blob: 8421e7859f4c7608a8feddc38ac0b4f4f41e1b18 [file] [log] [blame]
//===--- IRGenDebugInfo.cpp - Debug Info Support --------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR debug info generation for Swift.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "debug-info"
#include "IRGenDebugInfo.h"
#include "GenOpaque.h"
#include "GenType.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/Expr.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/Pattern.h"
#include "swift/Basic/Dwarf.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/Demangling/ManglingMacros.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILModule.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Serialization/ASTReader.h"
#include "llvm/Config/config.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace swift;
using namespace irgen;
namespace {
typedef llvm::DenseMap<const llvm::MDString *, llvm::TrackingMDNodeRef>
TrackingDIRefMap;
class IRGenDebugInfoImpl : public IRGenDebugInfo {
friend class IRGenDebugInfoImpl;
const IRGenOptions &Opts;
ClangImporter &CI;
SourceManager &SM;
llvm::DIBuilder DBuilder;
IRGenModule &IGM;
/// Used for caching SILDebugScopes without inline information.
typedef std::pair<const void *, const void *> LocalScopeHash;
struct LocalScope : public LocalScopeHash {
LocalScope(const SILDebugScope *DS)
: LocalScopeHash({DS->Loc.getOpaquePointerValue(),
// If there is no parent SIL function use the scope
// pointer as a unique id instead. This is safe
// because such a function could also never have been
// SIL-inlined.
DS->Parent.getOpaqueValue()
? DS->Parent.getOpaqueValue()
: DS}) {}
};
/// Various caches.
/// @{
llvm::DenseMap<LocalScopeHash, llvm::TrackingMDNodeRef> ScopeCache;
llvm::DenseMap<const SILDebugScope *, llvm::TrackingMDNodeRef> InlinedAtCache;
llvm::DenseMap<const void *, SILLocation::DebugLoc> DebugLocCache;
llvm::DenseMap<TypeBase *, llvm::TrackingMDNodeRef> DITypeCache;
llvm::DenseMap<const void *, llvm::TrackingMDNodeRef> DIModuleCache;
llvm::StringMap<llvm::TrackingMDNodeRef> DIFileCache;
TrackingDIRefMap DIRefMap;
/// @}
/// A list of replaceable fwddecls that need to be RAUWed at the end.
std::vector<std::pair<TypeBase *, llvm::TrackingMDRef>> ReplaceMap;
/// The set of imported modules.
llvm::DenseSet<ModuleDecl *> ImportedModules;
llvm::BumpPtrAllocator DebugInfoNames;
StringRef CWDName; /// The current working directory.
SmallString<0> ConfigMacros; /// User-provided -D macro definitions.
llvm::DICompileUnit *TheCU = nullptr; /// The current compilation unit.
llvm::DIFile *MainFile = nullptr; /// The main file.
llvm::DIModule *MainModule = nullptr; /// The current module.
llvm::DIScope *EntryPointFn =
nullptr; /// Scope of SWIFT_ENTRY_POINT_FUNCTION.
TypeAliasDecl *MetadataTypeDecl; /// The type decl for swift.type.
llvm::DIType *InternalType; /// Catch-all type for opaque internal types.
SILLocation::DebugLoc LastDebugLoc; /// The last location that was emitted.
const SILDebugScope *LastScope; /// The scope of that last location.
/// Used by pushLoc.
SmallVector<std::pair<SILLocation::DebugLoc, const SILDebugScope *>, 8>
LocationStack;
public:
IRGenDebugInfoImpl(const IRGenOptions &Opts, ClangImporter &CI,
IRGenModule &IGM, llvm::Module &M, SourceFile *SF);
void finalize();
void setCurrentLoc(IRBuilder &Builder, const SILDebugScope *DS,
Optional<SILLocation> Loc = None);
void clearLoc(IRBuilder &Builder);
void pushLoc();
void popLoc();
void setEntryPointLoc(IRBuilder &Builder);
llvm::DIScope *getEntryPointFn();
llvm::DIScope *getOrCreateScope(const SILDebugScope *DS);
void emitImport(ImportDecl *D);
llvm::DISubprogram *emitFunction(const SILDebugScope *DS, llvm::Function *Fn,
SILFunctionTypeRepresentation Rep,
SILType Ty, DeclContext *DeclCtx = nullptr,
GenericEnvironment *GE = nullptr);
llvm::DISubprogram *emitFunction(SILFunction &SILFn, llvm::Function *Fn);
void emitArtificialFunction(IRBuilder &Builder, llvm::Function *Fn,
SILType SILTy);
void emitVariableDeclaration(IRBuilder &Builder,
ArrayRef<llvm::Value *> Storage,
DebugTypeInfo Ty, const SILDebugScope *DS,
ValueDecl *VarDecl, StringRef Name,
unsigned ArgNo = 0,
IndirectionKind = DirectValue,
ArtificialKind = RealValue);
void emitDbgIntrinsic(IRBuilder &Builder, llvm::Value *Storage,
llvm::DILocalVariable *Var, llvm::DIExpression *Expr,
unsigned Line, unsigned Col, llvm::DILocalScope *Scope,
const SILDebugScope *DS);
void emitGlobalVariableDeclaration(llvm::GlobalVariable *Storage,
StringRef Name, StringRef LinkageName,
DebugTypeInfo DebugType,
bool IsLocalToUnit,
Optional<SILLocation> Loc);
void emitTypeMetadata(IRGenFunction &IGF, llvm::Value *Metadata,
StringRef Name);
/// Return the DIBuilder.
llvm::DIBuilder &getBuilder() { return DBuilder; }
/// Decode (and cache) a SourceLoc.
SILLocation::DebugLoc decodeSourceLoc(SourceLoc SL);
private:
static StringRef getFilenameFromDC(const DeclContext *DC) {
if (auto LF = dyn_cast<LoadedFile>(DC))
return LF->getFilename();
if (auto SF = dyn_cast<SourceFile>(DC))
return SF->getFilename();
else if (auto M = dyn_cast<ModuleDecl>(DC))
return M->getModuleFilename();
else
return StringRef();
}
SILLocation::DebugLoc getDeserializedLoc(Pattern *) { return {}; }
SILLocation::DebugLoc getDeserializedLoc(Expr *) { return {}; }
SILLocation::DebugLoc getDeserializedLoc(Stmt *) { return {}; }
SILLocation::DebugLoc getDeserializedLoc(Decl *D) {
SILLocation::DebugLoc L;
const DeclContext *DC = D->getDeclContext()->getModuleScopeContext();
StringRef Filename = getFilenameFromDC(DC);
if (!Filename.empty())
L.Filename = Filename;
return L;
}
/// Use the SM to figure out the actual line/column of a SourceLoc.
template <typename WithLoc>
SILLocation::DebugLoc getDebugLoc(IRGenDebugInfo &DI, WithLoc *S,
bool End = false) {
SILLocation::DebugLoc L;
if (S == nullptr)
return L;
SourceLoc Loc = End ? S->getEndLoc() : S->getStartLoc();
if (Loc.isInvalid())
// This may be a deserialized or clang-imported decl. And modules
// don't come with SourceLocs right now. Get at least the name of
// the module.
return getDeserializedLoc(S);
return DI.decodeSourceLoc(Loc);
}
SILLocation::DebugLoc getStartLocation(Optional<SILLocation> OptLoc) {
if (!OptLoc)
return {};
return decodeSourceLoc(OptLoc->getStartSourceLoc());
}
SILLocation::DebugLoc decodeDebugLoc(SILLocation Loc) {
if (Loc.isDebugInfoLoc())
return Loc.getDebugInfoLoc();
return decodeSourceLoc(Loc.getDebugSourceLoc());
}
SILLocation::DebugLoc getDebugLocation(Optional<SILLocation> OptLoc) {
if (!OptLoc || OptLoc->isInPrologue())
return {};
return decodeDebugLoc(*OptLoc);
}
/// Strdup a raw char array using the bump pointer.
StringRef BumpAllocatedString(const char *Data, size_t Length) {
char *Ptr = DebugInfoNames.Allocate<char>(Length + 1);
memcpy(Ptr, Data, Length);
*(Ptr + Length) = 0;
return StringRef(Ptr, Length);
}
/// Strdup S using the bump pointer.
StringRef BumpAllocatedString(std::string S) {
return BumpAllocatedString(S.c_str(), S.length());
}
/// Strdup StringRef S using the bump pointer.
StringRef BumpAllocatedString(StringRef S) {
return BumpAllocatedString(S.data(), S.size());
}
/// Return the size reported by a type.
static unsigned getSizeInBits(llvm::DIType *Ty) {
// Follow derived types until we reach a type that
// reports back a size.
while (isa<llvm::DIDerivedType>(Ty) && !Ty->getSizeInBits()) {
auto *DT = cast<llvm::DIDerivedType>(Ty);
Ty = DT->getBaseType().resolve();
if (!Ty)
return 0;
}
return Ty->getSizeInBits();
}
#ifndef NDEBUG
/// Return the size reported by the variable's type.
static unsigned getSizeInBits(const llvm::DILocalVariable *Var) {
llvm::DIType *Ty = Var->getType().resolve();
return getSizeInBits(Ty);
}
#endif
/// Determine whether this debug scope belongs to an explicit closure.
static bool isExplicitClosure(const SILFunction *SILFn) {
if (SILFn && SILFn->hasLocation())
if (Expr *E = SILFn->getLocation().getAsASTNode<Expr>())
if (isa<ClosureExpr>(E))
return true;
return false;
}
llvm::MDNode *createInlinedAt(const SILDebugScope *DS) {
auto *CS = DS->InlinedCallSite;
if (!CS)
return nullptr;
auto CachedInlinedAt = InlinedAtCache.find(CS);
if (CachedInlinedAt != InlinedAtCache.end())
return cast<llvm::MDNode>(CachedInlinedAt->second);
auto L = decodeDebugLoc(CS->Loc);
auto Scope = getOrCreateScope(CS->Parent.dyn_cast<const SILDebugScope *>());
auto InlinedAt =
llvm::DebugLoc::get(L.Line, L.Column, Scope, createInlinedAt(CS));
InlinedAtCache.insert(
{CS, llvm::TrackingMDNodeRef(InlinedAt.getAsMDNode())});
return InlinedAt;
}
#ifndef NDEBUG
/// Perform a couple of sanity checks on scopes.
static bool parentScopesAreSane(const SILDebugScope *DS) {
auto *Parent = DS;
while ((Parent = Parent->Parent.dyn_cast<const SILDebugScope *>())) {
if (!DS->InlinedCallSite)
assert(!Parent->InlinedCallSite &&
"non-inlined scope has an inlined parent");
}
return true;
}
#endif
llvm::DIFile *getOrCreateFile(StringRef Filename) {
if (Filename.empty())
return MainFile;
// Look in the cache first.
auto CachedFile = DIFileCache.find(Filename);
if (CachedFile != DIFileCache.end()) {
// Verify that the information still exists.
if (llvm::Metadata *V = CachedFile->second)
return cast<llvm::DIFile>(V);
}
// Detect the main file.
if (MainFile && Filename.endswith(MainFile->getFilename())) {
SmallString<256> AbsThisFile, AbsMainFile;
AbsThisFile = Filename;
llvm::sys::fs::make_absolute(AbsThisFile);
llvm::sys::path::append(AbsMainFile, MainFile->getDirectory(),
MainFile->getFilename());
if (AbsThisFile == AbsMainFile) {
DIFileCache[Filename] = llvm::TrackingMDNodeRef(MainFile);
return MainFile;
}
}
// Create a new one.
