blob: 9d5b071dcd657bba79a9d92c5dcfc02c36401d9d [file] [log] [blame]
//===--- SILOwnershipVerifier.cpp -----------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-ownership-verifier"
#include "swift/AST/ASTContext.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Range.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILOpenedArchetypesTracker.h"
#include "swift/SIL/SILVTable.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
// The verifier is basically all assertions, so don't compile it with NDEBUG to
// prevent release builds from triggering spurious unused variable warnings.
#ifndef NDEBUG
llvm::cl::opt<bool> PrintMessageInsteadOfAssert(
"sil-ownership-verifier-do-not-assert",
llvm::cl::desc("Print out message instead of asserting. "
"Meant for debugging"));
//===----------------------------------------------------------------------===//
// Utility
//===----------------------------------------------------------------------===//
static bool compatibleOwnershipKinds(ValueOwnershipKind K1,
ValueOwnershipKind K2) {
return K1.merge(K2).hasValue();
}
static bool isValueAddressOrTrivial(SILValue V, SILModule &M) {
return V->getType().isAddress() || V->getType().isTrivial(M);
}
//===----------------------------------------------------------------------===//
// OwnershipCompatibilityCheckerVisitor
//===----------------------------------------------------------------------===//
namespace {
struct OwnershipUseCheckerResult {
bool HasCompatibleOwnership;
bool ShouldCheckForDataflowViolations;
};
class OwnershipCompatibilityUseChecker
: public SILInstructionVisitor<OwnershipCompatibilityUseChecker,
OwnershipUseCheckerResult> {
SILModule &Mod;
const Operand &Op;
public:
OwnershipCompatibilityUseChecker(SILModule &M, const Operand &Op)
: Mod(M), Op(Op) {}
SILValue getValue() const { return Op.get(); }
ValueOwnershipKind getOwnershipKind() const {
return getValue().getOwnershipKind();
}
unsigned getOperandIndex() const { return Op.getOperandNumber(); }
SILType getType() const { return Op.get()->getType(); }
bool compatibleWithOwnership(ValueOwnershipKind Kind) const {
return compatibleOwnershipKinds(getOwnershipKind(), Kind);
}
bool isAddressOrTrivialType() const {
if (getType().isAddress())
return true;
return getType().isTrivial(Mod);
}
void error(SILInstruction *User) {
llvm::errs() << "Have operand with incompatible ownership?!\n"
<< "Value: " << *getValue() << "User: " << *User
<< "Conv: " << getOwnershipKind() << "\n";
if (PrintMessageInsteadOfAssert)
return;
llvm_unreachable("triggering standard assertion failure routine");
}
OwnershipUseCheckerResult visitForwardingInst(SILInstruction *I);
/// Check if \p User as compatible ownership with the SILValue that we are
/// checking.
///
/// \returns true if the user is a use that must be checked for dataflow
/// violations.
bool check(SILInstruction *User) {
auto Result = visit(User);
if (!Result.HasCompatibleOwnership) {
error(User);
}
assert((!Result.ShouldCheckForDataflowViolations ||
!isAddressOrTrivialType()) &&
"Address or trivial types should never be checked for dataflow "
"violations");
return Result.ShouldCheckForDataflowViolations;
}
OwnershipUseCheckerResult visitValueBase(ValueBase *) {
llvm_unreachable("Unimplemented?!");
}
OwnershipUseCheckerResult visitCallee(CanSILFunctionType SubstCalleeType);
// Create declarations for all instructions, so we get a warning at compile
// time if any instructions do not have an implementation.
#define INST(Id, Parent, TextualName, MemBehavior, MayRelease) \
OwnershipUseCheckerResult visit##Id(Id *);
#include "swift/SIL/SILNodes.def"
};
} // end anonymous namespace
/// Implementation for instructions without operands. These should never be
/// visited.
