blob: 1f4b3e722ec7b18d77f6d87f1628f2649fab7e8f [file] [log] [blame]
%{
from gyb_syntax_support import *
# -*- mode: C++ -*-
# Ignore the following admonition; it applies to the resulting .cpp file only
}%
//// Automatically Generated From SyntaxFactory.cpp.gyb.
//// Do Not Edit Directly!
//===--------- SyntaxFactory.cpp - Syntax Factory implementations ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the SyntaxFactory, one of the most important client-facing
// types in lib/Syntax and likely to be very commonly used.
//
// Effectively a namespace, SyntaxFactory is never instantiated, but is *the*
// one-stop shop for making new Syntax nodes. Putting all of these into a
// collection of static methods provides a single point of API lookup for
// clients' convenience and also allows the library to hide all of the
// constructors for all Syntax nodes, as the SyntaxFactory is friend to all.
//
//===----------------------------------------------------------------------===//
#include "swift/Syntax/SyntaxFactory.h"
#include "swift/Syntax/SyntaxNodes.h"
#include "swift/Syntax/Trivia.h"
#include "llvm/ADT/ArrayRef.h"
#include <vector>
using namespace swift;
using namespace swift::syntax;
TokenSyntax
SyntaxFactory::makeToken(tok Kind, OwnedString Text, SourcePresence Presence,
const Trivia &LeadingTrivia,
const Trivia &TrailingTrivia) {
return make<TokenSyntax>(RawTokenSyntax::make(Kind, Text, Presence,
LeadingTrivia, TrailingTrivia));
}
UnknownSyntax
SyntaxFactory::makeUnknownSyntax(llvm::ArrayRef<TokenSyntax> Tokens) {
RawSyntax::LayoutList Layout;
for (auto &Token : Tokens) {
Layout.push_back(Token.getRaw());
}
auto Raw = RawSyntax::make(SyntaxKind::Unknown, Layout,
SourcePresence::Present);
return make<UnknownSyntax>(Raw);
}
Syntax SyntaxFactory::makeBlankCollectionSyntax(SyntaxKind Kind) {
switch(Kind) {
% for node in SYNTAX_NODES:
% if node.is_syntax_collection():
case SyntaxKind::${node.syntax_kind}: return makeBlank${node.syntax_kind}();
% end
% end
default: break;
}
llvm_unreachable("not collection kind.");
}
std::pair<unsigned, unsigned>
SyntaxFactory::countChildren(SyntaxKind Kind){
switch(Kind) {
% for node in SYNTAX_NODES:
% if not node.is_syntax_collection():
case SyntaxKind::${node.syntax_kind}:
% child_count = len(node.children)
% non_optional_child_count = sum(0 if child.is_optional else 1 for child in node.children)
return {${non_optional_child_count}, ${child_count}};
% end
% end
default:
llvm_unreachable("bad syntax kind.");
}
}
Optional<Syntax>
SyntaxFactory::createSyntax(SyntaxKind Kind, llvm::ArrayRef<Syntax> Elements) {
switch(Kind) {
% for node in SYNTAX_NODES:
case SyntaxKind::${node.syntax_kind}: {
% if node.children:
% child_count = len(node.children)
static std::pair<bool, std::function<bool(const Syntax&)>>
ChildrenConditions[${child_count}] = {
% for child in node.children:
% if child.is_optional:
% option = "true"
% else:
% option = "false"
% if child.token_choices:
{ ${option},
[](const Syntax &S) {
// check ${child.name}.
if (auto Tok = S.getAs<TokenSyntax>()) {
auto Kind = Tok->getTokenKind();
% tok_checks = []
% for choice in child.token_choices:
% tok_checks.append("Kind == tok::%s" % choice.kind)
% end
% all_checks = ' || '.join(tok_checks)
return ${all_checks};
}
return false;
}
},
% else:
{ ${option},
[](const Syntax &S) {
// check ${child.name}.
return S.getAs<${child.type_name}>().hasValue();
}
},
% end
% end
};
Optional<Syntax> Parameters[${child_count}];
unsigned CurCond = 0;
for (unsigned I = 0, N = Elements.size(); I < N; ) {
// We should use all elements.
if (CurCond == ${child_count}) {
return None;
}
if (ChildrenConditions[CurCond].second(Elements[I])) {
// we find a node that satisfies the condition.
