blob: f1441fc92db6d252653a542942a17259a78fa3a4 [file] [log] [blame]
//===--- ConstraintSystem.cpp - Constraint-based Type Checking ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the constraint-based type checker, anchored by the
// \c ConstraintSystem class, which provides type checking and type
// inference for expressions.
//
//===----------------------------------------------------------------------===//
#include "ConstraintSystem.h"
#include "ConstraintGraph.h"
#include "swift/AST/ArchetypeBuilder.h"
#include "llvm/ADT/SmallString.h"
using namespace swift;
using namespace constraints;
ConstraintSystem::ConstraintSystem(TypeChecker &tc, DeclContext *dc,
ConstraintSystemOptions options)
: TC(tc), DC(dc), Options(options),
Arena(tc.Context, Allocator,
[&](TypeVariableType *baseTypeVar, AssociatedTypeDecl *assocType) {
return getMemberType(baseTypeVar, assocType,
ConstraintLocatorBuilder(nullptr),
/*options=*/0);
}),
CG(*new ConstraintGraph(*this))
{
assert(DC && "context required");
}
ConstraintSystem::~ConstraintSystem() {
delete &CG;
}
bool ConstraintSystem::hasFreeTypeVariables() {
// Look for any free type variables.
for (auto tv : TypeVariables) {
if (!tv->getImpl().hasRepresentativeOrFixed()) {
return true;
}
}
return false;
}
void ConstraintSystem::addTypeVariable(TypeVariableType *typeVar) {
TypeVariables.push_back(typeVar);
// Notify the constraint graph.
(void)CG[typeVar];
}
void ConstraintSystem::mergeEquivalenceClasses(TypeVariableType *typeVar1,
TypeVariableType *typeVar2) {
assert(typeVar1 == getRepresentative(typeVar1) &&
"typeVar1 is not the representative");
assert(typeVar2 == getRepresentative(typeVar2) &&
"typeVar2 is not the representative");
assert(typeVar1 != typeVar2 && "cannot merge type with itself");
typeVar1->getImpl().mergeEquivalenceClasses(typeVar2, getSavedBindings());
// Merge nodes in the constraint graph.
CG.mergeNodes(typeVar1, typeVar2);
addTypeVariableConstraintsToWorkList(typeVar1);
}
void ConstraintSystem::assignFixedType(TypeVariableType *typeVar, Type type,
bool updateState) {
// If the type to be fixed is an optional type that wraps the type parameter
// itself, we do not want to go through with the assignment. To do so would
// force the type variable to be adjacent to itself.
if (auto optValueType = type->getOptionalObjectType()) {
if (optValueType->isEqual(typeVar))
return;
}
typeVar->getImpl().assignFixedType(type, getSavedBindings());
if (!updateState)
return;
if (!type->is<TypeVariableType>()) {
// If this type variable represents a literal, check whether we picked the
// default literal type. First, find the corresponding protocol.
ProtocolDecl *literalProtocol = nullptr;
// If we have the constraint graph, we can check all type variables in
// the equivalence class. This is the More Correct path.
// FIXME: Eliminate the less-correct path.
auto typeVarRep = getRepresentative(typeVar);
for (auto tv : CG[typeVarRep].getEquivalenceClass()) {
auto locator = tv->getImpl().getLocator();
if (!locator || !locator->getPath().empty())
continue;
auto anchor = locator->getAnchor();
if (!anchor)
continue;
literalProtocol = TC.getLiteralProtocol(anchor);
if (literalProtocol)
break;
}
// If the protocol has a default type, check it.
if (literalProtocol) {
if (auto defaultType = TC.getDefaultType(literalProtocol, DC)) {
// Check whether the nominal types match. This makes sure that we
// properly handle Array vs. Array<T>.
if (defaultType->getAnyNominal() != type->getAnyNominal())
increaseScore(SK_NonDefaultLiteral);
}
}
}
// Notify the constraint graph.
CG.bindTypeVariable(typeVar, type);
addTypeVariableConstraintsToWorkList(typeVar);
}
void ConstraintSystem::setMustBeMaterializableRecursive(Type type)
{
assert(type->isMaterializable() &&
"argument to setMustBeMaterializableRecursive may not be inherently "
"non-materializable");
TypeVariableType *typeVar = nullptr;
type = getFixedTypeRecursive(type, typeVar, /*wantRValue=*/false);
if (typeVar) {
typeVar->getImpl().setMustBeMaterializable(getSavedBindings());
} else if (auto *tupleTy = type->getAs<TupleType>()) {
for (auto elt : tupleTy->getElementTypes()) {
setMustBeMaterializableRecursive(elt);
}
}
}
void ConstraintSystem::addTypeVariableConstraintsToWorkList(
TypeVariableType *typeVar) {
// Gather the constraints affected by a change to this type variable.