#define NO_OPERAND_INST(INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
assert(I->getNumOperands() == 0 && \
"Expected instruction without operands?!"); \
llvm_unreachable("Instruction without operand can not be compatible with " \
"any def's OwnershipValueKind"); \
}
NO_OPERAND_INST(AllocBox)
NO_OPERAND_INST(AllocExistentialBox)
NO_OPERAND_INST(AllocGlobal)
NO_OPERAND_INST(AllocRef)
NO_OPERAND_INST(AllocRefDynamic)
NO_OPERAND_INST(AllocStack)
NO_OPERAND_INST(AllocValueBuffer)
NO_OPERAND_INST(FloatLiteral)
NO_OPERAND_INST(FunctionRef)
NO_OPERAND_INST(GlobalAddr)
NO_OPERAND_INST(IntegerLiteral)
NO_OPERAND_INST(Metatype)
NO_OPERAND_INST(ObjCProtocol)
NO_OPERAND_INST(RetainValue)
NO_OPERAND_INST(StringLiteral)
NO_OPERAND_INST(StrongRetain)
NO_OPERAND_INST(StrongRetainUnowned)
NO_OPERAND_INST(UnownedRetain)
NO_OPERAND_INST(Unreachable)
NO_OPERAND_INST(ValueMetatype)
#undef NO_OPERAND_INST
/// Instructions whose arguments are always compatible with one convention.
#define CONSTANT_OWNERSHIP_INST(OWNERSHIP, \
SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS, INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
assert(I->getNumOperands() && "Expected to have non-zero operands"); \
if (ValueOwnershipKind::OWNERSHIP == ValueOwnershipKind::Trivial) { \
assert(isAddressOrTrivialType() && \
"Trivial ownership requires a trivial type or an address"); \
} \
\
return {compatibleWithOwnership(ValueOwnershipKind::OWNERSHIP), \
SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS}; \
}
CONSTANT_OWNERSHIP_INST(Guaranteed, false, TupleExtract)
CONSTANT_OWNERSHIP_INST(Guaranteed, false, StructExtract)
CONSTANT_OWNERSHIP_INST(Guaranteed, false, UncheckedEnumData)
CONSTANT_OWNERSHIP_INST(Owned, true, AutoreleaseValue)
CONSTANT_OWNERSHIP_INST(Owned, true, DeallocBox)
CONSTANT_OWNERSHIP_INST(Owned, true, DeallocExistentialBox)
CONSTANT_OWNERSHIP_INST(Owned, true, DeallocPartialRef)
CONSTANT_OWNERSHIP_INST(Owned, true, DeallocRef)
CONSTANT_OWNERSHIP_INST(Owned, true, DeallocValueBuffer)
CONSTANT_OWNERSHIP_INST(Owned, true, DestroyValue)
CONSTANT_OWNERSHIP_INST(Owned, true, ReleaseValue)
CONSTANT_OWNERSHIP_INST(Owned, true, StrongRelease)
CONSTANT_OWNERSHIP_INST(Owned, true, StrongUnpin)
CONSTANT_OWNERSHIP_INST(Owned, true, SwitchEnum)
CONSTANT_OWNERSHIP_INST(Owned, true, UnownedRelease)
CONSTANT_OWNERSHIP_INST(Owned, true, InitExistentialRef)
CONSTANT_OWNERSHIP_INST(Guaranteed, true,
OpenExistentialRef) // We may need a take here.
CONSTANT_OWNERSHIP_INST(Trivial, false, AddressToPointer)
CONSTANT_OWNERSHIP_INST(Trivial, false, BindMemory)
CONSTANT_OWNERSHIP_INST(Trivial, false, CheckedCastAddrBranch)
CONSTANT_OWNERSHIP_INST(Trivial, false, CondFail)
CONSTANT_OWNERSHIP_INST(Trivial, false, CopyAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, DeallocStack)
CONSTANT_OWNERSHIP_INST(Trivial, false, DebugValueAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, DeinitExistentialAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, DestroyAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, IndexAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, IndexRawPointer)
CONSTANT_OWNERSHIP_INST(Trivial, false, InitBlockStorageHeader)
CONSTANT_OWNERSHIP_INST(Trivial, false, InitEnumDataAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, InitExistentialAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, InitExistentialMetatype)
CONSTANT_OWNERSHIP_INST(Trivial, false, InjectEnumAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, IsNonnull)
CONSTANT_OWNERSHIP_INST(Trivial, false, IsUnique)
CONSTANT_OWNERSHIP_INST(Trivial, false, IsUniqueOrPinned)