StringRef File = llvm::sys::path::filename(Filename);
llvm::SmallString<512> Path(Filename);
llvm::sys::path::remove_filename(Path);
llvm::DIFile *F = DBuilder.createFile(File, Path);
// Cache it.
DIFileCache[Filename] = llvm::TrackingMDNodeRef(F);
return F;
}
StringRef getName(const FuncDecl &FD) {
// Getters and Setters are anonymous functions, so we forge a name
// using its parent declaration.
if (FD.isAccessor())
if (ValueDecl *VD = FD.getAccessorStorageDecl()) {
const char *Kind;
switch (FD.getAccessorKind()) {
case AccessorKind::NotAccessor:
llvm_unreachable("this is an accessor");
case AccessorKind::IsGetter:
Kind = ".get";
break;
case AccessorKind::IsSetter:
Kind = ".set";
break;
case AccessorKind::IsWillSet:
Kind = ".willset";
break;
case AccessorKind::IsDidSet:
Kind = ".didset";
break;
case AccessorKind::IsMaterializeForSet:
Kind = ".materialize";
break;
case AccessorKind::IsAddressor:
Kind = ".addressor";
break;
case AccessorKind::IsMutableAddressor:
Kind = ".mutableAddressor";
break;
}
SmallVector<char, 64> Buf;
StringRef Name = (VD->getBaseName().userFacingName() +
Twine(Kind)).toStringRef(Buf);
return BumpAllocatedString(Name);
}
if (FD.hasName())
return FD.getName().str();
return StringRef();
}
StringRef getName(SILLocation L) {
if (L.isNull())
return StringRef();
if (FuncDecl *FD = L.getAsASTNode<FuncDecl>())
return getName(*FD);
if (L.isASTNode<ConstructorDecl>())
return "init";
if (L.isASTNode<DestructorDecl>())
return "deinit";
return StringRef();
}
static CanSILFunctionType getFunctionType(SILType SILTy) {
if (!SILTy)
return CanSILFunctionType();
auto FnTy = SILTy.getAs<SILFunctionType>();
if (!FnTy) {
DEBUG(llvm::dbgs() << "Unexpected function type: "; SILTy.dump();
llvm::dbgs() << "\n");
return CanSILFunctionType();
}
return FnTy;
}
llvm::DIScope *getOrCreateContext(DeclContext *DC) {
if (!DC)
return TheCU;
if (isa<FuncDecl>(DC))
if (auto *Decl = IGM.getSILModule().lookUpFunction(SILDeclRef(
cast<AbstractFunctionDecl>(DC), SILDeclRef::Kind::Func)))
return getOrCreateScope(Decl->getDebugScope());
switch (DC->getContextKind()) {
// The interesting cases are already handled above.
case DeclContextKind::AbstractFunctionDecl:
case DeclContextKind::AbstractClosureExpr:
// We don't model these in DWARF.
case DeclContextKind::SerializedLocal:
case DeclContextKind::Initializer:
case DeclContextKind::ExtensionDecl:
case DeclContextKind::SubscriptDecl:
case DeclContextKind::TopLevelCodeDecl:
return getOrCreateContext(DC->getParent());
case DeclContextKind::Module:
return getOrCreateModule(
{ModuleDecl::AccessPathTy(), cast<ModuleDecl>(DC)});
case DeclContextKind::FileUnit:
// A module may contain multiple files.
return getOrCreateContext(DC->getParent());
case DeclContextKind::GenericTypeDecl: {
auto *NTD = cast<NominalTypeDecl>(DC);
auto *Ty = NTD->getDeclaredType().getPointer();
if (auto *DITy = getTypeOrNull(Ty))
return DITy;
// Create a Forward-declared type.
auto Loc = getDebugLoc(*this, NTD);
auto File = getOrCreateFile(Loc.Filename);
auto Line = Loc.Line;
auto FwdDecl = DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_structure_type, NTD->getName().str(),
getOrCreateContext(DC->getParent()), File, Line,
llvm::dwarf::DW_LANG_Swift, 0, 0);
ReplaceMap.emplace_back(
std::piecewise_construct, std::make_tuple(Ty),
std::make_tuple(static_cast<llvm::Metadata *>(FwdDecl)));
return FwdDecl;
}
}
return TheCU;
}
void createParameterType(llvm::SmallVectorImpl<llvm::Metadata *> &Parameters,
SILType type, DeclContext *DeclCtx,
GenericEnvironment *GE) {
auto RealType = type.getSwiftRValueType();
if (type.isAddress())
RealType = CanInOutType::get(RealType);
auto DbgTy = DebugTypeInfo::getFromTypeInfo(DeclCtx, GE, RealType,
IGM.getTypeInfo(type));
Parameters.push_back(getOrCreateType(DbgTy));
}
// This is different from SILFunctionType::getAllResultsType() in some subtle
// ways.
static SILType getResultTypeForDebugInfo(CanSILFunctionType fnTy) {
if (fnTy->getNumResults() == 1) {
return fnTy->getResults()[0].getSILStorageType();
} else if (!fnTy->getNumIndirectFormalResults()) {
return fnTy->getDirectFormalResultsType();
} else {
SmallVector<TupleTypeElt, 4> eltTys;
for (auto &result : fnTy->getResults()) {
eltTys.push_back(result.getType());
}
return SILType::getPrimitiveAddressType(
CanType(TupleType::get(eltTys, fnTy->getASTContext())));
}
}
llvm::DITypeRefArray createParameterTypes(SILType SILTy, DeclContext *DeclCtx,
GenericEnvironment *GE) {
if (!SILTy)
return nullptr;
return createParameterTypes(SILTy.castTo<SILFunctionType>(), DeclCtx, GE);
}
llvm::DITypeRefArray createParameterTypes(CanSILFunctionType FnTy,
DeclContext *DeclCtx,
GenericEnvironment *GE) {
SmallVector<llvm::Metadata *, 16> Parameters;
GenericContextScope scope(IGM, FnTy->getGenericSignature());
// The function return type is the first element in the list.
createParameterType(Parameters, getResultTypeForDebugInfo(FnTy), DeclCtx,
GE);
// Actually, the input type is either a single type or a tuple
// type. We currently represent a function with one n-tuple argument
// as an n-ary function.
for (auto Param : FnTy->getParameters())
createParameterType(Parameters, IGM.silConv.getSILType(Param), DeclCtx,
GE);
return DBuilder.getOrCreateTypeArray(Parameters);
}
/// FIXME: replace this condition with something more sane.
static bool isAllocatingConstructor(SILFunctionTypeRepresentation Rep,
DeclContext *DeclCtx) {
return Rep != SILFunctionTypeRepresentation::Method && DeclCtx &&
isa<ConstructorDecl>(DeclCtx);
}
llvm::DIModule *getOrCreateModule(const void *Key, llvm::DIScope *Parent,
StringRef Name, StringRef IncludePath,
StringRef ConfigMacros = StringRef()) {
// Look in the cache first.
auto Val = DIModuleCache.find(Key);
if (Val != DIModuleCache.end())
return cast<llvm::DIModule>(Val->second);
StringRef Sysroot = IGM.Context.SearchPathOpts.SDKPath;
auto M =
DBuilder.createModule(Parent, Name, ConfigMacros, IncludePath, Sysroot);
DIModuleCache.insert({Key, llvm::TrackingMDNodeRef(M)});
return M;
}
llvm::DIModule *
getOrCreateModule(clang::ExternalASTSource::ASTSourceDescriptor Desc) {
// Handle Clang modules.
if (const clang::Module *ClangModule = Desc.getModuleOrNull()) {
llvm::DIModule *Parent = nullptr;
if (ClangModule->Parent)
Parent = getOrCreateModule(*ClangModule->Parent);
return getOrCreateModule(ClangModule, Parent,
Desc.getModuleName(), Desc.getPath(),
ConfigMacros);
}
// Handle PCH.
return getOrCreateModule(Desc.getASTFile().bytes_begin(), nullptr,
Desc.getModuleName(), Desc.getPath(),
ConfigMacros);
};
llvm::DIModule *getOrCreateModule(ModuleDecl::ImportedModule IM) {
ModuleDecl *M = IM.second;
if (auto *ClangModule = M->findUnderlyingClangModule())
return getOrCreateModule(*ClangModule);
StringRef Path = getFilenameFromDC(M);
StringRef Name = M->getName().str();
return getOrCreateModule(M, TheCU, Name, Path);
}
TypeAliasDecl *getMetadataType() {
if (!MetadataTypeDecl) {
MetadataTypeDecl = new (IGM.Context) TypeAliasDecl(
SourceLoc(), SourceLoc(), IGM.Context.getIdentifier("$swift.type"),
SourceLoc(),
/*genericparams*/ nullptr, IGM.Context.TheBuiltinModule);
MetadataTypeDecl->setUnderlyingType(IGM.Context.TheRawPointerType);
}
return MetadataTypeDecl;
}
/// Return the DIFile that is the ancestor of Scope.