SmallVector<Constraint *, 8> constraints;
CG.gatherConstraints(typeVar, constraints);
// Add any constraints that aren't already active to the worklist.
for (auto constraint : constraints) {
if (!constraint->isActive()) {
ActiveConstraints.splice(ActiveConstraints.end(),
InactiveConstraints, constraint);
constraint->setActive(true);
}
}
}
/// Retrieve a dynamic result signature for the given declaration.
static std::tuple<char, ObjCSelector, CanType>
getDynamicResultSignature(ValueDecl *decl) {
if (auto func = dyn_cast<AbstractFunctionDecl>(decl)) {
// Handle functions.
auto type =
decl->getInterfaceType()->castTo<AnyFunctionType>()->getResult();
return std::make_tuple(func->isStatic(), func->getObjCSelector(),
type->getCanonicalType());
}
if (auto asd = dyn_cast<AbstractStorageDecl>(decl)) {
// Handle properties and subscripts, anchored by the getter's selector.
return std::make_tuple(asd->isStatic(), asd->getObjCGetterSelector(),
asd->getInterfaceType()->getCanonicalType());
}
llvm_unreachable("Not a valid @objc member");
}
LookupResult &ConstraintSystem::lookupMember(Type base, DeclName name) {
base = base->getCanonicalType();
// Check whether we've already performed this lookup.
auto knownMember = MemberLookups.find({base, name});
if (knownMember != MemberLookups.end())
return *knownMember->second;
// Lookup the member.
NameLookupOptions lookupOptions = defaultMemberLookupOptions;
if (isa<AbstractFunctionDecl>(DC))
lookupOptions |= NameLookupFlags::KnownPrivate;
MemberLookups[{base, name}] = None;
auto lookup = TC.lookupMember(DC, base, name, lookupOptions);
auto &result = MemberLookups[{base, name}];
result = std::move(lookup);
// If we aren't performing dynamic lookup, we're done.
auto instanceTy = base->getRValueType();
if (auto metaTy = instanceTy->getAs<AnyMetatypeType>())
instanceTy = metaTy->getInstanceType();
auto protoTy = instanceTy->getAs<ProtocolType>();
if (!*result ||
!protoTy ||
!protoTy->getDecl()->isSpecificProtocol(
KnownProtocolKind::AnyObject))
return *result;
// We are performing dynamic lookup. Filter out redundant results early.
llvm::DenseSet<std::tuple<char, ObjCSelector, CanType>> known;
result->filter([&](ValueDecl *decl) -> bool {
if (decl->isInvalid())
return false;
return known.insert(getDynamicResultSignature(decl)).second;
});
return *result;
}
ArrayRef<Type> ConstraintSystem::
getAlternativeLiteralTypes(KnownProtocolKind kind) {
unsigned index;
switch (kind) {
#define PROTOCOL_WITH_NAME(Id, Name) \
case KnownProtocolKind::Id: llvm_unreachable("Not a literal protocol");
#define LITERAL_CONVERTIBLE_PROTOCOL_WITH_NAME(Id, Name)
#include "swift/AST/KnownProtocols.def"
case KnownProtocolKind::ArrayLiteralConvertible: index = 0; break;
case KnownProtocolKind::DictionaryLiteralConvertible:index = 1; break;
case KnownProtocolKind::ExtendedGraphemeClusterLiteralConvertible: index = 2;
break;
case KnownProtocolKind::FloatLiteralConvertible: index = 3; break;
case KnownProtocolKind::IntegerLiteralConvertible: index = 4; break;
case KnownProtocolKind::StringInterpolationConvertible: index = 5; break;
case KnownProtocolKind::StringLiteralConvertible: index = 6; break;
case KnownProtocolKind::NilLiteralConvertible: index = 7; break;
case KnownProtocolKind::BooleanLiteralConvertible: index = 8; break;
case KnownProtocolKind::UnicodeScalarLiteralConvertible: index = 9; break;
case KnownProtocolKind::ColorLiteralConvertible: index = 10; break;
case KnownProtocolKind::ImageLiteralConvertible: index = 11; break;
case KnownProtocolKind::FileReferenceLiteralConvertible: index = 12; break;
}
// If we already looked for alternative literal types, return those results.
if (AlternativeLiteralTypes[index])
return *AlternativeLiteralTypes[index];
SmallVector<Type, 4> types;
// If the default literal type is bridged to a class type, add the class type.
if (auto proto = TC.Context.getProtocol(kind)) {
if (auto defaultType = TC.getDefaultType(proto, DC)) {
if (auto bridgedClassType = TC.getBridgedToObjC(DC, defaultType)) {
types.push_back(bridgedClassType);
}
}
}
// Some literal kinds are related.