CONSTANT_OWNERSHIP_INST(Trivial, false, Load)
CONSTANT_OWNERSHIP_INST(Trivial, false, LoadBorrow)
CONSTANT_OWNERSHIP_INST(Trivial, false, LoadUnowned)
CONSTANT_OWNERSHIP_INST(Trivial, false, LoadWeak)
CONSTANT_OWNERSHIP_INST(Trivial, false, MarkFunctionEscape)
CONSTANT_OWNERSHIP_INST(Trivial, false, MarkUninitialized)
CONSTANT_OWNERSHIP_INST(Trivial, false, MarkUninitializedBehavior)
CONSTANT_OWNERSHIP_INST(Trivial, false, ObjCExistentialMetatypeToObject)
CONSTANT_OWNERSHIP_INST(Trivial, false, ObjCMetatypeToObject)
CONSTANT_OWNERSHIP_INST(Trivial, false, ObjCToThickMetatype)
CONSTANT_OWNERSHIP_INST(Trivial, false, OpenExistentialAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, OpenExistentialMetatype)
CONSTANT_OWNERSHIP_INST(Trivial, false, PointerToAddress)
CONSTANT_OWNERSHIP_INST(Trivial, false, PointerToThinFunction)
CONSTANT_OWNERSHIP_INST(Trivial, false, ProjectBlockStorage)
CONSTANT_OWNERSHIP_INST(Trivial, false, ProjectExistentialBox)
CONSTANT_OWNERSHIP_INST(Trivial, false, ProjectValueBuffer)
CONSTANT_OWNERSHIP_INST(Trivial, false, RawPointerToRef)
CONSTANT_OWNERSHIP_INST(Trivial, false, SelectEnumAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, SelectValue)
CONSTANT_OWNERSHIP_INST(Trivial, false, StructElementAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, SwitchEnumAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, SwitchValue)
CONSTANT_OWNERSHIP_INST(Trivial, false, TailAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, ThickToObjCMetatype)
CONSTANT_OWNERSHIP_INST(Trivial, false, ThinFunctionToPointer)
CONSTANT_OWNERSHIP_INST(Trivial, false, ThinToThickFunction)
CONSTANT_OWNERSHIP_INST(Trivial, false, TupleElementAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, UncheckedAddrCast)
CONSTANT_OWNERSHIP_INST(Trivial, false, UncheckedRefCastAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, UncheckedTakeEnumDataAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, UncheckedTrivialBitCast)
CONSTANT_OWNERSHIP_INST(Trivial, false, UnconditionalCheckedCastAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, UnmanagedToRef)
#undef CONSTANT_OWNERSHIP_INST
#define ACCEPTS_ANY_OWNERSHIP_INST(INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
return {true, false}; \
}
ACCEPTS_ANY_OWNERSHIP_INST(BeginBorrow)
ACCEPTS_ANY_OWNERSHIP_INST(CopyValue)
ACCEPTS_ANY_OWNERSHIP_INST(DebugValue)
ACCEPTS_ANY_OWNERSHIP_INST(FixLifetime)
ACCEPTS_ANY_OWNERSHIP_INST(SelectEnum)
ACCEPTS_ANY_OWNERSHIP_INST(UncheckedBitwiseCast) // Is this right?
ACCEPTS_ANY_OWNERSHIP_INST(WitnessMethod) // Is this right?
ACCEPTS_ANY_OWNERSHIP_INST(ProjectBox) // The result is a T*.
#undef ACCEPTS_ANY_OWNERSHIP_INST
// Trivial if trivial typed, otherwise must accept owned?
#define ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS, \
INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
assert(I->getNumOperands() && "Expected to have non-zero operands"); \
assert(!isAddressOrTrivialType() && \
"Shouldn't have an address or a non trivial type"); \
bool compatible = getOwnershipKind() == ValueOwnershipKind::Any || \
!compatibleWithOwnership(ValueOwnershipKind::Trivial); \
return {compatible, SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS}; \
}
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, SuperMethod)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, BridgeObjectToWord)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, ClassMethod)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, CopyBlock)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, DynamicMethod)
// DynamicMethodBranch: Is this right? I think this is taken at +1.