llvm::DIFile *getFile(llvm::DIScope *Scope) {
while (!isa<llvm::DIFile>(Scope)) {
switch (Scope->getTag()) {
case llvm::dwarf::DW_TAG_lexical_block:
Scope = cast<llvm::DILexicalBlock>(Scope)->getScope();
break;
case llvm::dwarf::DW_TAG_subprogram:
Scope = cast<llvm::DISubprogram>(Scope)->getFile();
break;
default:
return MainFile;
}
if (Scope)
return MainFile;
}
return cast<llvm::DIFile>(Scope);
}
static Size getStorageSize(const llvm::DataLayout &DL,
ArrayRef<llvm::Value *> Storage) {
unsigned size = 0;
for (llvm::Value *Piece : Storage)
size += DL.getTypeSizeInBits(Piece->getType());
return Size(size);
}
StringRef getMangledName(DebugTypeInfo DbgTy) {
if (MetadataTypeDecl && DbgTy.getDecl() == MetadataTypeDecl)
return BumpAllocatedString(DbgTy.getDecl()->getName().str());
Mangle::ASTMangler Mangler;
std::string Name = Mangler.mangleTypeForDebugger(
DbgTy.getType(), DbgTy.getDeclContext(), DbgTy.getGenericEnvironment());
return BumpAllocatedString(Name);
}
llvm::DIDerivedType *createMemberType(DebugTypeInfo DbgTy, StringRef Name,
unsigned &OffsetInBits,
llvm::DIScope *Scope,
llvm::DIFile *File,
llvm::DINode::DIFlags Flags) {
unsigned SizeOfByte = CI.getTargetInfo().getCharWidth();
auto *Ty = getOrCreateType(DbgTy);
auto *DITy = DBuilder.createMemberType(Scope, Name, File, 0,
SizeOfByte * DbgTy.size.getValue(),
0, OffsetInBits, Flags, Ty);
OffsetInBits += getSizeInBits(Ty);
OffsetInBits =
llvm::alignTo(OffsetInBits, SizeOfByte * DbgTy.align.getValue());
return DITy;
}
llvm::DINodeArray
getTupleElements(TupleType *TupleTy, llvm::DIScope *Scope, llvm::DIFile *File,
llvm::DINode::DIFlags Flags, DeclContext *DeclContext,
GenericEnvironment *GE, unsigned &SizeInBits) {
SmallVector<llvm::Metadata *, 16> Elements;
unsigned OffsetInBits = 0;
auto genericSig = IGM.getSILTypes().getCurGenericContext();
for (auto ElemTy : TupleTy->getElementTypes()) {
auto &elemTI = IGM.getTypeInfoForUnlowered(
AbstractionPattern(genericSig, ElemTy->getCanonicalType()), ElemTy);
auto DbgTy =
DebugTypeInfo::getFromTypeInfo(DeclContext, GE, ElemTy, elemTI);
Elements.push_back(createMemberType(DbgTy, StringRef(), OffsetInBits,
Scope, File, Flags));
}
SizeInBits = OffsetInBits;
return DBuilder.getOrCreateArray(Elements);
}
llvm::DINodeArray getStructMembers(NominalTypeDecl *D, Type BaseTy,
llvm::DIScope *Scope, llvm::DIFile *File,
llvm::DINode::DIFlags Flags,
unsigned &SizeInBits) {
SmallVector<llvm::Metadata *, 16> Elements;
unsigned OffsetInBits = 0;
for (VarDecl *VD : D->getStoredProperties()) {
auto memberTy =
BaseTy->getTypeOfMember(IGM.getSwiftModule(), VD, nullptr);
auto DbgTy = DebugTypeInfo::getFromTypeInfo(
VD->getDeclContext(),
VD->getDeclContext()->getGenericEnvironmentOfContext(),
VD->getInterfaceType(),
IGM.getTypeInfoForUnlowered(
IGM.getSILTypes().getAbstractionPattern(VD), memberTy));
Elements.push_back(createMemberType(DbgTy, VD->getName().str(),
OffsetInBits, Scope, File, Flags));
}
if (OffsetInBits > SizeInBits)
SizeInBits = OffsetInBits;
return DBuilder.getOrCreateArray(Elements);
}
llvm::DICompositeType *
createStructType(DebugTypeInfo DbgTy, NominalTypeDecl *Decl, Type BaseTy,
llvm::DIScope *Scope, llvm::DIFile *File, unsigned Line,
unsigned SizeInBits, unsigned AlignInBits,
llvm::DINode::DIFlags Flags, llvm::DIType *DerivedFrom,
unsigned RuntimeLang, StringRef UniqueID) {
StringRef Name = Decl->getName().str();
// Forward declare this first because types may be recursive.
auto FwdDecl = llvm::TempDIType(DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_structure_type, Name, Scope, File, Line,
llvm::dwarf::DW_LANG_Swift, SizeInBits, 0, Flags, UniqueID));
#ifndef NDEBUG
if (UniqueID.empty())
assert(!Name.empty() &&
"no mangled name and no human readable name given");
else
assert((UniqueID.startswith("_T") ||
UniqueID.startswith(MANGLING_PREFIX_STR)) &&
"UID is not a mangled name");
#endif
auto TH = llvm::TrackingMDNodeRef(FwdDecl.get());
DITypeCache[DbgTy.getType()] = TH;
auto Members =
getStructMembers(Decl, BaseTy, Scope, File, Flags, SizeInBits);
auto DITy = DBuilder.createStructType(
Scope, Name, File, Line, SizeInBits, AlignInBits, Flags, DerivedFrom,
Members, RuntimeLang, nullptr, UniqueID);
DBuilder.replaceTemporary(std::move(FwdDecl), DITy);
return DITy;
}
llvm::DINodeArray getEnumElements(DebugTypeInfo DbgTy, EnumDecl *ED,
llvm::DIScope *Scope, llvm::DIFile *File,
llvm::DINode::DIFlags Flags) {
SmallVector<llvm::Metadata *, 16> Elements;
for (auto *ElemDecl : ED->getAllElements()) {
// FIXME <rdar://problem/14845818> Support enums.
// Swift Enums can be both like DWARF enums and discriminated unions.
DebugTypeInfo ElemDbgTy;
if (ED->hasRawType())
// An enum with a raw type (enum E : Int {}), similar to a
// DWARF enum.
//
// The storage occupied by the enum may be smaller than the
// one of the raw type as long as it is large enough to hold
// all enum values. Use the raw type for the debug type, but
// the storage size from the enum.
ElemDbgTy =
DebugTypeInfo(ED, DbgTy.getGenericEnvironment(), ED->getRawType(),
DbgTy.StorageType, DbgTy.size, DbgTy.align, true);
else if (auto ArgTy = ElemDecl->getArgumentInterfaceType()) {
// A discriminated union. This should really be described as a
// DW_TAG_variant_type. For now only describing the data.
ArgTy = ElemDecl->getParentEnum()->mapTypeIntoContext(ArgTy);
auto &TI = IGM.getTypeInfoForUnlowered(ArgTy);
ElemDbgTy = DebugTypeInfo::getFromTypeInfo(
ElemDecl->getDeclContext(),
ElemDecl->getDeclContext()->getGenericEnvironmentOfContext(), ArgTy,
TI);
} else {
// Discriminated union case without argument. Fallback to Int
// as the element type; there is no storage here.
Type IntTy = IGM.Context.getIntDecl()->getDeclaredType();
ElemDbgTy = DebugTypeInfo(
ElemDecl->getDeclContext(),
ElemDecl->getDeclContext()->getGenericEnvironmentOfContext(), IntTy,
DbgTy.StorageType, Size(0), Alignment(1), true);
}
unsigned Offset = 0;
auto MTy = createMemberType(ElemDbgTy, ElemDecl->getName().str(), Offset,
Scope, File, Flags);
Elements.push_back(MTy);
}
return DBuilder.getOrCreateArray(Elements);
}
llvm::DICompositeType *createEnumType(DebugTypeInfo DbgTy, EnumDecl *Decl,
StringRef MangledName,
llvm::DIScope *Scope,
llvm::DIFile *File, unsigned Line,
llvm::DINode::DIFlags Flags) {
unsigned SizeOfByte = CI.getTargetInfo().getCharWidth();
unsigned SizeInBits = DbgTy.size.getValue() * SizeOfByte;
// Default, since Swift doesn't allow specifying a custom alignment.
unsigned AlignInBits = 0;
// FIXME: Is DW_TAG_union_type the right thing here?
// Consider using a DW_TAG_variant_type instead.
auto FwdDecl = llvm::TempDIType(DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_union_type, MangledName, Scope, File, Line,
llvm::dwarf::DW_LANG_Swift, SizeInBits, AlignInBits, Flags,
MangledName));
auto TH = llvm::TrackingMDNodeRef(FwdDecl.get());
DITypeCache[DbgTy.getType()] = TH;
auto DITy = DBuilder.createUnionType(
Scope, Decl->getName().str(), File, Line, SizeInBits, AlignInBits,
Flags, getEnumElements(DbgTy, Decl, Scope, File, Flags),
llvm::dwarf::DW_LANG_Swift, MangledName);
DBuilder.replaceTemporary(std::move(FwdDecl), DITy);
return DITy;
}
llvm::DIType *getOrCreateDesugaredType(Type Ty, DebugTypeInfo DbgTy) {
DebugTypeInfo BlandDbgTy(
DbgTy.getDeclContext(), DbgTy.getGenericEnvironment(), Ty,
DbgTy.StorageType, DbgTy.size, DbgTy.align, DbgTy.DefaultAlignment);
return getOrCreateType(BlandDbgTy);
}
uint64_t getSizeOfBasicType(DebugTypeInfo DbgTy) {
uint64_t SizeOfByte = CI.getTargetInfo().getCharWidth();
uint64_t BitWidth = DbgTy.size.getValue() * SizeOfByte;
llvm::Type *StorageType = DbgTy.StorageType
? DbgTy.StorageType
: IGM.DataLayout.getSmallestLegalIntType(
IGM.getLLVMContext(), BitWidth);
if (StorageType)
return IGM.DataLayout.getTypeSizeInBits(StorageType);
// This type is too large to fit in a register.
assert(BitWidth > IGM.DataLayout.getLargestLegalIntTypeSizeInBits());
return BitWidth;
}
llvm::DIType *createPointerSizedStruct(llvm::DIScope *Scope, StringRef Name,
llvm::DIFile *File, unsigned Line,
llvm::DINode::DIFlags Flags,
StringRef MangledName) {
if (Opts.DebugInfoKind > IRGenDebugInfoKind::ASTTypes) {
auto FwdDecl = DBuilder.createForwardDecl(
llvm::dwarf::DW_TAG_structure_type, Name, Scope, File, Line,
llvm::dwarf::DW_LANG_Swift, 0, 0);
return createPointerSizedStruct(Scope, Name, FwdDecl, File, Line, Flags,
MangledName);
} else {
unsigned SizeInBits = CI.getTargetInfo().getPointerWidth(0);
return createOpaqueStruct(Scope, Name, File, Line, SizeInBits, 0, Flags,
MangledName);
}
}
llvm::DIType *createPointerSizedStruct(llvm::DIScope *Scope, StringRef Name,
llvm::DIType *PointeeTy,
llvm::DIFile *File, unsigned Line,
llvm::DINode::DIFlags Flags,
StringRef MangledName) {
unsigned PtrSize = CI.getTargetInfo().getPointerWidth(0);
auto PtrTy = DBuilder.createPointerType(PointeeTy, PtrSize, 0);
llvm::Metadata *Elements[] = {DBuilder.createMemberType(
Scope, "ptr", File, 0, PtrSize, 0, 0, Flags, PtrTy)};
return DBuilder.createStructType(
Scope, Name, File, Line, PtrSize, 0, Flags,
/* DerivedFrom */ nullptr, DBuilder.getOrCreateArray(Elements),
llvm::dwarf::DW_LANG_Swift, nullptr, MangledName);
}
llvm::DIType *
createDoublePointerSizedStruct(llvm::DIScope *Scope, StringRef Name,
llvm::DIType *PointeeTy, llvm::DIFile *File,
unsigned Line, llvm::DINode::DIFlags Flags,
StringRef MangledName) {
unsigned PtrSize = CI.getTargetInfo().getPointerWidth(0);
llvm::Metadata *Elements[] = {
DBuilder.createMemberType(
Scope, "ptr", File, 0, PtrSize, 0, 0, Flags,
DBuilder.createPointerType(PointeeTy, PtrSize, 0)),
DBuilder.createMemberType(
Scope, "_", File, 0, PtrSize, 0, 0, Flags,
DBuilder.createPointerType(nullptr, PtrSize, 0))};
return DBuilder.createStructType(
Scope, Name, File, Line, 2 * PtrSize, 0, Flags,
/* DerivedFrom */ nullptr, DBuilder.getOrCreateArray(Elements),
llvm::dwarf::DW_LANG_Swift, nullptr, MangledName);
}
llvm::DIType *createFunctionPointer(DebugTypeInfo DbgTy, llvm::DIScope *Scope,
unsigned SizeInBits, unsigned AlignInBits,
llvm::DINode::DIFlags Flags,
StringRef MangledName) {
auto FwdDecl = llvm::TempDINode(DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_subroutine_type, MangledName, Scope, MainFile, 0,
llvm::dwarf::DW_LANG_Swift, SizeInBits, AlignInBits, Flags,
MangledName));
auto TH = llvm::TrackingMDNodeRef(FwdDecl.get());
DITypeCache[DbgTy.getType()] = TH;
CanSILFunctionType FunTy;
TypeBase *BaseTy = DbgTy.getType();
if (auto *SILFnTy = dyn_cast<SILFunctionType>(BaseTy))
FunTy = CanSILFunctionType(SILFnTy);
// FIXME: Handling of generic parameters in SIL type lowering is in flux.