switch (kind) {
#define PROTOCOL_WITH_NAME(Id, Name) \
case KnownProtocolKind::Id: llvm_unreachable("Not a literal protocol");
#define LITERAL_CONVERTIBLE_PROTOCOL_WITH_NAME(Id, Name)
#include "swift/AST/KnownProtocols.def"
case KnownProtocolKind::ArrayLiteralConvertible:
case KnownProtocolKind::DictionaryLiteralConvertible:
break;
case KnownProtocolKind::ExtendedGraphemeClusterLiteralConvertible:
case KnownProtocolKind::StringInterpolationConvertible:
case KnownProtocolKind::StringLiteralConvertible:
case KnownProtocolKind::UnicodeScalarLiteralConvertible:
break;
case KnownProtocolKind::IntegerLiteralConvertible:
// Integer literals can be treated as floating point literals.
if (auto floatProto = TC.Context.getProtocol(
KnownProtocolKind::FloatLiteralConvertible)) {
if (auto defaultType = TC.getDefaultType(floatProto, DC)) {
types.push_back(defaultType);
}
}
break;
case KnownProtocolKind::FloatLiteralConvertible:
break;
case KnownProtocolKind::NilLiteralConvertible:
case KnownProtocolKind::BooleanLiteralConvertible:
break;
case KnownProtocolKind::ColorLiteralConvertible:
case KnownProtocolKind::ImageLiteralConvertible:
case KnownProtocolKind::FileReferenceLiteralConvertible:
break;
}
AlternativeLiteralTypes[index] = allocateCopy(types);
return *AlternativeLiteralTypes[index];
}
ConstraintLocator *ConstraintSystem::getConstraintLocator(
Expr *anchor,
ArrayRef<ConstraintLocator::PathElement> path,
unsigned summaryFlags) {
assert(summaryFlags == ConstraintLocator::getSummaryFlagsForPath(path));
// Check whether a locator with this anchor + path already exists.
llvm::FoldingSetNodeID id;
ConstraintLocator::Profile(id, anchor, path);
void *insertPos = nullptr;
auto locator = ConstraintLocators.FindNodeOrInsertPos(id, insertPos);
if (locator)
return locator;
// Allocate a new locator and add it to the set.
locator = ConstraintLocator::create(getAllocator(), anchor, path,
summaryFlags);
ConstraintLocators.InsertNode(locator, insertPos);
return locator;
}
ConstraintLocator *ConstraintSystem::getConstraintLocator(
const ConstraintLocatorBuilder &builder) {
// If the builder has an empty path, just extract its base locator.
if (builder.hasEmptyPath()) {
return builder.getBaseLocator();
}
// We have to build a new locator. Extract the paths from the builder.
SmallVector<LocatorPathElt, 4> path;
Expr *anchor = builder.getLocatorParts(path);
return getConstraintLocator(anchor, path, builder.getSummaryFlags());
}
bool ConstraintSystem::addConstraint(Constraint *constraint,
bool isExternallySolved,
bool simplifyExisting) {
switch (simplifyConstraint(*constraint)) {
case SolutionKind::Error:
if (!failedConstraint) {
failedConstraint = constraint;
}
if (solverState) {
solverState->retiredConstraints.push_front(constraint);
if (!simplifyExisting) {
solverState->generatedConstraints.push_back(constraint);
}
}
return false;
case SolutionKind::Solved:
// This constraint has already been solved; there is nothing more
// to do.
// Record solved constraint.
if (solverState) {
solverState->retiredConstraints.push_front(constraint);
if (!simplifyExisting)
solverState->generatedConstraints.push_back(constraint);
}
// Remove the constraint from the constraint graph.
if (simplifyExisting)
CG.removeConstraint(constraint);
return true;
case SolutionKind::Unsolved:
// We couldn't solve this constraint; add it to the pile.
if (!isExternallySolved) {
InactiveConstraints.push_back(constraint);
}
// Add this constraint to the constraint graph.
if (!simplifyExisting)
CG.addConstraint(constraint);
if (!simplifyExisting && solverState) {
solverState->generatedConstraints.push_back(constraint);
}
return false;
}
}
TypeVariableType *
ConstraintSystem::getMemberType(TypeVariableType *baseTypeVar,
AssociatedTypeDecl *assocType,
ConstraintLocatorBuilder locator,
unsigned options) {
return CG.getMemberType(baseTypeVar, assocType->getName(), [&]() {
// FIXME: Premature associated type -> identifier mapping. We should
// retain the associated type throughout.
auto loc = getConstraintLocator(locator);
auto memberTypeVar = createTypeVariable(loc, options);
addConstraint(Constraint::create(*this, ConstraintKind::TypeMember,
baseTypeVar, memberTypeVar,
assocType->getName(), loc));
return memberTypeVar;
});
}
/// Check whether this is the depth 0, index 0 generic parameter, which is
/// used for the 'Self' type of a protocol.