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, DynamicMethodBranch)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, ExistentialMetatype)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, OpenExistentialBox)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, RefElementAddr)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, RefTailAddr)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, RefToRawPointer)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, RefToUnmanaged)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, RefToUnowned)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, SetDeallocating)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, StrongPin)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, UnownedToRef)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, CopyUnownedValue)
#undef ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitForwardingInst(SILInstruction *I) {
assert(I->getNumOperands() && "Expected to have non-zero operands");
ArrayRef<Operand> Ops = I->getAllOperands();
ValueOwnershipKind Base = getOwnershipKind();
for (const Operand &Op : Ops) {
auto MergedValue = Base.merge(Op.get().getOwnershipKind());
if (!MergedValue.hasValue())
return {false, true};
Base = MergedValue.getValue();
}
return {true, !isAddressOrTrivialType()};
}
#define FORWARD_OWNERSHIP_INST(INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
return visitForwardingInst(I); \
}
FORWARD_OWNERSHIP_INST(Tuple)
FORWARD_OWNERSHIP_INST(Struct)
FORWARD_OWNERSHIP_INST(Enum)
// All of these should really have take falgs and be guaranteed otherwise.
FORWARD_OWNERSHIP_INST(Upcast)
FORWARD_OWNERSHIP_INST(UncheckedRefCast)
FORWARD_OWNERSHIP_INST(ConvertFunction)
FORWARD_OWNERSHIP_INST(RefToBridgeObject)
FORWARD_OWNERSHIP_INST(BridgeObjectToRef)
FORWARD_OWNERSHIP_INST(UnconditionalCheckedCast)
// This should be based off of the argument.
FORWARD_OWNERSHIP_INST(Branch)
FORWARD_OWNERSHIP_INST(CondBranch)
FORWARD_OWNERSHIP_INST(CheckedCastBranch)
#undef FORWARD_OWNERSHIP_INST
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitReturnInst(ReturnInst *RI) {
SILModule &M = RI->getModule();
bool IsTrivial = RI->getOperand()->getType().isTrivial(M);
auto Results =
RI->getFunction()->getLoweredFunctionType()->getDirectResults();
if (Results.empty() || IsTrivial) {
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
// Find the first index where we have a trivial value.
auto Iter = find_if(Results, [&M](const SILResultInfo &Info) -> bool {
return Info.getOwnershipKind(M) != ValueOwnershipKind::Trivial;
});
// If we have all trivial, then we must be trivial. Why wasn't our original
// type trivial? This is a hard error since this is a logic error in our code
// here.
if (Iter == Results.end())
llvm_unreachable("Should have already checked a trivial type?!");
unsigned Index = std::distance(Results.begin(), Iter);
ValueOwnershipKind Base = Results[Index].getOwnershipKind(M);
for (const SILResultInfo &ResultInfo : Results.slice(Index + 1)) {
auto RKind = ResultInfo.getOwnershipKind(M);
// Ignore trivial types.
if (RKind.merge(ValueOwnershipKind::Trivial))
continue;
auto MergedValue = Base.merge(RKind);
// If we fail to merge all types in, bail. We can not come up with a proper
// result type.
if (!MergedValue.hasValue()) {
return {false, false};
}
// In case Base is Any.
Base = MergedValue.getValue();
}
return {compatibleWithOwnership(Base), true};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitEndBorrowInst(EndBorrowInst *I) {
// We do not consider the source to be a verified use for now.
if (getOperandIndex() == EndBorrowInst::Src)
return {true, false};
return {compatibleWithOwnership(ValueOwnershipKind::Guaranteed), true};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitThrowInst(ThrowInst *I) {
// Error objects are trivial? If this fails, fix this.
return {true, false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitStoreUnownedInst(StoreUnownedInst *I) {
if (getValue() == I->getSrc())
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitStoreWeakInst(StoreWeakInst *I) {
if (getValue() == I->getSrc())
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitStoreBorrowInst(StoreBorrowInst *I) {
if (getValue() == I->getSrc())
return {compatibleWithOwnership(ValueOwnershipKind::Guaranteed), false};
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
OwnershipUseCheckerResult OwnershipCompatibilityUseChecker::visitCallee(
CanSILFunctionType SubstCalleeType) {
ParameterConvention Conv = SubstCalleeType->getCalleeConvention();
switch (Conv) {
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
llvm_unreachable("Illegal convention for callee");
case ParameterConvention::Direct_Unowned:
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
case ParameterConvention::Direct_Owned:
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
case ParameterConvention::Direct_Guaranteed:
return {compatibleWithOwnership(ValueOwnershipKind::Guaranteed), false};
}
llvm_unreachable("Unhandled ParameterConvention in switch.");
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitApplyInst(ApplyInst *I) {
// If we are visiting the callee, handle it specially.
