blob: 320db5b147fd0739b73e4b89bc0c2aac3e21c06a [file] [log] [blame]
//===--- MemAccessUtils.h - Utilities for SIL memory access. ----*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
// These utilities live in SIL/ so they be used by SIL verification.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_MEMACCESSUTILS_H
#define SWIFT_SIL_MEMACCESSUTILS_H
#include "swift/SIL/Projection.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILInstruction.h"
#include "llvm/ADT/DenseMap.h"
namespace swift {
// stripAddressAccess() is declared in InstructionUtils.h.
/// Represents the identity of a stored class property as a combination
/// of a base and a single projection. Eventually the goal is to make this
/// more precise and consider, casts, etc.
class ObjectProjection {
SILValue object;
Projection proj;
public:
ObjectProjection(SILValue object, const Projection &proj)
: object(object), proj(proj) {
assert(object->getType().isObject());
}
SILValue getObject() const { return object; }
const Projection &getProjection() const { return proj; }
bool operator==(const ObjectProjection &other) const {
return object == other.object && proj == other.proj;
}
bool operator!=(const ObjectProjection &other) const {
return object != other.object || proj != other.proj;
}
};
/// Represents the identity of a storage location being accessed.
///
/// AccessedStorage may be one of several kinds of "identified" storage
/// locations, or may be valid, but Unidentified storage. An identified location
/// is known to identify the base of the accessed storage, whether that is a
/// SILValue that produces the base address, or a variable
/// declaration. "Uniquely identified" storage refers to identified storage that
/// cannot be aliased. For example, local allocations are uniquely identified,
/// while global variables and class properties are not. Unidentified storage is
/// associated with a SILValue that produces the accessed address but has not
/// been determined to be the base of a storage location. It may, for example,
/// be a SILPHIArgument.
///
/// An invalid AccessedStorage object is marked Unidentified and contains an
/// invalid value. This signals that analysis has failed to recognize an
/// expected address producer pattern. Over time, more aggressive
/// SILVerification could allow the optimizer to aggressively assert that
/// AccessedStorage is always valid.
///
/// Note that the SILValue that represents a storage location is not
/// necessarilly an address type. It may instead be a SILBoxType.
///
/// AccessedStorage hashing and comparison is used to determine when two
/// 'begin_access' instructions access the same or disjoint underlying
/// locations.
///
/// Equality guarantees that two AccessStorage values refer to the same
/// memory if both values are valid.
///
/// Inequality does not guarantee that two identified AccessStorage values
/// distinct. Inequality does guarantee that two *uniquely* identified
/// AccessStorage values are distinct.
class AccessedStorage {
public:
/// Enumerate over all valid begin_access bases. Clients can use a covered
/// switch to warn if findAccessedAddressBase ever adds a case.
enum Kind {
Box, Stack, Global, Class, Argument, Nested, Unidentified
};
/// If the given address source is an identified access base, return the kind
/// of access base. Otherwise, return Unidentified.
static AccessedStorage::Kind classify(SILValue base);
private:
Kind kind;
union {
SILValue value;
unsigned paramIndex;
SILGlobalVariable *global;
ObjectProjection objProj;
};
public:
AccessedStorage(): kind(Unidentified), value() {}
AccessedStorage(SILValue base, Kind kind);
// Return true if this is a valid storage location.
operator bool() const {
return kind != Unidentified || value;
}
Kind getKind() const { return kind; }
SILValue getValue() const {
assert(kind != Argument && kind != Global && kind != Class);
return value;
}
unsigned getParamIndex() const {
assert(kind == Argument);
return paramIndex;
}
SILArgument *getArgument(SILFunction *F) const {
assert(kind == Argument);
return F->getArgument(paramIndex);
}
SILGlobalVariable *getGlobal() const {
assert(kind == Global);
return global;
}
const ObjectProjection &getObjectProjection() const {
assert(kind == Class);
return objProj;
}
bool operator==(const AccessedStorage &other) const {
if (kind != other.kind)
return false;
switch (kind) {
case Box:
case Stack:
case Nested:
case Unidentified:
return value == other.value;
case Argument:
return paramIndex == other.paramIndex;
case Global:
return global == other.global;
case Class:
return objProj == other.objProj;
}
}
bool operator!=(const AccessedStorage &other) const {
return !(*this == other);
}
bool isUniquelyIdentified() const {
switch (kind) {
case Box:
case Stack:
case Global:
return true;
case Class:
case Argument:
case Nested:
case Unidentified:
return false;
}
}
bool isDistinct(const AccessedStorage &other) const {
return isUniquelyIdentified() && other.isUniquelyIdentified()
&& (*this != other);
}
/// Returns the ValueDecl for the underlying storage, if it can be
/// determined. Otherwise returns null. For diagnostics and checking via the
/// ValueDecl if we are processing a `let` variable.