// DebugInfo doesn't appear to care about the generic context, so just
// throw it away before lowering.
else if (isa<GenericFunctionType>(BaseTy)) {
auto *fTy = cast<AnyFunctionType>(BaseTy);
auto *nongenericTy = FunctionType::get(fTy->getInput(), fTy->getResult(),
fTy->getExtInfo());
FunTy = IGM.getLoweredType(nongenericTy).castTo<SILFunctionType>();
} else
FunTy = IGM.getLoweredType(BaseTy).castTo<SILFunctionType>();
auto Params = createParameterTypes(FunTy, DbgTy.getDeclContext(),
DbgTy.getGenericEnvironment());
auto FnTy = DBuilder.createSubroutineType(Params, Flags);
llvm::DIType *DITy;
if (FunTy->getRepresentation() == SILFunctionType::Representation::Thick) {
if (SizeInBits == 2 * CI.getTargetInfo().getPointerWidth(0))
// This is a FunctionPairTy: { i8*, %swift.refcounted* }.
DITy = createDoublePointerSizedStruct(Scope, MangledName, FnTy,
MainFile, 0, Flags, MangledName);
else
// This is a generic function as noted above.
DITy = createOpaqueStruct(Scope, MangledName, MainFile, 0, SizeInBits,
AlignInBits, Flags, MangledName);
} else {
assert(SizeInBits == CI.getTargetInfo().getPointerWidth(0));
DITy = createPointerSizedStruct(Scope, MangledName, FnTy, MainFile, 0,
Flags, MangledName);
}
DBuilder.replaceTemporary(std::move(FwdDecl), DITy);
return DITy;
}
llvm::DIType *createTuple(DebugTypeInfo DbgTy, llvm::DIScope *Scope,
unsigned SizeInBits, unsigned AlignInBits,
llvm::DINode::DIFlags Flags,
StringRef MangledName) {
TypeBase *BaseTy = DbgTy.getType();
auto *TupleTy = BaseTy->castTo<TupleType>();
auto FwdDecl = llvm::TempDINode(DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_structure_type, MangledName, Scope, MainFile, 0,
llvm::dwarf::DW_LANG_Swift, SizeInBits, AlignInBits, Flags,
MangledName));
DITypeCache[DbgTy.getType()] = llvm::TrackingMDNodeRef(FwdDecl.get());
unsigned RealSize;
auto Elements = getTupleElements(TupleTy, Scope, MainFile, Flags,
DbgTy.getDeclContext(),
DbgTy.getGenericEnvironment(), RealSize);
// FIXME: Handle %swift.opaque members and make this into an assertion.
if (!RealSize)
RealSize = SizeInBits;
auto DITy = DBuilder.createStructType(
Scope, MangledName, MainFile, 0, RealSize, AlignInBits, Flags,
nullptr, // DerivedFrom
Elements, llvm::dwarf::DW_LANG_Swift, nullptr, MangledName);
DBuilder.replaceTemporary(std::move(FwdDecl), DITy);
return DITy;
}
llvm::DIType *createOpaqueStruct(llvm::DIScope *Scope, StringRef Name,
llvm::DIFile *File, unsigned Line,
unsigned SizeInBits, unsigned AlignInBits,
llvm::DINode::DIFlags Flags,
StringRef MangledName) {
return DBuilder.createStructType(
Scope, Name, File, Line, SizeInBits, AlignInBits, Flags,
/* DerivedFrom */ nullptr,
DBuilder.getOrCreateArray(ArrayRef<llvm::Metadata *>()),
llvm::dwarf::DW_LANG_Swift, nullptr, MangledName);
}
llvm::DIType *createType(DebugTypeInfo DbgTy, StringRef MangledName,
llvm::DIScope *Scope, llvm::DIFile *File) {
// FIXME: For SizeInBits, clang uses the actual size of the type on
// the target machine instead of the storage size that is alloca'd
// in the LLVM IR. For all types that are boxed in a struct, we are
// emitting the storage size of the struct, but it may be necessary
// to emit the (target!) size of the underlying basic type.
uint64_t SizeOfByte = CI.getTargetInfo().getCharWidth();
uint64_t SizeInBits = DbgTy.size.getValue() * SizeOfByte;
unsigned AlignInBits =
DbgTy.DefaultAlignment ? 0 : DbgTy.align.getValue() * SizeOfByte;
unsigned Encoding = 0;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
TypeBase *BaseTy = DbgTy.getType();
if (!BaseTy) {
DEBUG(llvm::dbgs() << "Type without TypeBase: "; DbgTy.getType()->dump();
llvm::dbgs() << "\n");
if (!InternalType) {
StringRef Name = "<internal>";
InternalType = DBuilder.createForwardDecl(
llvm::dwarf::DW_TAG_structure_type, Name, Scope, File,
/*Line*/ 0, llvm::dwarf::DW_LANG_Swift, SizeInBits, AlignInBits);
}
return InternalType;
}
// Here goes!
switch (BaseTy->getKind()) {
case TypeKind::BuiltinInteger: {
Encoding = llvm::dwarf::DW_ATE_unsigned;
SizeInBits = getSizeOfBasicType(DbgTy);
break;
}
case TypeKind::BuiltinFloat: {
auto *FloatTy = BaseTy->castTo<BuiltinFloatType>();
// Assuming that the bitwidth and FloatTy->getFPKind() are identical.
SizeInBits = FloatTy->getBitWidth();
Encoding = llvm::dwarf::DW_ATE_float;
break;
}
case TypeKind::BuiltinUnknownObject: {
// The builtin opaque Objective-C pointer type. Useful for pushing
// an Objective-C type through swift.
unsigned PtrSize = CI.getTargetInfo().getPointerWidth(0);
auto IdTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
MangledName, Scope, File, 0,
llvm::dwarf::DW_LANG_ObjC, 0, 0);
return DBuilder.createPointerType(IdTy, PtrSize, 0,
/* DWARFAddressSpace */ None,
MangledName);
}
case TypeKind::BuiltinNativeObject: {
unsigned PtrSize = CI.getTargetInfo().getPointerWidth(0);
auto PTy =
DBuilder.createPointerType(nullptr, PtrSize, 0,
/* DWARFAddressSpace */ None, MangledName);
return DBuilder.createObjectPointerType(PTy);
}
case TypeKind::BuiltinBridgeObject: {
unsigned PtrSize = CI.getTargetInfo().getPointerWidth(0);
auto PTy =
DBuilder.createPointerType(nullptr, PtrSize, 0,
/* DWARFAddressSpace */ None, MangledName);
return DBuilder.createObjectPointerType(PTy);
}
case TypeKind::BuiltinRawPointer: {
unsigned PtrSize = CI.getTargetInfo().getPointerWidth(0);
return DBuilder.createPointerType(nullptr, PtrSize, 0,
/* DWARFAddressSpace */ None,
MangledName);
}
case TypeKind::DynamicSelf: {
// Self. We don't have a way to represent instancetype in DWARF,
// so we emit the static type instead. This is similar to what we
// do with instancetype in Objective-C.
auto *DynamicSelfTy = BaseTy->castTo<DynamicSelfType>();
auto SelfTy =
getOrCreateDesugaredType(DynamicSelfTy->getSelfType(), DbgTy);
return DBuilder.createTypedef(SelfTy, MangledName, File, 0, File);
}
// Even builtin swift types usually come boxed in a struct.
case TypeKind::Struct: {
auto *StructTy = BaseTy->castTo<StructType>();
auto *Decl = StructTy->getDecl();
auto L = getDebugLoc(*this, Decl);
if (auto *ClangDecl = Decl->getClangDecl()) {
auto ClangSrcLoc = ClangDecl->getLocStart();
clang::SourceManager &ClangSM =
CI.getClangASTContext().getSourceManager();
L.Line = ClangSM.getPresumedLineNumber(ClangSrcLoc);
L.Filename = ClangSM.getBufferName(ClangSrcLoc);
}
auto *File = getOrCreateFile(L.Filename);
if (Opts.DebugInfoKind > IRGenDebugInfoKind::ASTTypes)
return createStructType(DbgTy, Decl, StructTy, Scope, File, L.Line,
SizeInBits, AlignInBits, Flags,
nullptr, // DerivedFrom
llvm::dwarf::DW_LANG_Swift, MangledName);
else
return createOpaqueStruct(Scope, Decl->getName().str(), File, L.Line,
SizeInBits, AlignInBits, Flags, MangledName);
}
case TypeKind::Class: {
// Classes are represented as DW_TAG_structure_type. This way the
// DW_AT_APPLE_runtime_class(DW_LANG_Swift) attribute can be
// used to differentiate them from C++ and ObjC classes.
auto *ClassTy = BaseTy->castTo<ClassType>();
auto *Decl = ClassTy->getDecl();
auto L = getDebugLoc(*this, Decl);
if (auto *ClangDecl = Decl->getClangDecl()) {
auto ClangSrcLoc = ClangDecl->getLocStart();
clang::SourceManager &ClangSM =
CI.getClangASTContext().getSourceManager();
L.Line = ClangSM.getPresumedLineNumber(ClangSrcLoc);
L.Filename = ClangSM.getBufferName(ClangSrcLoc);
}
assert(SizeInBits == CI.getTargetInfo().getPointerWidth(0));
return createPointerSizedStruct(Scope, Decl->getNameStr(),
getOrCreateFile(L.Filename), L.Line,
Flags, MangledName);
}
case TypeKind::Protocol: {
auto *ProtocolTy = BaseTy->castTo<ProtocolType>();
auto *Decl = ProtocolTy->getDecl();
// FIXME: (LLVM branch) This should probably be a DW_TAG_interface_type.