if (getOperandIndex() == 0)
return visitCallee(I->getSubstCalleeType());
switch (I->getArgumentConvention(getOperandIndex() - 1)) {
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_In_Guaranteed:
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_Out:
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
case SILArgumentConvention::Direct_Owned:
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
case SILArgumentConvention::Direct_Unowned:
if (isAddressOrTrivialType())
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
return {compatibleWithOwnership(ValueOwnershipKind::Unowned), false};
case SILArgumentConvention::Direct_Guaranteed:
return {compatibleWithOwnership(ValueOwnershipKind::Guaranteed), false};
case SILArgumentConvention::Direct_Deallocating:
llvm_unreachable("No ownership associated with deallocating");
}
llvm_unreachable("Unhandled SILArgumentConvention in switch.");
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitTryApplyInst(TryApplyInst *I) {
// If we are visiting the callee, handle it specially.
if (getOperandIndex() == 0)
return visitCallee(I->getSubstCalleeType());
switch (I->getArgumentConvention(getOperandIndex() - 1)) {
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_In_Guaranteed:
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_Out:
return {true, false};
case SILArgumentConvention::Direct_Owned:
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
case SILArgumentConvention::Direct_Unowned:
if (isAddressOrTrivialType())
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
return {compatibleWithOwnership(ValueOwnershipKind::Unowned), false};
case SILArgumentConvention::Direct_Guaranteed:
return {compatibleWithOwnership(ValueOwnershipKind::Guaranteed), false};
case SILArgumentConvention::Direct_Deallocating:
llvm_unreachable("No ownership associated with deallocating");
}
llvm_unreachable("Unhandled SILArgumentConvention in switch.");
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitPartialApplyInst(PartialApplyInst *I) {
// All non-trivial types should be captured.
if (isAddressOrTrivialType()) {
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitBuiltinInst(BuiltinInst *I) {
// This needs to be updated.
return {true, false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitAssignInst(AssignInst *I) {
if (getValue() == I->getSrc())
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
return {true, false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitStoreInst(StoreInst *I) {
if (getValue() == I->getSrc())
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
return {true, false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitMarkDependenceInst(
MarkDependenceInst *I) {
// This needs to be updated.
llvm_unreachable("Not implemented");
}
//===----------------------------------------------------------------------===//
// SILValueOwnershipChecker
//===----------------------------------------------------------------------===//
namespace {
class SILValueOwnershipChecker {
/// The module that we are in.
SILModule &Mod;
/// The value whose ownership we will check.
SILValue Value;
// The worklist that we will use for our iterative reachability query.
llvm::SmallVector<SILBasicBlock *, 32> Worklist;
// The set of blocks with lifetime ending uses.
llvm::SmallPtrSet<SILBasicBlock *, 8> BlocksWithLifetimeEndingUses;
// The set of blocks with non-lifetime ending uses and the associated
// non-lifetime ending use SILInstruction.
llvm::SmallDenseMap<SILBasicBlock *, SILInstruction *, 8>
BlocksWithNonLifetimeEndingUses;
// The blocks that we have already visited.
llvm::SmallPtrSet<SILBasicBlock *, 32> VisitedBlocks;
// A list of successor blocks that we must visit by the time the algorithm
// terminates.
llvm::SmallPtrSet<SILBasicBlock *, 8> SuccessorBlocksThatMustBeVisited;
public:
SILValueOwnershipChecker(SILModule &M, SILValue V) : Mod(M), Value(V) {}
~SILValueOwnershipChecker() = default;
SILValueOwnershipChecker(SILValueOwnershipChecker &) = delete;
SILValueOwnershipChecker(SILValueOwnershipChecker &&) = delete;
void check() {
DEBUG(llvm::dbgs() << "Verifying ownership of: " << *Value);
// First check that our uses have coherent ownership. If after evaluating
// the ownership we do not need to check dataflow (due to performs
// ValueOwnershipKind::None), then bail.
if (!checkUses())
return;
checkDataflow();
}
private:
bool checkUses();
void checkDataflow();
void
gatherUsers(llvm::SmallVectorImpl<SILInstruction *> &LifetimeEndingUsers,
llvm::SmallVectorImpl<SILInstruction *> &NonLifetimeEndingUsers);
void uniqueNonLifetimeEndingUsers(
ArrayRef<SILInstruction *> NonLifetimeEndingUsers);
/// Returns true if the given block is in the BlocksWithLifetimeEndingUses
/// set. This is a helper to extract out large logging messages so that the
/// main logic is easy to read.