static bool isProtocolSelfType(Type type) {
auto gp = type->getAs<GenericTypeParamType>();
if (!gp)
return false;
return gp->getDepth() == 0 && gp->getIndex() == 0;
}
namespace {
/// Function object that retrieves a type variable corresponding to the
/// given dependent type.
class GetTypeVariable {
ConstraintSystem &CS;
ConstraintGraph &CG;
ConstraintLocatorBuilder &Locator;
DependentTypeOpener *Opener;
public:
GetTypeVariable(ConstraintSystem &cs,
ConstraintLocatorBuilder &locator,
DependentTypeOpener *opener)
: CS(cs), CG(CS.getConstraintGraph()), Locator(locator), Opener(opener) {}
TypeVariableType *operator()(Type base, AssociatedTypeDecl *member) {
// FIXME: Premature associated type -> identifier mapping. We should
// retain the associated type throughout.
auto baseTypeVar = base->castTo<TypeVariableType>();
return CG.getMemberType(baseTypeVar, member->getName(),
[&]() -> TypeVariableType* {
auto implArchetype = baseTypeVar->getImpl().getArchetype();
if (!implArchetype) {
// If the base type variable doesn't have an associated archetype,
// just form the member constraint.
// FIXME: Additional requirements?
auto locator = CS.getConstraintLocator(
Locator.withPathElement(member));
auto memberTypeVar = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding);
CS.addConstraint(Constraint::create(CS, ConstraintKind::TypeMember,
baseTypeVar, memberTypeVar,
member->getName(), locator));
return memberTypeVar;
}
ArchetypeType::NestedType nestedType;
ArchetypeType* archetype = nullptr;
if (implArchetype->hasNestedType(member->getName())) {
nestedType = implArchetype->getNestedType(member->getName());
archetype = nestedType.getValue()->getAs<ArchetypeType>();
} else if (implArchetype->isSelfDerived()) {
archetype = implArchetype;
}
ConstraintLocator *locator;
if (archetype) {
locator = CS.getConstraintLocator(
Locator.withPathElement(LocatorPathElt(archetype)));
} else {
// FIXME: Occurs when the nested type is a concrete type,
// in which case it's quite silly to create a type variable at all.
locator = CS.getConstraintLocator(Locator.withPathElement(member));
}
auto memberTypeVar = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding);
// Determine whether we should bind the new type variable as a
// member of the base type variable, or let it float.
Type replacementType;
bool shouldBindMember = true;
if (Opener) {
shouldBindMember = Opener->shouldBindAssociatedType(base, baseTypeVar,
member,
memberTypeVar,
replacementType);
}
// Bind the member's type variable as a type member of the base,
// if needed.
if (shouldBindMember) {
CS.addConstraint(Constraint::create(CS, ConstraintKind::TypeMember,
baseTypeVar, memberTypeVar,
member->getName(), locator));
}
// If we have a replacement type, bind the member's type
// variable to it.
if (replacementType)
CS.addConstraint(ConstraintKind::Bind, memberTypeVar,
replacementType, locator);
if (!archetype) {
// If the nested type is not an archetype (because it was constrained
// to a concrete type by a requirement), return the fresh type
// variable now, and let binding occur during overload resolution.
return memberTypeVar;
}
// FIXME: Would be better to walk the requirements of the protocol
// of which the associated type is a member.
if (auto superclass = member->getSuperclass()) {
CS.addConstraint(ConstraintKind::Subtype, memberTypeVar,
superclass, locator);
}
for (auto proto : member->getArchetype()->getConformsTo()) {
CS.addConstraint(ConstraintKind::ConformsTo, memberTypeVar,
proto->getDeclaredType(), locator);
}
return memberTypeVar;
});
}
};
/// Function object that replaces all occurrences of archetypes and
/// dependent types with type variables.
class ReplaceDependentTypes {
ConstraintSystem &cs;
DeclContext *dc;
bool skipProtocolSelfConstraint;
unsigned minOpeningDepth;
DependentTypeOpener *opener;
ConstraintLocatorBuilder &locator;
llvm::DenseMap<CanType, TypeVariableType *> &replacements;
GetTypeVariable &getTypeVariable;
public:
ReplaceDependentTypes(
ConstraintSystem &cs,
DeclContext *dc,
bool skipProtocolSelfConstraint,
unsigned minOpeningDepth,
DependentTypeOpener *opener,
ConstraintLocatorBuilder &locator,
llvm::DenseMap<CanType, TypeVariableType *> &replacements,
GetTypeVariable &getTypeVariable)
: cs(cs), dc(dc), skipProtocolSelfConstraint(skipProtocolSelfConstraint),
minOpeningDepth(minOpeningDepth), opener(opener), locator(locator),
replacements(replacements), getTypeVariable(getTypeVariable) { }
Type operator()(Type type) {
assert(!type->is<PolymorphicFunctionType>() && "Shouldn't get here");
// Preserve parens when opening types.