auto L = getDebugLoc(*this, Decl);
auto File = getOrCreateFile(L.Filename);
return createOpaqueStruct(Scope, Decl ? Decl->getNameStr() : MangledName,
File, L.Line, SizeInBits, AlignInBits, Flags,
MangledName);
}
case TypeKind::ProtocolComposition: {
auto *Decl = DbgTy.getDecl();
auto L = getDebugLoc(*this, Decl);
auto File = getOrCreateFile(L.Filename);
// FIXME: emit types
// auto ProtocolCompositionTy = BaseTy->castTo<ProtocolCompositionType>();
return createOpaqueStruct(Scope, Decl ? Decl->getNameStr() : MangledName,
File, L.Line, SizeInBits, AlignInBits, Flags,
MangledName);
}
case TypeKind::UnboundGeneric: {
auto *UnboundTy = BaseTy->castTo<UnboundGenericType>();
auto *Decl = UnboundTy->getDecl();
auto L = getDebugLoc(*this, Decl);
assert(SizeInBits == CI.getTargetInfo().getPointerWidth(0));
return createPointerSizedStruct(Scope,
Decl ? Decl->getNameStr() : MangledName,
File, L.Line, Flags, MangledName);
}
case TypeKind::BoundGenericStruct: {
auto *StructTy = BaseTy->castTo<BoundGenericStructType>();
auto *Decl = StructTy->getDecl();
auto L = getDebugLoc(*this, Decl);
return createOpaqueStruct(Scope, Decl ? Decl->getNameStr() : MangledName,
File, L.Line, SizeInBits, AlignInBits, Flags,
MangledName);
}
case TypeKind::BoundGenericClass: {
auto *ClassTy = BaseTy->castTo<BoundGenericClassType>();
auto *Decl = ClassTy->getDecl();
auto L = getDebugLoc(*this, Decl);
// TODO: We may want to peek at Decl->isObjC() and set this
// attribute accordingly.
assert(SizeInBits == CI.getTargetInfo().getPointerWidth(0));
return createPointerSizedStruct(Scope,
Decl ? Decl->getNameStr() : MangledName,
File, L.Line, Flags, MangledName);
}
case TypeKind::Tuple: {
// Tuples are also represented as structs.
if (Opts.DebugInfoKind > IRGenDebugInfoKind::ASTTypes)
return createTuple(DbgTy, Scope, SizeInBits, AlignInBits, Flags,
MangledName);
else
return createOpaqueStruct(Scope, MangledName, MainFile, 0, SizeInBits,
AlignInBits, Flags, MangledName);
}
case TypeKind::InOut: {
// This is an inout type. Naturally we would be emitting them as
// DW_TAG_reference_type types, but LLDB can deal better with
// pointer-sized struct that has the appropriate mangled name.
auto ObjectTy = BaseTy->castTo<InOutType>()->getObjectType();
auto Name = MangledName;
if (auto *Decl = ObjectTy->getAnyNominal())
Name = Decl->getName().str();
if (Opts.DebugInfoKind > IRGenDebugInfoKind::ASTTypes) {
auto DT = getOrCreateDesugaredType(ObjectTy, DbgTy);
return createPointerSizedStruct(Scope, Name, DT, File, 0, Flags,
MangledName);
} else
return createOpaqueStruct(Scope, Name, File, 0, SizeInBits, AlignInBits,
Flags, MangledName);
}
case TypeKind::Archetype: {
auto *Archetype = BaseTy->castTo<ArchetypeType>();
auto L = getDebugLoc(*this, Archetype->getAssocType());
auto Superclass = Archetype->getSuperclass();
auto DerivedFrom = Superclass.isNull()
? nullptr
: getOrCreateDesugaredType(Superclass, DbgTy);
auto FwdDecl = llvm::TempDIType(DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_structure_type, MangledName, Scope, File, L.Line,
llvm::dwarf::DW_LANG_Swift, SizeInBits, AlignInBits, Flags,
MangledName));
// Emit the protocols the archetypes conform to.
SmallVector<llvm::Metadata *, 4> Protocols;
for (auto *ProtocolDecl : Archetype->getConformsTo()) {
auto PTy = IGM.getLoweredType(ProtocolDecl->getInterfaceType())
.getSwiftRValueType();
auto PDbgTy = DebugTypeInfo::getFromTypeInfo(
DbgTy.getDeclContext(), DbgTy.getGenericEnvironment(),
ProtocolDecl->getInterfaceType(), IGM.getTypeInfoForLowered(PTy));
auto PDITy = getOrCreateType(PDbgTy);
Protocols.push_back(
DBuilder.createInheritance(FwdDecl.get(), PDITy, 0, Flags));
}
auto DITy = DBuilder.createStructType(
Scope, MangledName, File, L.Line, SizeInBits, AlignInBits, Flags,
DerivedFrom, DBuilder.getOrCreateArray(Protocols),
llvm::dwarf::DW_LANG_Swift, nullptr, MangledName);
DBuilder.replaceTemporary(std::move(FwdDecl), DITy);
return DITy;
}
case TypeKind::ExistentialMetatype:
case TypeKind::Metatype: {
// Metatypes are (mostly) singleton type descriptors, often without
// storage.
Flags |= llvm::DINode::FlagArtificial;
auto L = getDebugLoc(*this, DbgTy.getDecl());
auto File = getOrCreateFile(L.Filename);
return DBuilder.createStructType(
Scope, MangledName, File, L.Line, SizeInBits, AlignInBits, Flags,
nullptr, nullptr, llvm::dwarf::DW_LANG_Swift, nullptr, MangledName);
}
case TypeKind::SILFunction:
case TypeKind::Function:
case TypeKind::GenericFunction: {
if (Opts.DebugInfoKind > IRGenDebugInfoKind::ASTTypes)
return createFunctionPointer(DbgTy, Scope, SizeInBits, AlignInBits,
Flags, MangledName);
else
return createOpaqueStruct(Scope, MangledName, MainFile, 0, SizeInBits,
AlignInBits, Flags, MangledName);
}
case TypeKind::Enum: {
auto *EnumTy = BaseTy->castTo<EnumType>();
auto *Decl = EnumTy->getDecl();
auto L = getDebugLoc(*this, Decl);
auto *File = getOrCreateFile(L.Filename);
if (Opts.DebugInfoKind > IRGenDebugInfoKind::ASTTypes)
return createEnumType(DbgTy, Decl, MangledName, Scope, File, L.Line,
Flags);
else
return createOpaqueStruct(Scope, Decl->getName().str(), File, L.Line,
SizeInBits, AlignInBits, Flags, MangledName);
}
case TypeKind::BoundGenericEnum: {
auto *EnumTy = BaseTy->castTo<BoundGenericEnumType>();
auto *Decl = EnumTy->getDecl();
auto L = getDebugLoc(*this, Decl);
auto *File = getOrCreateFile(L.Filename);
if (Opts.DebugInfoKind > IRGenDebugInfoKind::ASTTypes)
return createEnumType(DbgTy, Decl, MangledName, Scope, File, L.Line,
Flags);
else
return createOpaqueStruct(Scope, Decl->getName().str(), File, L.Line,
SizeInBits, AlignInBits, Flags, MangledName);
}
case TypeKind::BuiltinVector: {
(void)MangledName; // FIXME emit the name somewhere.
auto *BuiltinVectorTy = BaseTy->castTo<BuiltinVectorType>();
DebugTypeInfo ElemDbgTy(DbgTy.getDeclContext(),
DbgTy.getGenericEnvironment(),
BuiltinVectorTy->getElementType(),
DbgTy.StorageType, DbgTy.size, DbgTy.align, true);
auto Subscripts = nullptr;
return DBuilder.createVectorType(BuiltinVectorTy->getNumElements(),
AlignInBits, getOrCreateType(ElemDbgTy),
Subscripts);
}
// Reference storage types.
case TypeKind::UnownedStorage:
case TypeKind::UnmanagedStorage:
case TypeKind::WeakStorage: {
auto *ReferenceTy = cast<ReferenceStorageType>(BaseTy);
auto CanTy = ReferenceTy->getReferentType();
auto L = getDebugLoc(*this, DbgTy.getDecl());
auto File = getOrCreateFile(L.Filename);
return DBuilder.createTypedef(getOrCreateDesugaredType(CanTy, DbgTy),
MangledName, File, L.Line, File);
}
// Sugared types.
case TypeKind::NameAlias: {
auto *NameAliasTy = cast<NameAliasType>(BaseTy);
auto *Decl = NameAliasTy->getDecl();
auto L = getDebugLoc(*this, Decl);
auto AliasedTy = NameAliasTy->getSinglyDesugaredType();
auto File = getOrCreateFile(L.Filename);
// For NameAlias types, the DeclContext for the aliasED type is
// in the decl of the alias type.
DebugTypeInfo AliasedDbgTy(
DbgTy.getDeclContext(), DbgTy.getGenericEnvironment(), AliasedTy,
DbgTy.StorageType, DbgTy.size, DbgTy.align, DbgTy.DefaultAlignment);
return DBuilder.createTypedef(getOrCreateType(AliasedDbgTy), MangledName,
File, L.Line, File);
}
case TypeKind::Paren: {
auto Ty = cast<ParenType>(BaseTy)->getUnderlyingType();
return getOrCreateDesugaredType(Ty, DbgTy);
}
// SyntaxSugarType derivations.
case TypeKind::ArraySlice:
case TypeKind::Optional:
case TypeKind::ImplicitlyUnwrappedOptional: {
auto *SyntaxSugarTy = cast<SyntaxSugarType>(BaseTy);
auto *CanTy = SyntaxSugarTy->getSinglyDesugaredType();
return getOrCreateDesugaredType(CanTy, DbgTy);
}
case TypeKind::Dictionary: {
auto *DictionaryTy = cast<DictionaryType>(BaseTy);
auto *CanTy = DictionaryTy->getDesugaredType();
return getOrCreateDesugaredType(CanTy, DbgTy);
}
case TypeKind::GenericTypeParam: {
auto *ParamTy = cast<GenericTypeParamType>(BaseTy);
// FIXME: Provide a more meaningful debug type.
return DBuilder.createUnspecifiedType(ParamTy->getName().str());
}
case TypeKind::DependentMember: {
auto *MemberTy = cast<DependentMemberType>(BaseTy);
// FIXME: Provide a more meaningful debug type.
return DBuilder.createUnspecifiedType(MemberTy->getName().str());
}
// The following types exist primarily for internal use by the type
// checker.
case TypeKind::Error:
case TypeKind::Unresolved:
case TypeKind::LValue:
case TypeKind::TypeVariable:
case TypeKind::Module:
case TypeKind::SILBlockStorage:
case TypeKind::SILBox:
case TypeKind::SILToken:
case TypeKind::BuiltinUnsafeValueBuffer:
DEBUG(llvm::errs() << "Unhandled type: "; DbgTy.getType()->dump();
llvm::errs() << "\n");
MangledName = "<unknown>";
}
return DBuilder.createBasicType(MangledName, SizeInBits, Encoding);
}
/// Determine if there exists a name mangling for the given type.
static bool canMangle(TypeBase *Ty) {
switch (Ty->getKind()) {
case TypeKind::GenericFunction: // Not yet supported.
case TypeKind::SILBlockStorage: // Not supported at all.
case TypeKind::SILBox:
return false;
case TypeKind::InOut: {
auto *ObjectTy = Ty->castTo<InOutType>()->getObjectType().getPointer();
return canMangle(ObjectTy);
}
default:
return true;
}
}
llvm::DIType *getTypeOrNull(TypeBase *Ty) {
auto CachedType = DITypeCache.find(Ty);
if (CachedType != DITypeCache.end()) {
// Verify that the information still exists.
if (llvm::Metadata *Val = CachedType->second) {
auto DITy = cast<llvm::DIType>(Val);
return DITy;
}
}
return nullptr;
}
/// The private discriminator is represented as an inline namespace.
llvm::DIScope *getFilePrivateScope(llvm::DIScope *Parent, TypeDecl *Decl) {
// Retrieve the private discriminator.
auto *MSC = Decl->getDeclContext()->getModuleScopeContext();
auto *FU = cast<FileUnit>(MSC);
Identifier PD = FU->getDiscriminatorForPrivateValue(Decl);
bool ExportSymbols = true;
return DBuilder.createNameSpace(Parent, PD.str(), ExportSymbols);
}
llvm::DIType *getOrCreateType(DebugTypeInfo DbgTy) {
// Is this an empty type?
if (DbgTy.isNull())
// We can't use the empty type as an index into DenseMap.
return createType(DbgTy, "", TheCU, MainFile);
// Look in the cache first.
if (auto *DITy = getTypeOrNull(DbgTy.getType()))
return DITy;
// Second line of defense: Look up the mangled name. TypeBase*'s are
// not necessarily unique, but name mangling is too expensive to do
// every time.
