/// to system APIs.
/// \param bodyParams The patterns visible inside the function body.
/// whether the created arg/body patterns are different (selector-style).
/// \param importedName The name of the imported method.
/// \param errorConvention Information about the method's error conventions.
/// \param kind Controls whether we're building a type for a method that
/// needs special handling.
///
/// \returns the imported function type, or null if the type cannot be
/// imported.
Type importMethodType(const DeclContext *dc,
const clang::ObjCMethodDecl *clangDecl,
clang::QualType resultType,
ArrayRef<const clang::ParmVarDecl *> params,
bool isVariadic, bool isNoReturn,
bool isFromSystemModule,
ParameterList **bodyParams,
ImportedName importedName,
DeclName &name,
Optional<ForeignErrorConvention> &errorConvention,
SpecialMethodKind kind);
/// \brief Determine whether the given typedef-name is "special", meaning
/// that it has performed some non-trivial mapping of its underlying type
/// based on the name of the typedef.
Optional<MappedTypeNameKind>
getSpecialTypedefKind(clang::TypedefNameDecl *decl);
/// \brief Look up a name, accepting only typedef results.
const clang::TypedefNameDecl *lookupTypedef(clang::DeclarationName);
/// \brief Return whether a global of the given type should be imported as a
/// 'let' declaration as opposed to 'var'.
bool shouldImportGlobalAsLet(clang::QualType type);
LazyResolver *getTypeResolver() const {
return typeResolver.getPointer();
}
void setTypeResolver(LazyResolver *newResolver) {
assert((!typeResolver.getPointer() || !newResolver) &&
"already have a type resolver");
typeResolver.setPointerAndInt(newResolver, true);
}
bool hasBegunTypeChecking() const { return typeResolver.getInt(); }
bool hasFinishedTypeChecking() const {
return hasBegunTypeChecking() && !getTypeResolver();
}
/// Allocate a new delayed conformance ID with the given set of
/// conformances.
unsigned allocateDelayedConformance(
SmallVector<ProtocolConformance *, 4> &&conformances) {
unsigned id = NextDelayedConformanceID++;
DelayedConformances[id] = std::move(conformances);
return id;
}
/// Take the delayed conformances associated with the given id.
SmallVector<ProtocolConformance *, 4> takeDelayedConformance(unsigned id) {
auto conformances = DelayedConformances.find(id);
SmallVector<ProtocolConformance *, 4> result
= std::move(conformances->second);
DelayedConformances.erase(conformances);
return result;
}
/// Record the set of imported protocols for the given declaration,
/// to be used by member loading.
///
/// FIXME: This is all a hack; we should have lazier deserialization
/// of protocols separate from their conformances.
void recordImportedProtocols(const Decl *decl,
ArrayRef<ProtocolDecl *> protocols) {
if (protocols.empty())
return;
auto &recorded = ImportedProtocols[decl];
recorded.insert(recorded.end(), protocols.begin(), protocols.end());
}
/// Retrieve the imported protocols for the given declaration.
SmallVector<ProtocolDecl *, 4> takeImportedProtocols(const Decl *decl) {
SmallVector<ProtocolDecl *, 4> result;
auto known = ImportedProtocols.find(decl);
if (known != ImportedProtocols.end()) {
result = std::move(known->second);
ImportedProtocols.erase(known);
}
return result;
}
virtual void
loadAllMembers(Decl *D, uint64_t unused) override;
void
loadAllConformances(
const Decl *D, uint64_t contextData,
SmallVectorImpl<ProtocolConformance *> &Conformances) override;
template <typename DeclTy, typename ...Targs>
DeclTy *createDeclWithClangNode(ClangNode ClangN, Accessibility access,
Targs &&... Args) {
assert(ClangN);
void *DeclPtr = allocateMemoryForDecl<DeclTy>(SwiftContext, sizeof(DeclTy),
true);
auto D = ::new (DeclPtr) DeclTy(std::forward<Targs>(Args)...);
D->setClangNode(ClangN);
D->setEarlyAttrValidation(true);
D->setAccessibility(access);
if (auto ASD = dyn_cast<AbstractStorageDecl>(D))
ASD->setSetterAccessibility(access);
return D;
}
/// Find the lookup table that corresponds to the given Clang module.
///
/// \param clangModule The module, or null to indicate that we're talking
/// about the directly-parsed headers.
SwiftLookupTable *findLookupTable(const clang::Module *clangModule);
/// Visit each of the lookup tables in some deterministic order.
///
/// \param fn Invoke the given visitor for each table. If the
/// visitor returns true, stop early.
///
/// \returns \c true if the \c visitor ever returns \c true, \c
/// false otherwise.
bool forEachLookupTable(llvm::function_ref<bool(SwiftLookupTable &table)> fn);
/// Look for namespace-scope values with the given name in the given
/// Swift lookup table.
void lookupValue(SwiftLookupTable &table, DeclName name,
VisibleDeclConsumer &consumer);
/// Look for namespace-scope values in the given Swift lookup table.
void lookupVisibleDecls(SwiftLookupTable &table,
VisibleDeclConsumer &consumer);
/// Look for Objective-C members with the given name in the given
/// Swift lookup table.
void lookupObjCMembers(SwiftLookupTable &table, DeclName name,
VisibleDeclConsumer &consumer);
/// Look for all Objective-C members in the given Swift lookup table.
void lookupAllObjCMembers(SwiftLookupTable &table,
VisibleDeclConsumer &consumer);
/// Determine the effective Clang context for the given Swift nominal type.
EffectiveClangContext getEffectiveClangContext(NominalTypeDecl *nominal);
/// Dump the Swift-specific name lookup tables we generate.
void dumpSwiftLookupTables();
/// Whether the given decl is a global Notification
static bool isNSNotificationGlobal(const clang::NamedDecl *);
// If this decl is associated with a swift_newtype (and we're honoring
// swift_newtype), return it, otherwise null
clang::TypedefNameDecl *findSwiftNewtype(const clang::NamedDecl *decl,
clang::Sema &clangSema,
bool useSwift2Name);
/// Whether the passed type is NSString *
static bool isNSString(const clang::Type *);
static bool isNSString(clang::QualType);
/// Whether the given declaration was exported from Swift.
///
/// Note that this only checks the immediate declaration being passed.
/// For things like methods and properties that are nested in larger types,
/// it's the top-level declaration that should be checked.
static bool hasNativeSwiftDecl(const clang::Decl *decl);
};
}
#endif