bool doesBlockDoubleConsume(SILBasicBlock *UserBlock,
SILInstruction *LifetimeEndingUser = nullptr,
bool ShouldInsert = false);
/// Returns true if the given block contains a non-lifetime ending use that is
/// strictly later in the block than a lifetime ending use. If all
/// non-lifetime ending uses are before the lifetime ending use, the block is
/// removed from the BlocksWithNonLifetimeEndingUses map to show that the uses
/// were found to properly be post-dominated by a lifetime ending use.
bool doesBlockContainUseAfterFree(SILInstruction *LifetimeEndingUser,
SILBasicBlock *UserBlock);
};
} // end anonymous namespace
bool SILValueOwnershipChecker::doesBlockContainUseAfterFree(
SILInstruction *LifetimeEndingUser, SILBasicBlock *UserBlock) {
auto Iter = BlocksWithNonLifetimeEndingUses.find(UserBlock);
if (Iter == BlocksWithNonLifetimeEndingUses.end())
return false;
SILInstruction *NonLifetimeEndingUser = Iter->second;
// Make sure that the non-lifetime ending use is before the lifetime
// ending use. Otherwise, we have a use after free.
if (std::find_if(LifetimeEndingUser->getIterator(), UserBlock->end(),
[&NonLifetimeEndingUser](const SILInstruction &I) -> bool {
return NonLifetimeEndingUser == &I;
}) != UserBlock->end()) {
llvm::errs() << "Found use after free?!\n"
<< "Function: '" << Value->getFunction()->getName() << "'\n"
<< "Value: " << *Value
<< "Consuming User: " << *LifetimeEndingUser
<< "Non Consuming User: " << *Iter->second << "Block:\n"
<< *UserBlock << "\n";
return true;
}
// Erase the use since we know that it is properly joint post-dominated.
BlocksWithNonLifetimeEndingUses.erase(Iter);
return false;
}
bool SILValueOwnershipChecker::doesBlockDoubleConsume(
SILBasicBlock *UserBlock, SILInstruction *LifetimeEndingUser,
bool ShouldInsert) {
if ((ShouldInsert && BlocksWithLifetimeEndingUses.insert(UserBlock).second) ||
!BlocksWithLifetimeEndingUses.count(UserBlock))
return false;
llvm::errs() << "Function: '" << Value->getFunction()->getName() << "'\n"
<< "Found over consume?!\n"
<< "Value: " << *Value;
if (LifetimeEndingUser)
llvm::errs() << "User: " << *LifetimeEndingUser;
llvm::errs() << "Block:\n" << *UserBlock << "\n";
return true;
}
void SILValueOwnershipChecker::gatherUsers(
llvm::SmallVectorImpl<SILInstruction *> &LifetimeEndingUsers,
llvm::SmallVectorImpl<SILInstruction *> &NonLifetimeEndingUsers) {
for (Operand *Op : Value->getUses()) {
auto *User = Op->getUser();
if (OwnershipCompatibilityUseChecker(Mod, *Op).check(User)) {
DEBUG(llvm::dbgs() << " Lifetime Ending User: " << *User);
LifetimeEndingUsers.push_back(User);
} else {
DEBUG(llvm::dbgs() << " Regular User: " << *User);
NonLifetimeEndingUsers.push_back(User);
}
}
}
// Unique our non lifetime ending user list by only selecting the last user in
// each block.
void SILValueOwnershipChecker::uniqueNonLifetimeEndingUsers(
ArrayRef<SILInstruction *> NonLifetimeEndingUsers) {
for (SILInstruction *User : NonLifetimeEndingUsers) {
auto *UserBlock = User->getParent();
// First try to associate User with User->getParent().
auto Result =
BlocksWithNonLifetimeEndingUses.insert(std::make_pair(UserBlock, User));
// If the insertion succeeds, then we know that there is no more work to
// be done, so process the next use.
if (Result.second)
continue;
// If the insertion fails, then we have at least two non-lifetime ending
// uses in the same block. Since we are performing a liveness type of
// dataflow, we only need the last non-lifetime ending use to show that all
// lifetime ending uses post dominate both. Thus, see if Use is after
// Result.first->second in the use list. If Use is not later, then we wish
// to keep the already mapped value, not use, so continue.
if (std::find_if(Result.first->second->getIterator(), UserBlock->end(),
[&User](const SILInstruction &I) -> bool {
return User == &I;
}) == UserBlock->end()) {
continue;
}
// At this point, we know that Use is later in the Block than
// Result.first->second, so store Use instead.