Parameters[CurCond].emplace(Elements[I]);
CurCond ++;
I ++;
} else if (ChildrenConditions[CurCond].first) {
// If the unsatisfied condition is optional, move on to the next condition.
CurCond ++;
} else {
// Mandatory condition is not satisfied.
return None;
}
}
for (; CurCond < ${child_count}; CurCond ++) {
if (!ChildrenConditions[CurCond].first) {
// if the remaining condition is mandatory, we cannot create.
return None;
}
}
assert(CurCond == ${child_count});
return make${node.syntax_kind}(
% params = []
% for i, child in enumerate(node.children):
% child = node.children[i]
% if child.is_optional:
% params.append("/*Optional %s*/ Parameters[%s].hasValue() ?" \
% "(*Parameters[%s]).getAs<%s>().getValue() : (Optional<%s>) None" %
% (child.name, i, i, child.type_name, child.type_name))
% else:
% params.append("/*%s*/ (*Parameters[%s]).getAs<%s>().getValue()" %
% (child.name, i, child.type_name))
% end
% end
% child_parms = '\n, '.join(params)
${child_parms}
);
% elif node.is_syntax_collection():
std::vector<${node.collection_element_type}> Parts;
for (auto &E: Elements) {
if (auto P = E.getAs<${node.collection_element_type}>()) {
Parts.emplace_back(make<${node.collection_element_type}>(P->getRaw()));
} else {
return None;
}
}
return make${node.syntax_kind}(Parts);
% else:
return None;
% end
}
% end
default:
return None;
}
}
SyntaxKind
SyntaxFactory::getUnknownKind(SyntaxKind Kind) {
switch(Kind) {
% for node in SYNTAX_NODES:
% if node.syntax_kind.endswith('Expr'):
% Result = 'SyntaxKind::UnknownExpr'
% elif node.syntax_kind.endswith('Stmt'):
% Result = 'SyntaxKind::UnknownStmt'
% elif node.syntax_kind.endswith('Decl'):
% Result = 'SyntaxKind::UnknownDecl'
% elif node.syntax_kind.endswith('Token'):
% Result = 'SyntaxKind::UnknownToken'
% else:
% Result = 'SyntaxKind::Unknown'
% end
case SyntaxKind::${node.syntax_kind}: return ${Result};
% end
default:
return SyntaxKind::Unknown;
}
}
% for node in SYNTAX_NODES:
% if node.children:
% child_params = []
% for child in node.children:
% param_type = child.type_name
% if child.is_optional:
% param_type = "llvm::Optional<%s>" % param_type
% child_params.append("%s %s" % (param_type, child.name))
% child_params = ', '.join(child_params)
${node.name}
SyntaxFactory::make${node.syntax_kind}(${child_params}) {
auto Raw = RawSyntax::make(SyntaxKind::${node.syntax_kind}, {
% for child in node.children:
% if child.is_optional:
${child.name}.hasValue() ? ${child.name}->getRaw() :
cast<RawSyntax>(${make_missing_child(child)}),
% else:
${child.name}.getRaw(),
% end
% end
}, SourcePresence::Present);
return make<${node.name}>(Raw);
}
% elif node.is_syntax_collection():
${node.name}
SyntaxFactory::make${node.syntax_kind}(
const std::vector<${node.collection_element_type}> &elements) {
RawSyntax::LayoutList layout;
for (auto &element : elements) {
layout.push_back(element.getRaw());
}
auto raw = RawSyntax::make(SyntaxKind::${node.syntax_kind},
layout, SourcePresence::Present);
return make<${node.name}>(raw);
}
% end
${node.name}
SyntaxFactory::makeBlank${node.syntax_kind}() {