if (isa<ParenType>(type.getPointer())) {
return type;
}
// Replace archetypes with fresh type variables.
if (auto archetype = type->getAs<ArchetypeType>()) {
auto known = replacements.find(archetype->getCanonicalType());
if (known != replacements.end())
return known->second;
return archetype;
}
// Replace a generic type parameter with its corresponding type variable.
if (auto genericParam = type->getAs<GenericTypeParamType>()) {
if (opener) {
// If we have a mapping for this type parameter, there's nothing else to do.
if (Type replacement = opener->mapGenericTypeParamType(genericParam)){
return replacement;
}
}
auto known = replacements.find(genericParam->getCanonicalType());
if (known == replacements.end())
return cs.createTypeVariable(nullptr, TVO_PrefersSubtypeBinding);
return known->second;
}
// Replace a dependent member with a fresh type variable and make it a
// member of its base type.
if (auto dependentMember = type->getAs<DependentMemberType>()) {
if (opener) {
// If we have a mapping for this type parameter, there's nothing else to do.
if (Type replacement
= opener->mapDependentMemberType(dependentMember)) {
return replacement;
}
}
// Check whether we've already dealt with this dependent member.
auto known = replacements.find(dependentMember->getCanonicalType());
if (known != replacements.end())
return known->second;
// Replace archetypes in the base type.
if (auto base =
((*this)(dependentMember->getBase()))->getAs<TypeVariableType>()) {
auto result = getTypeVariable(base, dependentMember->getAssocType());
replacements[dependentMember->getCanonicalType()] = result;
return result;
}
}
// Create type variables for all of the parameters in a generic function
// type.
if (auto genericFn = type->getAs<GenericFunctionType>()) {
// Open up the generic parameters and requirements.
cs.openGeneric(dc,
genericFn->getGenericParams(),
genericFn->getRequirements(),
skipProtocolSelfConstraint,
minOpeningDepth,
opener,
locator,
replacements);
// Transform the input and output types.
Type inputTy = genericFn->getInput().transform(*this);
if (!inputTy)
return Type();
Type resultTy = genericFn->getResult().transform(*this);
if (!resultTy)
return Type();
// Build the resulting (non-generic) function type.
return FunctionType::get(inputTy, resultTy,
FunctionType::ExtInfo().
withThrows(genericFn->throws()));
}
// Open up unbound generic types, turning them into bound generic
// types with type variables for each parameter.
if (auto unbound = type->getAs<UnboundGenericType>()) {
auto parentTy = unbound->getParent();
if (parentTy)
parentTy = parentTy.transform(*this);
auto unboundDecl = unbound->getDecl();
if (unboundDecl->isInvalid())
return ErrorType::get(cs.getASTContext());
// Open up the generic type.
cs.openGeneric(unboundDecl,
unboundDecl->getGenericParamTypes(),
unboundDecl->getGenericRequirements(),
/*skipProtocolSelfConstraint=*/false,
minOpeningDepth,
opener,
locator,
replacements);
// Map the generic parameters to their corresponding type variables.
llvm::SmallVector<Type, 4> arguments;
for (auto gp : unboundDecl->getGenericParamTypes()) {
assert(replacements.count(gp->getCanonicalType()) &&
"Missing generic parameter?");
arguments.push_back(replacements[gp->getCanonicalType()]);
}
return BoundGenericType::get(unboundDecl, parentTy, arguments);
}
return type;
}
};
}
Type ConstraintSystem::openType(
Type startingType,
ConstraintLocatorBuilder locator,
llvm::DenseMap<CanType, TypeVariableType *> &replacements,
DeclContext *dc,
bool skipProtocolSelfConstraint,
unsigned minOpeningDepth,
DependentTypeOpener *opener) {
GetTypeVariable getTypeVariable{*this, locator, opener};
ReplaceDependentTypes replaceDependentTypes(*this, dc,
skipProtocolSelfConstraint,
minOpeningDepth,
opener,
locator,
replacements, getTypeVariable);
return startingType.transform(replaceDependentTypes);
}
bool ConstraintSystem::isArrayType(Type t) {
t = t->getDesugaredType();
// ArraySliceType<T> desugars to Array<T>.