Result.first->second = User;
}
}
bool SILValueOwnershipChecker::checkUses() {
DEBUG(llvm::dbgs() << " Gathering and classifying uses!\n");
// First go through V and gather up its uses. While we do this we:
//
// 1. Verify that none of the uses are in the same block. This would be an
// overconsume so in this case we assert.
// 2. Verify that the uses are compatible with our ownership convention.
llvm::SmallVector<SILInstruction *, 16> LifetimeEndingUsers;
llvm::SmallVector<SILInstruction *, 16> NonLifetimeEndingUsers;
gatherUsers(LifetimeEndingUsers, NonLifetimeEndingUsers);
// If we do not have any lifetime ending users, there is nothing to
// check. This occurs with trivial types and addresses. Return false.
if (LifetimeEndingUsers.empty()) {
DEBUG(llvm::dbgs() << " No lifetime ending users?! Bailing early.\n");
assert(isValueAddressOrTrivial(Value, Mod) &&
"Must always check the lifetime for non-trivial, non-address types");
return false;
}
DEBUG(llvm::dbgs() << " Found lifetime ending users! Performing initial "
"checks\n");
// Then add our non lifetime ending users and their blocks to the
// BlocksWithNonLifetimeEndingUses map. While we do this, if we have multiple
// uses in the same block, we only accept the last use since from a liveness
// perspective that is all we care about.
uniqueNonLifetimeEndingUsers(NonLifetimeEndingUsers);
// Finally, we go through each one of our lifetime ending users performing the
// following operation:
//
// 1. Verifying that no two lifetime ending users are in the same block. This
// is accomplished by adding the user blocks to the
// BlocksWithLifetimeEndingUses list. This avoids double consumes.
//
// 2. Verifying that no predecessor is a block with a lifetime ending use. The
// reason why this is necessary is because we wish to not add elements to the
// worklist twice. Thus we want to check if we have already visited a
// predecessor.
llvm::SmallVector<std::pair<SILInstruction *, SILBasicBlock *>, 32>
PredsToAddToWorklist;
for (SILInstruction *User : LifetimeEndingUsers) {
SILBasicBlock *UserBlock = User->getParent();
// If the block does over consume, we either assert or return false. We only
// return false when debugging.
if (doesBlockDoubleConsume(UserBlock, User, true)) {
if (PrintMessageInsteadOfAssert)
return false;
llvm_unreachable("triggering standard assertion failure routine");
}
// Then check if the given block has a use after free.
if (doesBlockContainUseAfterFree(User, UserBlock)) {
if (PrintMessageInsteadOfAssert)
return false;
llvm_unreachable("triggering standard assertion failure routine");
}
// Then for each predecessor of this block...
for (auto *Pred : UserBlock->getPredecessorBlocks()) {
// If this block is not a block that we have already put on the list, add
// it to the worklist.
PredsToAddToWorklist.push_back({User, Pred});
}
}
for (auto *I : LifetimeEndingUsers) {
// Finally add the user block to the visited list so we do not try to add it
// to our must visit successor list.
VisitedBlocks.insert(I->getParent());
}
// Now that we have marked all of our producing blocks, we go through our
// PredsToAddToWorklist list and add our preds, making sure that none of these
// preds are in BlocksWithLifetimeEndingUses.
for (auto Pair : PredsToAddToWorklist) {
SILBasicBlock *PredBlock;
SILInstruction *User;
std::tie(User, PredBlock) = Pair;
// Make sure that the predecessor is not in our
// BlocksWithLifetimeEndingUses list.
if (doesBlockDoubleConsume(PredBlock, User)) {
if (PrintMessageInsteadOfAssert)
return false;
llvm_unreachable("triggering standard assertion failure routine");
}
if (!VisitedBlocks.insert(PredBlock).second)
continue;
Worklist.push_back(PredBlock);
}
return true;
}
void SILValueOwnershipChecker::checkDataflow() {
DEBUG(llvm::dbgs() << " Beginning to check dataflow constraints\n");
// Until the worklist is empty...
while (!Worklist.empty()) {
// Grab the next block to visit.