auto raw = RawSyntax::make(SyntaxKind::${node.syntax_kind}, {
% for child in node.children:
${make_missing_child(child)},
% end
}, SourcePresence::Present);
return make<${node.name}>(raw);
}
% end
% for token in SYNTAX_TOKENS:
% if token.is_keyword:
TokenSyntax
SyntaxFactory::make${token.name}Keyword(const Trivia &LeadingTrivia,
const Trivia &TrailingTrivia) {
return makeToken(tok::${token.kind}, "${token.text}",
SourcePresence::Present,
LeadingTrivia, TrailingTrivia);
}
% elif token.text:
TokenSyntax
SyntaxFactory::make${token.name}Token(const Trivia &LeadingTrivia,
const Trivia &TrailingTrivia) {
return makeToken(tok::${token.kind}, "${token.text}",
SourcePresence::Present,
LeadingTrivia, TrailingTrivia);
}
% else:
TokenSyntax
SyntaxFactory::make${token.name}(OwnedString Text,
const Trivia &LeadingTrivia,
const Trivia &TrailingTrivia) {
return makeToken(tok::${token.kind}, Text, SourcePresence::Present,
LeadingTrivia, TrailingTrivia);
}
% end
% end
TupleTypeSyntax SyntaxFactory::makeVoidTupleType() {
return makeTupleType(makeLeftParenToken({}, {}),
makeBlankTupleTypeElementList(),
makeRightParenToken({}, {}));
}
TupleTypeElementSyntax SyntaxFactory::makeTupleTypeElement(
llvm::Optional<TokenSyntax> Label,
llvm::Optional<TokenSyntax> Colon, TypeSyntax Type,
llvm::Optional<TokenSyntax> TrailingComma) {
auto annotation = makeTypeAnnotation(makeBlankAttributeList(), None, Type);
return makeTupleTypeElement(Label, Colon, annotation, TrailingComma);
}
TupleTypeElementSyntax SyntaxFactory::makeTupleTypeElement(TypeSyntax Type,
llvm::Optional<TokenSyntax> TrailingComma) {
return makeTupleTypeElement(None, None, Type, TrailingComma);
}
GenericParameterSyntax
SyntaxFactory::makeGenericParameter(TokenSyntax Name,
llvm::Optional<TokenSyntax> TrailingComma) {
return makeGenericParameter(Name, None, None, TrailingComma);
}
TypeSyntax SyntaxFactory::makeTypeIdentifier(OwnedString TypeName,
const Trivia &LeadingTrivia, const Trivia &TrailingTrivia) {
auto identifier = makeIdentifier(TypeName, LeadingTrivia, TrailingTrivia);
return makeSimpleTypeIdentifier(identifier, None);
}
TypeSyntax SyntaxFactory::makeAnyTypeIdentifier(
const Trivia &LeadingTrivia, const Trivia &TrailingTrivia) {
return makeTypeIdentifier("Any", LeadingTrivia, TrailingTrivia);
}
TypeSyntax SyntaxFactory::makeSelfTypeIdentifier(
const Trivia &LeadingTrivia, const Trivia &TrailingTrivia) {
return makeTypeIdentifier("Self", LeadingTrivia, TrailingTrivia);
}
TokenSyntax SyntaxFactory::makeTypeToken(
const Trivia &LeadingTrivia, const Trivia &TrailingTrivia) {
return makeIdentifier("Type", LeadingTrivia, TrailingTrivia);
}
TokenSyntax SyntaxFactory::makeProtocolToken(
const Trivia &LeadingTrivia, const Trivia &TrailingTrivia) {
return makeIdentifier("Protocol", LeadingTrivia, TrailingTrivia);
}
TokenSyntax SyntaxFactory::makeEqualityOperator(
const Trivia &LeadingTrivia, const Trivia &TrailingTrivia) {
return makeToken(tok::oper_binary_spaced, "==", SourcePresence::Present,
LeadingTrivia, TrailingTrivia);
}