if (isa<ArraySliceType>(t.getPointer()))
return true;
if (auto boundStruct = dyn_cast<BoundGenericStructType>(t.getPointer())) {
return boundStruct->getDecl() == TC.Context.getArrayDecl();
}
return false;
}
Optional<std::pair<Type, Type>> ConstraintSystem::isDictionaryType(Type type) {
if (auto boundStruct = type->getAs<BoundGenericStructType>()) {
if (boundStruct->getDecl() != TC.Context.getDictionaryDecl())
return None;
auto genericArgs = boundStruct->getGenericArgs();
return std::make_pair(genericArgs[0], genericArgs[1]);
}
return None;
}
bool ConstraintSystem::isSetType(Type type) {
if (auto boundStruct = type->getAs<BoundGenericStructType>()) {
return boundStruct->getDecl() == TC.Context.getSetDecl();
}
return false;
}
Type ConstraintSystem::openBindingType(Type type,
ConstraintLocatorBuilder locator) {
Type result = openType(type, locator);
if (isArrayType(type)) {
auto boundStruct = cast<BoundGenericStructType>(type.getPointer());
if (auto replacement = getTypeChecker().getArraySliceType(
SourceLoc(), boundStruct->getGenericArgs()[0])) {
return replacement;
}
}
if (auto dict = isDictionaryType(type)) {
if (auto replacement = getTypeChecker().getDictionaryType(
SourceLoc(), dict->first, dict->second))
return replacement;
}
return result;
}
static Type getFixedTypeRecursiveHelper(ConstraintSystem &cs,
TypeVariableType *typeVar,
bool wantRValue) {
while (auto fixed = cs.getFixedType(typeVar)) {
if (wantRValue)
fixed = fixed->getRValueType();
typeVar = fixed->getAs<TypeVariableType>();
if (!typeVar)
return fixed;
}
return nullptr;
}
Type ConstraintSystem::getFixedTypeRecursive(Type type,
TypeVariableType *&typeVar,
bool wantRValue,
bool retainParens) {
if (wantRValue)
type = type->getRValueType();
if (retainParens) {
if (auto parenTy = dyn_cast<ParenType>(type.getPointer())) {
type = getFixedTypeRecursive(parenTy->getUnderlyingType(), typeVar,
wantRValue, retainParens);
return ParenType::get(getASTContext(), type);
}
}
auto desugar = type->getDesugaredType();
typeVar = desugar->getAs<TypeVariableType>();
if (typeVar) {
if (auto fixed = getFixedTypeRecursiveHelper(*this, typeVar, wantRValue)) {
type = fixed;
typeVar = nullptr;
}
}
return type;
}
void ConstraintSystem::recordOpenedTypes(
ConstraintLocatorBuilder locator,
const llvm::DenseMap<CanType, TypeVariableType *> &replacements) {
if (replacements.empty())
return;
// If the last path element is an archetype or associated type, ignore it.
SmallVector<LocatorPathElt, 2> pathElts;
Expr *anchor = locator.getLocatorParts(pathElts);
if (!pathElts.empty() &&
(pathElts.back().getKind() == ConstraintLocator::Archetype ||
pathElts.back().getKind() == ConstraintLocator::AssociatedType))
return;
// If the locator is empty, ignore it.
if (!anchor && pathElts.empty())
return;
ConstraintLocator *locatorPtr = getConstraintLocator(locator);
assert(locatorPtr && "No locator for opened types?");
assert(std::find_if(OpenedTypes.begin(), OpenedTypes.end(),
[&](const std::pair<ConstraintLocator *,
ArrayRef<OpenedType>> &entry) {
return entry.first == locatorPtr;
}) == OpenedTypes.end() &&
"already registered opened types for this locator");
OpenedType* openedTypes
= Allocator.Allocate<OpenedType>(replacements.size());
std::copy(replacements.begin(), replacements.end(), openedTypes);
OpenedTypes.push_back({ locatorPtr,
llvm::makeArrayRef(openedTypes,
replacements.size()) });
}
std::pair<Type, Type>
ConstraintSystem::getTypeOfReference(ValueDecl *value,
bool isTypeReference,
bool isSpecialized,
ConstraintLocatorBuilder locator,
const DeclRefExpr *base,
DependentTypeOpener *opener) {
llvm::DenseMap<CanType, TypeVariableType *> replacements;
if (value->getDeclContext()->isTypeContext() && isa<FuncDecl>(value)) {
// Unqualified lookup can find operator names within nominal types.
auto func = cast<FuncDecl>(value);
assert(func->isOperator() && "Lookup should only find operators");
auto openedType = openType(func->getInterfaceType(), locator,
replacements, func,
false,
value->getDeclContext()->getGenericTypeContextDepth(),
opener);
auto openedFnType = openedType->castTo<FunctionType>();
// If this is a method whose result type is dynamic Self, replace
// DynamicSelf with the actual object type.
if (func->hasDynamicSelf()) {
Type selfTy = openedFnType->getInput()->getRValueInstanceType();
openedType = openedType->replaceCovariantResultType(
selfTy,
func->getNumParamPatterns());
openedFnType = openedType->castTo<FunctionType>();
}
// The 'Self' type must be bound to an archetype.