SILBasicBlock *BB = Worklist.pop_back_val();
DEBUG(llvm::dbgs() << " Visiting Block:\n" << *BB);
// Since the block is on our worklist, we know already that it is not a
// block with lifetime ending uses, due to the invariants of our loop.
// First remove BB from the SuccessorBlocksThatMustBeVisited list. This
// ensures that when the algorithm terminates, we know that BB was not the
// beginning of a non-covered path to the exit.
SuccessorBlocksThatMustBeVisited.erase(BB);
// Then remove BB from BlocksWithNonLifetimeEndingUses so we know that
// this block was properly joint post-dominated by our lifetime ending
// users.
BlocksWithNonLifetimeEndingUses.erase(BB);
// Ok, now we know that we do not have an overconsume. So now we need to
// update our state for our successors to make sure by the end of the block,
// we visit them.
for (SILBasicBlock *SuccBlock : BB->getSuccessorBlocks()) {
// If we already visited the successor, there is nothing to do since we
// already visited the successor.
if (VisitedBlocks.count(SuccBlock))
continue;
// Otherwise, add the successor to our SuccessorBlocksThatMustBeVisited
// set to ensure that we assert if we do not visit it by the end of the
// algorithm.
SuccessorBlocksThatMustBeVisited.insert(SuccBlock);
}
// Then for each predecessor of this block:
//
// 1. If we have visited the predecessor already, that it is not a block
// with lifetime ending uses. If it is a block with uses, then we have a
// double release... so assert. If not, we continue.
//
// 2. We add the predecessor to the worklist if we have not visited it yet.
for (auto *PredBlock : BB->getPredecessorBlocks()) {
if (doesBlockDoubleConsume(PredBlock)) {
if (PrintMessageInsteadOfAssert)
return;
llvm_unreachable("triggering standard assertion failure routine");
}
if (VisitedBlocks.count(PredBlock)) {
continue;
}
Worklist.push_back(PredBlock);
}
}
// Make sure that we visited all successor blocks that we needed to visit to
// make sure we didn't leak.
if (!SuccessorBlocksThatMustBeVisited.empty()) {
llvm::errs()
<< "Error! Found a leak due to a consuming post-dominance failure!\n"
<< "Function: '" << Value->getFunction()->getName() << "'\n"
<< " Value: " << *Value << " Post Dominating Failure Blocks:\n";
for (auto *BB : SuccessorBlocksThatMustBeVisited) {
llvm::errs() << *BB;
}
if (PrintMessageInsteadOfAssert)
return;
llvm_unreachable("triggering standard assertion failure routine");
}
// Make sure that we do not have any lifetime ending uses left to visit. If we
// do, then these non lifetime ending uses must be outside of our "alive"
// blocks implying a use-after free.
if (!BlocksWithNonLifetimeEndingUses.empty()) {
llvm::errs()
<< "Found use after free due to unvisited non lifetime ending uses?!\n"
<< "Function: '" << Value->getFunction()->getName() << "'\n"
<< "Value: " << *Value << " Remaining Users:\n";
for (auto &Pair : BlocksWithNonLifetimeEndingUses) {
llvm::errs() << "User:" << *Pair.second << "Block:\n"
<< *Pair.first << "\n";
}
if (PrintMessageInsteadOfAssert)
return;
llvm_unreachable("triggering standard assertion failure routine");
}
}
#endif
//===----------------------------------------------------------------------===//
// Top Level Entrypoints
//===----------------------------------------------------------------------===//
void SILInstruction::verifyOperandOwnership() const {
#ifndef NDEBUG
// If SILOwnership is not enabled, do not perform verification.
if (!getModule().getOptions().EnableSILOwnership)
return;
auto *Self = const_cast<SILInstruction *>(this);
for (const Operand &Op : getAllOperands()) {
OwnershipCompatibilityUseChecker(getModule(), Op).check(Self);
}
#endif
}
void SILValue::verifyOwnership(SILModule &Mod) const {
#ifndef NDEBUG
SILValueOwnershipChecker(Mod, *this).check();
#endif
}