StringRef MangledName;
llvm::MDString *UID = nullptr;
if (canMangle(DbgTy.getType())) {
MangledName = getMangledName(DbgTy);
UID = llvm::MDString::get(IGM.getLLVMContext(), MangledName);
if (llvm::Metadata *CachedTy = DIRefMap.lookup(UID)) {
auto DITy = cast<llvm::DIType>(CachedTy);
return DITy;
}
}
// Retrieve the context of the type, as opposed to the DeclContext
// of the variable.
//
// FIXME: Builtin and qualified types in LLVM have no parent
// scope. TODO: This can be fixed by extending DIBuilder.
llvm::DIScope *Scope = nullptr;
DeclContext *Context = DbgTy.getType()->getNominalOrBoundGenericNominal();
if (Context) {
if (auto *D = Context->getAsNominalTypeOrNominalTypeExtensionContext())
if (auto *ClangDecl = D->getClangDecl()) {
clang::ASTReader &Reader = *CI.getClangInstance().getModuleManager();
auto Idx = ClangDecl->getOwningModuleID();
if (auto Info = Reader.getSourceDescriptor(Idx))
Scope = getOrCreateModule(*Info);
}
Context = Context->getParent();
}
if (!Scope)
Scope = getOrCreateContext(Context);
// Scope outermost fileprivate decls in an inline private discriminator
// namespace.
if (auto *Decl = DbgTy.getDecl())
if (Decl->isOutermostPrivateOrFilePrivateScope())
Scope = getFilePrivateScope(Scope, Decl);
llvm::DIType *DITy = createType(DbgTy, MangledName, Scope, getFile(Scope));
// Incrementally build the DIRefMap.
if (auto *CTy = dyn_cast<llvm::DICompositeType>(DITy)) {
#ifndef NDEBUG
// Sanity check.
if (llvm::Metadata *V = DIRefMap.lookup(UID)) {
auto *CachedTy = cast<llvm::DIType>(V);
assert(CachedTy == DITy && "conflicting types for one UID");
}
#endif
// If this type supports a UID, enter it to the cache.
if (auto UID = CTy->getRawIdentifier()) {
assert(UID->getString() == MangledName &&
"Unique identifier is different from mangled name ");
DIRefMap[UID] = llvm::TrackingMDNodeRef(DITy);
}
}
// Store it in the cache.
DITypeCache.insert({DbgTy.getType(), llvm::TrackingMDNodeRef(DITy)});
return DITy;
}
};
IRGenDebugInfoImpl::IRGenDebugInfoImpl(const IRGenOptions &Opts,
ClangImporter &CI, IRGenModule &IGM,
llvm::Module &M, SourceFile *SF)
: Opts(Opts), CI(CI), SM(IGM.Context.SourceMgr), DBuilder(M),
IGM(IGM), MetadataTypeDecl(nullptr), InternalType(nullptr),
LastDebugLoc({}), LastScope(nullptr) {
assert(Opts.DebugInfoKind > IRGenDebugInfoKind::None &&
"no debug info should be generated");
StringRef SourceFileName =
SF ? SF->getFilename() : StringRef(Opts.MainInputFilename);
llvm::SmallString<256> AbsMainFile;
if (SourceFileName.empty())
AbsMainFile = "<unknown>";
else {
AbsMainFile = SourceFileName;
llvm::sys::fs::make_absolute(AbsMainFile);
}
unsigned Lang = llvm::dwarf::DW_LANG_Swift;
std::string Producer = version::getSwiftFullVersion(
IGM.Context.LangOpts.EffectiveLanguageVersion);
StringRef Flags = Opts.DWARFDebugFlags;
unsigned Major, Minor;
std::tie(Major, Minor) = version::getSwiftNumericVersion();
unsigned MajorRuntimeVersion = Major;
// No split DWARF on Darwin.
StringRef SplitName = StringRef();
// Note that File + Dir need not result in a valid path.
// Clang is doing the same thing here.
TheCU = DBuilder.createCompileUnit(
Lang, DBuilder.createFile(AbsMainFile, Opts.DebugCompilationDir),
Producer, Opts.shouldOptimize(), Flags, MajorRuntimeVersion, SplitName,
Opts.DebugInfoKind > IRGenDebugInfoKind::LineTables
? llvm::DICompileUnit::FullDebug
: llvm::DICompileUnit::LineTablesOnly);
MainFile = getOrCreateFile(BumpAllocatedString(AbsMainFile));
// Because the swift compiler relies on Clang to setup the Module,
// the clang CU is always created first. Several dwarf-reading
// tools (older versions of ld64, and lldb) can get confused if the
// first CU in an object is empty, so ensure that the Swift CU comes
// first by rearranging the list of CUs in the LLVM module.
llvm::NamedMDNode *CU_Nodes = M.getNamedMetadata("llvm.dbg.cu");
SmallVector<llvm::DICompileUnit *, 2> CUs;
for (auto *N : CU_Nodes->operands())
CUs.push_back(cast<llvm::DICompileUnit>(N));
CU_Nodes->dropAllReferences();
for (auto CU = CUs.rbegin(), CE = CUs.rend(); CU != CE; ++CU)
CU_Nodes->addOperand(*CU);
// Create a module for the current compile unit.
auto *MDecl = IGM.getSwiftModule();
llvm::sys::path::remove_filename(AbsMainFile);
MainModule = getOrCreateModule(MDecl, TheCU, Opts.ModuleName, AbsMainFile);
DBuilder.createImportedModule(MainFile, MainModule, MainFile, 0);
// Macro definitions that were defined by the user with "-Xcc -D" on the
// command line. This does not include any macros defined by ClangImporter.
llvm::raw_svector_ostream OS(ConfigMacros);
unsigned I = 0;
// Translate the macro definitions back into a commmand line.
for (auto &Macro : Opts.ClangDefines) {
if (++I > 1)
OS << ' ';
OS << '"';
for (char c : Macro)
switch (c) {
case '\\': OS << "\\\\"; break;
case '"': OS << "\\\""; break;
default: OS << c;
}
OS << '"';
}
}
void IRGenDebugInfoImpl::finalize() {
assert(LocationStack.empty() && "Mismatch of pushLoc() and popLoc().");
// Get the list of imported modules (which may actually be different
// from all ImportDecls).
SmallVector<ModuleDecl::ImportedModule, 8> ModuleWideImports;
IGM.getSwiftModule()->getImportedModules(ModuleWideImports,
ModuleDecl::ImportFilter::All);
for (auto M : ModuleWideImports)
if (!ImportedModules.count(M.second))
DBuilder.createImportedModule(MainFile, getOrCreateModule(M), MainFile,
0);
// Finalize all replaceable forward declarations.
for (auto &Ty : ReplaceMap) {
llvm::TempMDNode FwdDecl(cast<llvm::MDNode>(Ty.second));
llvm::Metadata *Replacement;
if (auto *FullType = getTypeOrNull(Ty.first))
Replacement = FullType;
else
Replacement = Ty.second;
DBuilder.replaceTemporary(std::move(FwdDecl),
cast<llvm::MDNode>(Replacement));
}
// Finalize the DIBuilder.
DBuilder.finalize();
}
void IRGenDebugInfoImpl::setCurrentLoc(IRBuilder &Builder,
const SILDebugScope *DS,
Optional<SILLocation> Loc) {
assert(DS && "empty scope");
auto *Scope = getOrCreateScope(DS);
if (!Scope)
return;
SILFunction *Fn = DS->getInlinedFunction();
SILLocation::DebugLoc L;
if ((Loc && Loc->isAutoGenerated()) || (Fn && Fn->isThunk())) {
// Reuse the last source location if we are still in the same
// scope to get a more contiguous line table.
// Otherwise use a line 0 artificial location.
if (DS == LastScope)
L = LastDebugLoc;
else
L.Filename = LastDebugLoc.Filename;
} else {
// Decode the location.
L = getDebugLocation(Loc);
}
auto *File = getOrCreateFile(L.Filename);
if (File->getFilename() != Scope->getFilename()) {
// We changed files in the middle of a scope. This happens, for
// example, when constructors are inlined. Create a new scope to
// reflect this.
auto File = getOrCreateFile(L.Filename);
Scope = DBuilder.createLexicalBlockFile(Scope, File);
}
// FIXME: Enable this assertion.
// assert(lineNumberIsSane(Builder, L.Line) &&
// "-Onone, but line numbers are not monotonically increasing within
// bb");
LastDebugLoc = L;
LastScope = DS;
auto *InlinedAt = createInlinedAt(DS);
assert(((!InlinedAt) || (InlinedAt && Scope)) && "inlined w/o scope");
assert(parentScopesAreSane(DS) && "parent scope sanity check failed");
auto DL = llvm::DebugLoc::get(L.Line, L.Column, Scope, InlinedAt);
Builder.SetCurrentDebugLocation(DL);
}
void IRGenDebugInfoImpl::clearLoc(IRBuilder &Builder) {
LastDebugLoc = {};
LastScope = nullptr;
Builder.SetCurrentDebugLocation(llvm::DebugLoc());
}
/// Push the current debug location onto a stack and initialize the
/// IRBuilder to an empty location.
void IRGenDebugInfoImpl::pushLoc() {
LocationStack.push_back(std::make_pair(LastDebugLoc, LastScope));
LastDebugLoc = {};
LastScope = nullptr;
}
/// Restore the current debug location from the stack.
void IRGenDebugInfoImpl::popLoc() {
std::tie(LastDebugLoc, LastScope) = LocationStack.pop_back_val();
}
void IRGenDebugInfoImpl::setEntryPointLoc(IRBuilder &Builder) {
auto DL = llvm::DebugLoc::get(0, 0, getEntryPointFn(), nullptr);
Builder.SetCurrentDebugLocation(DL);
}
llvm::DIScope *IRGenDebugInfoImpl::getEntryPointFn() {
// Lazily create EntryPointFn.
if (!EntryPointFn) {
EntryPointFn = DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_subroutine_type, SWIFT_ENTRY_POINT_FUNCTION,
MainFile, MainFile, 0);
}
return EntryPointFn;
}
llvm::DIScope *IRGenDebugInfoImpl::getOrCreateScope(const SILDebugScope *DS) {
if (DS == nullptr)
return MainFile;
// Try to find it in the cache first.
auto CachedScope = ScopeCache.find(LocalScope(DS));
if (CachedScope != ScopeCache.end())
return cast<llvm::DIScope>(CachedScope->second);
// If this is an (inlined) function scope, the function may
// not have been created yet.
if (auto *SILFn = DS->Parent.dyn_cast<SILFunction *>()) {
auto *FnScope = SILFn->getDebugScope();
// FIXME: This is a bug in the SIL deserialization.
if (!FnScope)
SILFn->setDebugScope(DS);
auto CachedScope = ScopeCache.find(LocalScope(FnScope));
if (CachedScope != ScopeCache.end())
return cast<llvm::DIScope>(CachedScope->second);
// Force the debug info for the function to be emitted, even if it
// is external or has been inlined.
llvm::Function *Fn = nullptr;
if (!SILFn->getName().empty() && !SILFn->isZombie())
Fn = IGM.getAddrOfSILFunction(SILFn, NotForDefinition);
auto *SP = emitFunction(*SILFn, Fn);
// Cache it.