// FIXME: We eventually want to loosen this constraint, to allow us
// to find operator functions both in classes and in protocols to which
// a class conforms (if there's a default implementation).
addArchetypeConstraint(openedFnType->getInput()->getRValueInstanceType(),
getConstraintLocator(locator));
// If we opened up any type variables, record the replacements.
recordOpenedTypes(locator, replacements);
// The reference implicitly binds 'self'.
return { openedType, openedFnType->getResult() };
}
// If we have a type declaration, resolve it within the current context.
if (auto typeDecl = dyn_cast<TypeDecl>(value)) {
// Resolve the reference to this type declaration in our current context.
auto type = getTypeChecker().resolveTypeInContext(typeDecl, DC,
TR_InExpression,
isSpecialized);
if (!type)
return { nullptr, nullptr };
// Open the type.
type = openType(type, locator, replacements,
value->getInnermostDeclContext(),
false,
value->getDeclContext()->getGenericTypeContextDepth(),
opener);
// If we opened up any type variables, record the replacements.
recordOpenedTypes(locator, replacements);
// If it's a type reference or it's a module type, we're done.
if (isTypeReference || type->is<ModuleType>())
return { type, type };
// If it's a value reference, refer to the metatype.
type = MetatypeType::get(type);
return { type, type };
}
// Determine the type of the value, opening up that type if necessary.
Type valueType = TC.getUnopenedTypeOfReference(value, Type(), DC, base,
/*wantInterfaceType=*/true);
// If this is a let-param whose type is a type variable, this is an untyped
// closure param that may be bound to an inout type later. References to the
// param should have lvalue type instead. Express the relationship with a new
// constraint.
if (auto *param = dyn_cast<ParamDecl>(value)) {
if (param->isLet() && valueType->is<TypeVariableType>()) {
Type paramType = valueType;
valueType = createTypeVariable(getConstraintLocator(locator),
TVO_CanBindToLValue);
addConstraint(ConstraintKind::BindParam, paramType, valueType,
getConstraintLocator(locator));
}
}
// Adjust the type of the reference.
valueType = openType(valueType, locator,
replacements,
value->getInnermostDeclContext(),
/*skipProtocolSelfConstraint=*/false,
value->getDeclContext()->getGenericTypeContextDepth(),
opener);
// If we opened up any type variables, record the replacements.
recordOpenedTypes(locator, replacements);
return { valueType, valueType };
}
void ConstraintSystem::openGeneric(
DeclContext *dc,
ArrayRef<GenericTypeParamType *> params,
ArrayRef<Requirement> requirements,
bool skipProtocolSelfConstraint,
unsigned minOpeningDepth,
DependentTypeOpener *opener,
ConstraintLocatorBuilder locator,
llvm::DenseMap<CanType, TypeVariableType *> &replacements) {
auto locatorPtr = getConstraintLocator(locator);
// Create the type variables for the generic parameters.
for (auto gp : params) {
// If we have a mapping for this type parameter, there's nothing else to do.
if (opener && opener->mapGenericTypeParamType(gp))
continue;
ArchetypeType *archetype = ArchetypeBuilder::mapTypeIntoContext(dc, gp)
->castTo<ArchetypeType>();
auto typeVar = createTypeVariable(getConstraintLocator(
locator.withPathElement(
LocatorPathElt(archetype))),
TVO_PrefersSubtypeBinding |
TVO_MustBeMaterializable);
replacements[gp->getCanonicalType()] = typeVar;
if (gp->getDepth() < minOpeningDepth)
addConstraint(ConstraintKind::Bind, typeVar, archetype, locatorPtr);
// Note that we opened a generic parameter to a type variable.
if (opener) {
Type replacementType;
opener->openedGenericParameter(gp, typeVar, replacementType);
if (replacementType)
addConstraint(ConstraintKind::Bind, typeVar, replacementType,
locatorPtr);
}
}
GetTypeVariable getTypeVariable{*this, locator, opener};
ReplaceDependentTypes replaceDependentTypes(*this, dc,
skipProtocolSelfConstraint,
minOpeningDepth,
opener, locator, replacements,
getTypeVariable);
// Remember that any new constraints generated by opening this generic are
// due to the opening.
locatorPtr = getConstraintLocator(
locator.withPathElement(ConstraintLocator::OpenedGeneric));
// Add the requirements as constraints.
for (auto req : requirements) {
switch (req.getKind()) {
case RequirementKind::Conformance: {
auto subjectTy = req.getFirstType().transform(replaceDependentTypes);
if (auto proto = req.getSecondType()->getAs<ProtocolType>()) {
// Determine whether this is the protocol 'Self' constraint we should
// skip.
if (skipProtocolSelfConstraint &&
(proto->getDecl() == dc->isProtocolOrProtocolExtensionContext() ||
proto->getDecl()
== dc->getParent()->isProtocolOrProtocolExtensionContext())&&
isProtocolSelfType(req.getFirstType())) {
break;
}
addConstraint(ConstraintKind::ConformsTo, subjectTy, proto,
locatorPtr);
} else {
auto boundTy = req.getSecondType().transform(replaceDependentTypes);
addConstraint(ConstraintKind::Subtype, subjectTy, boundTy, locatorPtr);
}
break;
}
case RequirementKind::SameType: {
auto firstTy = req.getFirstType().transform(replaceDependentTypes);
auto secondTy = req.getSecondType().transform(replaceDependentTypes);
addConstraint(ConstraintKind::Bind, firstTy, secondTy, locatorPtr);
break;
}
case RequirementKind::WitnessMarker:
break;
}
}
}
/// Add the constraint on the type used for the 'Self' type for a member
/// reference.