const ValueDecl *getDecl(SILFunction *F) const;
};
} // end namespace swift
namespace llvm {
/// Enable using AccessedStorage as a key in DenseMap.
template <> struct DenseMapInfo<swift::AccessedStorage> {
static swift::AccessedStorage getEmptyKey() {
return swift::AccessedStorage(swift::SILValue::getFromOpaqueValue(
llvm::DenseMapInfo<void *>::getEmptyKey()),
swift::AccessedStorage::Unidentified);
}
static swift::AccessedStorage getTombstoneKey() {
return swift::AccessedStorage(
swift::SILValue::getFromOpaqueValue(
llvm::DenseMapInfo<void *>::getTombstoneKey()),
swift::AccessedStorage::Unidentified);
}
static unsigned getHashValue(swift::AccessedStorage storage) {
switch (storage.getKind()) {
case swift::AccessedStorage::Box:
case swift::AccessedStorage::Stack:
case swift::AccessedStorage::Nested:
case swift::AccessedStorage::Unidentified:
return DenseMapInfo<swift::SILValue>::getHashValue(storage.getValue());
case swift::AccessedStorage::Argument:
return storage.getParamIndex();
case swift::AccessedStorage::Global:
return DenseMapInfo<void *>::getHashValue(storage.getGlobal());
case swift::AccessedStorage::Class: {
const swift::ObjectProjection &P = storage.getObjectProjection();
return llvm::hash_combine(P.getObject(), P.getProjection());
}
}
llvm_unreachable("Unhandled AccessedStorageKind");
}
static bool isEqual(swift::AccessedStorage LHS, swift::AccessedStorage RHS) {
if (LHS.getKind() != RHS.getKind())
return false;
switch (LHS.getKind()) {
case swift::AccessedStorage::Box:
case swift::AccessedStorage::Stack:
case swift::AccessedStorage::Nested:
case swift::AccessedStorage::Unidentified:
return LHS.getValue() == RHS.getValue();
case swift::AccessedStorage::Argument:
return LHS.getParamIndex() == RHS.getParamIndex();
case swift::AccessedStorage::Global:
return LHS.getGlobal() == RHS.getGlobal();
case swift::AccessedStorage::Class:
return LHS.getObjectProjection() == RHS.getObjectProjection();
}
llvm_unreachable("Unhandled AccessedStorageKind");
}
};
} // end namespace llvm
namespace swift {
/// Given an address accessed by an instruction that reads or modifies
/// memory, return an AccessedStorage object that identifies the formal access.
///
/// The returned AccessedStorage represents the best attempt to find the base of
/// the storage location being accessed at `sourceAddr`. This may be a fully
/// identified storage base of known kind, or a valid but Unidentified storage
/// location, such as a SILPHIArgument.
///
/// This may return an invalid storage object if the address producer is not
/// recognized by a whitelist of recognizable access patterns. The result must
/// always be valid when `sourceAddr` is used for formal memory access, i.e. as
/// the operand of begin_access.
///
/// If `sourceAddr` is produced by a begin_access, this returns a Nested
/// AccessedStorage kind. This is useful for exclusivity checking to distinguish
/// between a nested access vs. a conflict.
AccessedStorage findAccessedStorage(SILValue sourceAddr);
/// Given an address accessed by an instruction that reads or modifies
/// memory, return an AccessedStorage that identifies the formal access, looking
/// through any Nested access to find the original storage.
///
/// This is identical to findAccessedStorage(), but never returns Nested
/// storage.
AccessedStorage findAccessedStorageOrigin(SILValue sourceAddr);
/// Return true if the given address operand is used by a memory operation that
/// initializes the memory at that address, implying that the previous value is
/// uninitialized.
bool memInstMustInitialize(Operand *memOper);
/// Return true if the given address producer may be the source of a formal
/// access (a read or write of a potentially aliased, user visible variable).
///
/// If this returns false, then the address can be safely accessed without
/// a begin_access marker. To determine whether to emit begin_access:
/// storage = findAccessedStorage(address)
/// needsAccessMarker = storage && isPossibleFormalAccessBase(storage)
bool isPossibleFormalAccessBase(const AccessedStorage &storage, SILFunction *F);
/// Visit each address accessed by the given memory operation.
///
/// This only visits instructions that modify memory in some user-visible way,
/// which could be considered part of a formal access.
void visitAccessedAddress(SILInstruction *I,
std::function<void(Operand *)> visitor);
} // end namespace swift
#endif