ScopeCache[LocalScope(DS)] = llvm::TrackingMDNodeRef(SP);
return SP;
}
auto *ParentScope = DS->Parent.get<const SILDebugScope *>();
llvm::DIScope *Parent = getOrCreateScope(ParentScope);
assert(isa<llvm::DILocalScope>(Parent) && "not a local scope");
if (Opts.DebugInfoKind <= IRGenDebugInfoKind::LineTables)
return Parent;
assert(DS->Parent && "lexical block must have a parent subprogram");
auto L = getStartLocation(DS->Loc);
llvm::DIFile *File = getOrCreateFile(L.Filename);
auto *DScope = DBuilder.createLexicalBlock(Parent, File, L.Line, L.Column);
// Cache it.
ScopeCache[LocalScope(DS)] = llvm::TrackingMDNodeRef(DScope);
return DScope;
}
void IRGenDebugInfoImpl::emitImport(ImportDecl *D) {
if (Opts.DebugInfoKind <= IRGenDebugInfoKind::LineTables)
return;
swift::ModuleDecl *M = IGM.Context.getModule(D->getModulePath());
if (!M &&
D->getModulePath()[0].first == IGM.Context.TheBuiltinModule->getName())
M = IGM.Context.TheBuiltinModule;
if (!M) {
assert(M && "Could not find module for import decl.");
return;
}
ModuleDecl::ImportedModule Imported = {D->getModulePath(), M};
auto DIMod = getOrCreateModule(Imported);
auto L = getDebugLoc(*this, D);
auto *File = getOrCreateFile(L.Filename);
DBuilder.createImportedModule(File, DIMod, File, L.Line);
ImportedModules.insert(Imported.second);
}
llvm::DISubprogram *IRGenDebugInfoImpl::emitFunction(SILFunction &SILFn,
llvm::Function *Fn) {
auto *DS = SILFn.getDebugScope();
assert(DS && "SIL function has no debug scope");
(void)DS;
return emitFunction(SILFn.getDebugScope(), Fn, SILFn.getRepresentation(),
SILFn.getLoweredType(), SILFn.getDeclContext(),
SILFn.getGenericEnvironment());
}
llvm::DISubprogram *
IRGenDebugInfoImpl::emitFunction(const SILDebugScope *DS, llvm::Function *Fn,
SILFunctionTypeRepresentation Rep,
SILType SILTy, DeclContext *DeclCtx,
GenericEnvironment *GE) {
auto Cached = ScopeCache.find(LocalScope(DS));
if (Cached != ScopeCache.end()) {
auto SP = cast<llvm::DISubprogram>(Cached->second);
// If we created the DISubprogram for a forward declaration,
// attach it to the function now.
if (!Fn->getSubprogram() && !Fn->isDeclaration())
Fn->setSubprogram(SP);
return SP;
}
// Some IRGen-generated helper functions don't have a corresponding
// SIL function, hence the dyn_cast.
auto *SILFn = DS ? DS->Parent.dyn_cast<SILFunction *>() : nullptr;
StringRef LinkageName;
if (Fn)
LinkageName = Fn->getName();
else if (DS)
LinkageName = SILFn->getName();
else
llvm_unreachable("function has no mangled name");
StringRef Name;
if (DS) {
if (DS->Loc.isSILFile())
Name = SILFn->getName();
else
Name = getName(DS->Loc);
}
SILLocation::DebugLoc L;
unsigned ScopeLine = 0; /// The source line used for the function prologue.
// Bare functions and thunks should not have any line numbers. This
// is especially important for shared functions like reabstraction
// thunk helpers, where DS->Loc is an arbitrary location of whichever use
// was emitted first.
if (DS && (!SILFn || (!SILFn->isBare() && !SILFn->isThunk()))) {
L = decodeDebugLoc(DS->Loc);
ScopeLine = L.Line;
if (!DS->Loc.isDebugInfoLoc())
L = decodeSourceLoc(DS->Loc.getSourceLoc());
}
auto Line = L.Line;
auto File = getOrCreateFile(L.Filename);
llvm::DIScope *Scope = MainModule;
if (SILFn && SILFn->getDeclContext())
Scope = getOrCreateContext(SILFn->getDeclContext()->getParent());
// We know that main always comes from MainFile.
if (LinkageName == SWIFT_ENTRY_POINT_FUNCTION) {
if (L.Filename.empty())
File = MainFile;
Line = 1;
Name = LinkageName;
}
CanSILFunctionType FnTy = getFunctionType(SILTy);
auto Params = Opts.DebugInfoKind > IRGenDebugInfoKind::LineTables
? createParameterTypes(SILTy, DeclCtx, GE)
: nullptr;
llvm::DISubroutineType *DIFnTy = DBuilder.createSubroutineType(Params);
llvm::DITemplateParameterArray TemplateParameters = nullptr;
llvm::DISubprogram *Decl = nullptr;
// Various flags.
bool IsLocalToUnit = Fn ? Fn->hasInternalLinkage() : true;
bool IsDefinition = true;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
// Mark everything that is not visible from the source code (i.e.,
// does not have a Swift name) as artificial, so the debugger can
// ignore it. Explicit closures are exempt from this rule. We also
// make an exception for toplevel code, which, although it does not
// have a Swift name, does appear prominently in the source code.
if ((Name.empty() && LinkageName != SWIFT_ENTRY_POINT_FUNCTION &&
!isExplicitClosure(SILFn)) ||
// ObjC thunks should also not show up in the linetable, because we
// never want to set a breakpoint there.
(Rep == SILFunctionTypeRepresentation::ObjCMethod) ||
isAllocatingConstructor(Rep, DeclCtx)) {
Flags |= llvm::DINode::FlagArtificial;
ScopeLine = 0;
}
if (FnTy &&
FnTy->getRepresentation() == SILFunctionType::Representation::Block)
Flags |= llvm::DINode::FlagAppleBlock;
// Get the throws information.
llvm::DITypeArray Error = nullptr;
if (FnTy)
if (auto ErrorInfo = FnTy->getOptionalErrorResult()) {
auto DTI = DebugTypeInfo::getFromTypeInfo(
nullptr, nullptr, ErrorInfo->getType(),
IGM.getTypeInfo(IGM.silConv.getSILType(*ErrorInfo)));
Error = DBuilder.getOrCreateArray({getOrCreateType(DTI)}).get();
}
// Construct the DISubprogram.
llvm::DISubprogram *SP = DBuilder.createFunction(
Scope, Name, LinkageName, File, Line, DIFnTy, IsLocalToUnit, IsDefinition,
ScopeLine, Flags, Opts.shouldOptimize(), TemplateParameters, Decl, Error);
if (Fn && !Fn->isDeclaration())
Fn->setSubprogram(SP);
// RAUW the entry point function forward declaration with the real thing.
if (LinkageName == SWIFT_ENTRY_POINT_FUNCTION) {
if (EntryPointFn) {
assert(EntryPointFn->isTemporary() &&
"more than one entry point function");
EntryPointFn->replaceAllUsesWith(SP);
llvm::MDNode::deleteTemporary(EntryPointFn);
}
EntryPointFn = SP;
}
if (!DS)
return nullptr;
ScopeCache[LocalScope(DS)] = llvm::TrackingMDNodeRef(SP);
return SP;
}
void IRGenDebugInfoImpl::emitArtificialFunction(IRBuilder &Builder,
llvm::Function *Fn,
SILType SILTy) {
RegularLocation ALoc = RegularLocation::getAutoGeneratedLocation();
const SILDebugScope *Scope = new (IGM.getSILModule()) SILDebugScope(ALoc);
emitFunction(Scope, Fn, SILFunctionTypeRepresentation::Thin, SILTy);
setCurrentLoc(Builder, Scope);
}
void IRGenDebugInfoImpl::emitVariableDeclaration(
IRBuilder &Builder, ArrayRef<llvm::Value *> Storage, DebugTypeInfo DbgTy,
const SILDebugScope *DS, ValueDecl *VarDecl, StringRef Name, unsigned ArgNo,
IndirectionKind Indirection, ArtificialKind Artificial) {
// Self is always an artificial argument.
if (ArgNo > 0 && Name == IGM.Context.Id_self.str())
Artificial = ArtificialValue;
// FIXME: Make this an assertion.
// assert(DS && "variable has no scope");
if (!DS)
return;
if (Opts.DebugInfoKind <= IRGenDebugInfoKind::LineTables)
return;
// Currently, the DeclContext is needed to mangle archetypes. Bail out if
// it's missing.
if (DbgTy.Type->hasArchetype() && !DbgTy.DeclCtx)
return;
if (!DbgTy.size)
DbgTy.size = getStorageSize(IGM.DataLayout, Storage);
auto *Scope = dyn_cast<llvm::DILocalScope>(getOrCreateScope(DS));
assert(Scope && "variable has no local scope");
auto Loc = getDebugLoc(*this, VarDecl);
// FIXME: this should be the scope of the type's declaration.
// If this is an argument, attach it to the current function scope.
if (ArgNo > 0) {
while (isa<llvm::DILexicalBlock>(Scope))
Scope = cast<llvm::DILexicalBlock>(Scope)->getScope();
}
assert(Scope && isa<llvm::DIScope>(Scope) && "variable has no scope");
llvm::DIFile *Unit = getFile(Scope);
llvm::DIType *DITy = getOrCreateType(DbgTy);
assert(DITy && "could not determine debug type of variable");
unsigned Line = Loc.Line;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
if (Artificial || DITy->isArtificial() || DITy == InternalType)
Flags |= llvm::DINode::FlagArtificial;
// This could be Opts.Optimize if we would also unique DIVariables here.
bool Optimized = false;
// Create the descriptor for the variable.
llvm::DILocalVariable *Var =
(ArgNo > 0) ? DBuilder.createParameterVariable(
Scope, Name, ArgNo, Unit, Line, DITy, Optimized, Flags)
: DBuilder.createAutoVariable(Scope, Name, Unit, Line, DITy,
Optimized, Flags);
// Running variables for the current/previous piece.
bool IsPiece = Storage.size() > 1;
uint64_t SizeOfByte = CI.getTargetInfo().getCharWidth();
unsigned AlignInBits = SizeOfByte;
unsigned OffsetInBits = 0;
unsigned SizeInBits = 0;
for (llvm::Value *Piece : Storage) {
SmallVector<uint64_t, 3> Operands;
if (Indirection)
Operands.push_back(llvm::dwarf::DW_OP_deref);
// There are variables without storage, such as "struct { func foo() {}
// }". Emit them as constant 0.
if (isa<llvm::UndefValue>(Piece))
Piece = llvm::ConstantInt::get(IGM.Int64Ty, 0);
if (IsPiece) {
// Advance the offset and align it for the next piece.
OffsetInBits += llvm::alignTo(SizeInBits, AlignInBits);
SizeInBits = IGM.DataLayout.getTypeSizeInBits(Piece->getType());
AlignInBits = IGM.DataLayout.getABITypeAlignment(Piece->getType());
if (!AlignInBits)
AlignInBits = SizeOfByte;
// Sanity checks.
assert(SizeInBits && "zero-sized piece");
assert(SizeInBits < getSizeInBits(Var) && "piece covers entire var");
assert(OffsetInBits + SizeInBits <= getSizeInBits(Var) && "pars > totum");
// Add the piece DWARF expression.
Operands.push_back(llvm::dwarf::DW_OP_LLVM_fragment);
Operands.push_back(OffsetInBits);
Operands.push_back(SizeInBits);
}
emitDbgIntrinsic(Builder, Piece, Var, DBuilder.createExpression(Operands),
Line, Loc.Column, Scope, DS);
}
// Emit locationless intrinsic for variables that were optimized away.
if (Storage.size() == 0)
emitDbgIntrinsic(Builder, llvm::ConstantInt::get(IGM.Int64Ty, 0), Var,
DBuilder.createExpression(), Line, Loc.Column, Scope, DS);
}
void IRGenDebugInfoImpl::emitDbgIntrinsic(
IRBuilder &Builder, llvm::Value *Storage, llvm::DILocalVariable *Var,
llvm::DIExpression *Expr, unsigned Line, unsigned Col,
llvm::DILocalScope *Scope, const SILDebugScope *DS) {
// Set the location/scope of the intrinsic.
auto *InlinedAt = createInlinedAt(DS);
auto DL = llvm::DebugLoc::get(Line, Col, Scope, InlinedAt);
auto *BB = Builder.GetInsertBlock();
// An alloca may only be described by exactly one dbg.declare.
if (isa<llvm::AllocaInst>(Storage) && !llvm::FindDbgAddrUses(Storage).empty())
return;
// A dbg.declare is only meaningful if there is a single alloca for
// the variable that is live throughout the function. With SIL
// optimizations this is not guaranteed and a variable can end up in
// two allocas (for example, one function inlined twice).
if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Storage)) {
auto *ParentBB = Alloca->getParent();
auto InsertBefore = std::next(Alloca->getIterator());
if (InsertBefore != ParentBB->end())
DBuilder.insertDeclare(Alloca, Var, Expr, DL, &*InsertBefore);
else
DBuilder.insertDeclare(Alloca, Var, Expr, DL, ParentBB);
return;
}
// Insert a dbg.value at the current insertion point.
DBuilder.insertDbgValueIntrinsic(Storage, Var, Expr, DL, BB);
}
void IRGenDebugInfoImpl::emitGlobalVariableDeclaration(
llvm::GlobalVariable *Var, StringRef Name, StringRef LinkageName,
DebugTypeInfo DbgTy, bool IsLocalToUnit, Optional<SILLocation> Loc) {
if (Opts.DebugInfoKind <= IRGenDebugInfoKind::LineTables)
return;
llvm::DIType *Ty = getOrCreateType(DbgTy);
if (Ty->isArtificial() || Ty == InternalType || !Loc)
// FIXME: Really these should be marked as artificial, but LLVM
// currently has no support for flags to be put on global
// variables. In the mean time, elide these variables, they
// would confuse both the user and LLDB.
return;
auto L = getStartLocation(Loc);
auto File = getOrCreateFile(L.Filename);
// Emit it as global variable of the current module.
auto *Expr = Var ? nullptr : DBuilder.createConstantValueExpression(0);
auto *GV = DBuilder.createGlobalVariableExpression(
MainModule, Name, LinkageName, File, L.Line, Ty, IsLocalToUnit, Expr);
if (Var)
Var->addDebugInfo(GV);
}
void IRGenDebugInfoImpl::emitTypeMetadata(IRGenFunction &IGF,
llvm::Value *Metadata,
StringRef Name) {
if (Opts.DebugInfoKind <= IRGenDebugInfoKind::LineTables)
return;
auto TName = BumpAllocatedString(("$swift.type." + Name).str());
auto DbgTy = DebugTypeInfo::getMetadata(
getMetadataType()->getDeclaredInterfaceType().getPointer(),
Metadata->getType(), Size(CI.getTargetInfo().getPointerWidth(0)),
Alignment(CI.getTargetInfo().getPointerAlign(0)));
emitVariableDeclaration(IGF.Builder, Metadata, DbgTy, IGF.getDebugScope(),
nullptr, TName, 0,
// swift.type is already a pointer type,
// having a shadow copy doesn't add another
// layer of indirection.
DirectValue, ArtificialValue);
}
SILLocation::DebugLoc IRGenDebugInfoImpl::decodeSourceLoc(SourceLoc SL) {
auto &Cached = DebugLocCache[SL.getOpaquePointerValue()];
if (Cached.Filename.empty())
Cached = SILLocation::decode(SL, SM);
return Cached;
}
} // anonymous namespace
IRGenDebugInfo *IRGenDebugInfo::createIRGenDebugInfo(const IRGenOptions &Opts,
ClangImporter &CI,
IRGenModule &IGM,
llvm::Module &M,
SourceFile *SF) {
return new IRGenDebugInfoImpl(Opts, CI, IGM, M, SF);
}
IRGenDebugInfo::~IRGenDebugInfo() {}
// Forwarding to the private implementation.
void IRGenDebugInfo::finalize() {
static_cast<IRGenDebugInfoImpl *>(this)->finalize();
}
void IRGenDebugInfo::setCurrentLoc(IRBuilder &Builder, const SILDebugScope *DS,
Optional<SILLocation> Loc) {
static_cast<IRGenDebugInfoImpl *>(this)->setCurrentLoc(Builder, DS, Loc);
}
void IRGenDebugInfo::clearLoc(IRBuilder &Builder) {
static_cast<IRGenDebugInfoImpl *>(this)->clearLoc(Builder);
}
void IRGenDebugInfo::pushLoc() {
static_cast<IRGenDebugInfoImpl *>(this)->pushLoc();
}
void IRGenDebugInfo::popLoc() {
static_cast<IRGenDebugInfoImpl *>(this)->popLoc();
}
void IRGenDebugInfo::setEntryPointLoc(IRBuilder &Builder) {
static_cast<IRGenDebugInfoImpl *>(this)->setEntryPointLoc(Builder);
}
llvm::DIScope *IRGenDebugInfo::getEntryPointFn() {
return static_cast<IRGenDebugInfoImpl *>(this)->getEntryPointFn();
}
llvm::DIScope *IRGenDebugInfo::getOrCreateScope(const SILDebugScope *DS) {
return static_cast<IRGenDebugInfoImpl *>(this)->getOrCreateScope(DS);
}
void IRGenDebugInfo::emitImport(ImportDecl *D) {
static_cast<IRGenDebugInfoImpl *>(this)->emitImport(D);
}
llvm::DISubprogram *
IRGenDebugInfo::emitFunction(const SILDebugScope *DS, llvm::Function *Fn,
SILFunctionTypeRepresentation Rep, SILType Ty,
DeclContext *DeclCtx,
GenericEnvironment *GE) {
return static_cast<IRGenDebugInfoImpl *>(this)->emitFunction(DS, Fn, Rep, Ty,
DeclCtx);
}
llvm::DISubprogram *IRGenDebugInfo::emitFunction(SILFunction &SILFn,
llvm::Function *Fn) {
return static_cast<IRGenDebugInfoImpl *>(this)->emitFunction(SILFn, Fn);
}
void IRGenDebugInfo::emitArtificialFunction(IRBuilder &Builder,
llvm::Function *Fn,
SILType SILTy) {
static_cast<IRGenDebugInfoImpl *>(this)->emitArtificialFunction(Builder,
Fn, SILTy);
}
void IRGenDebugInfo::emitVariableDeclaration(
IRBuilder &Builder, ArrayRef<llvm::Value *> Storage, DebugTypeInfo Ty,
const SILDebugScope *DS, ValueDecl *VarDecl, StringRef Name,
unsigned ArgNo, IndirectionKind Indirection,
ArtificialKind Artificial) {
static_cast<IRGenDebugInfoImpl *>(this)->emitVariableDeclaration(
Builder, Storage, Ty, DS, VarDecl, Name, ArgNo, Indirection, Artificial);
}
void IRGenDebugInfo::emitDbgIntrinsic(IRBuilder &Builder, llvm::Value *Storage,
llvm::DILocalVariable *Var,
llvm::DIExpression *Expr, unsigned Line,
unsigned Col, llvm::DILocalScope *Scope,
const SILDebugScope *DS) {
static_cast<IRGenDebugInfoImpl *>(this)->emitDbgIntrinsic(
Builder, Storage, Var, Expr, Line, Col, Scope, DS);
}
void IRGenDebugInfo::emitGlobalVariableDeclaration(
llvm::GlobalVariable *Storage, StringRef Name, StringRef LinkageName,
DebugTypeInfo DebugType, bool IsLocalToUnit, Optional<SILLocation> Loc) {
static_cast<IRGenDebugInfoImpl *>(this)->emitGlobalVariableDeclaration(
Storage, Name, LinkageName, DebugType, IsLocalToUnit, Loc);
}
void IRGenDebugInfo::emitTypeMetadata(IRGenFunction &IGF, llvm::Value *Metadata,
StringRef Name) {
static_cast<IRGenDebugInfoImpl *>(this)->emitTypeMetadata(IGF, Metadata,
Name);
}
llvm::DIBuilder &IRGenDebugInfo::getBuilder() {
return static_cast<IRGenDebugInfoImpl *>(this)->getBuilder();
}
SILLocation::DebugLoc IRGenDebugInfo::decodeSourceLoc(SourceLoc SL) {
return static_cast<IRGenDebugInfoImpl *>(this)->decodeSourceLoc(SL);
}
AutoRestoreLocation::AutoRestoreLocation(IRGenDebugInfo *DI, IRBuilder &Builder)
: DI(DI), Builder(Builder) {
if (DI)
SavedLocation = Builder.getCurrentDebugLocation();
}
/// Autorestore everything back to normal.
AutoRestoreLocation::~AutoRestoreLocation() {
if (DI)
Builder.SetCurrentDebugLocation(SavedLocation);
}
ArtificialLocation::ArtificialLocation(const SILDebugScope *DS,
IRGenDebugInfo *DI, IRBuilder &Builder)
: AutoRestoreLocation(DI, Builder) {
if (DI) {
auto DL = llvm::DebugLoc::get(0, 0, DI->getOrCreateScope(DS));
Builder.SetCurrentDebugLocation(DL);
}
}
PrologueLocation::PrologueLocation(IRGenDebugInfo *DI, IRBuilder &Builder)
: AutoRestoreLocation(DI, Builder) {
if (DI)
DI->clearLoc(Builder);
}