///
/// \param cs The constraint system.
///
/// \param objectTy The type of the object that we're using to access the
/// member.
///
/// \param selfTy The instance type of the context in which the member is
/// declared.
static void addSelfConstraint(ConstraintSystem &cs, Type objectTy, Type selfTy,
ConstraintLocatorBuilder locator){
assert(!selfTy->is<ProtocolType>());
// Otherwise, use a subtype constraint for classes to cope with inheritance.
if (selfTy->getClassOrBoundGenericClass()) {
cs.addConstraint(ConstraintKind::Subtype, objectTy, selfTy,
cs.getConstraintLocator(locator));
return;
}
// Otherwise, the types must be equivalent.
cs.addConstraint(ConstraintKind::Equal, objectTy, selfTy,
cs.getConstraintLocator(locator));
}
Type ConstraintSystem::replaceSelfTypeInArchetype(ArchetypeType *archetype) {
assert(SelfTypeVar && "Meaningless unless there is a type variable for Self");
if (auto parent = archetype->getParent()) {
// Replace Self in the parent archetype. If nothing changes, we're done.
Type newParent = replaceSelfTypeInArchetype(parent);
if (newParent->getAs<ArchetypeType>() == parent)
return archetype;
// We expect to get a type variable back.
return getMemberType(newParent->castTo<TypeVariableType>(),
archetype->getAssocType(),
ConstraintLocatorBuilder(nullptr),
/*options=*/0);
}
// If the archetype is the same as for the 'Self' type variable,
// return the 'Self' type variable.
if (SelfTypeVar->getImpl().getArchetype() == archetype)
return SelfTypeVar;
return archetype;
}
std::pair<Type, Type>
ConstraintSystem::getTypeOfMemberReference(Type baseTy, ValueDecl *value,
bool isTypeReference,
bool isDynamicResult,
ConstraintLocatorBuilder locator,
const DeclRefExpr *base,
DependentTypeOpener *opener) {
// Figure out the instance type used for the base.
TypeVariableType *baseTypeVar = nullptr;
Type baseObjTy = getFixedTypeRecursive(baseTy, baseTypeVar,
/*wantRValue=*/true);
bool isInstance = true;
if (auto baseMeta = baseObjTy->getAs<AnyMetatypeType>()) {
baseObjTy = baseMeta->getInstanceType();
isInstance = false;
}
// If the base is a module type, just use the type of the decl.
if (baseObjTy->is<ModuleType>()) {
return getTypeOfReference(value, isTypeReference, /*isSpecialized=*/false,
locator, base, opener);
}
// Handle associated type lookup as a special case, horribly.
// FIXME: This is an awful hack.
if (auto assocType = dyn_cast<AssociatedTypeDecl>(value)) {
// Error recovery path.
if (baseObjTy->isOpenedExistential()) {
Type memberTy = ErrorType::get(TC.Context);
auto openedType = FunctionType::get(baseObjTy, memberTy);
return { openedType, memberTy };
}
// Refer to a member of the archetype directly.
if (auto archetype = baseObjTy->getAs<ArchetypeType>()) {
Type memberTy = archetype->getNestedTypeValue(value->getName());
if (!isTypeReference)
memberTy = MetatypeType::get(memberTy);
auto openedType = FunctionType::get(baseObjTy, memberTy);
return { openedType, memberTy };
}
// If we have a nominal type that conforms to the protocol in which the
// associated type resides, use the witness.
if (!baseObjTy->isExistentialType() &&
baseObjTy->getAnyNominal()) {
auto proto = cast<ProtocolDecl>(assocType->getDeclContext());
ProtocolConformance *conformance = nullptr;
if (TC.conformsToProtocol(baseObjTy, proto, DC,
ConformanceCheckFlags::InExpression,
&conformance)) {
auto memberTy = conformance->getTypeWitness(assocType, &TC)
.getReplacement();
if (!isTypeReference)
memberTy = MetatypeType::get(memberTy);
auto openedType = FunctionType::get(baseObjTy, memberTy);
return { openedType, memberTy };
}
}
// FIXME: Totally bogus fallthrough.
Type memberTy = isTypeReference? assocType->getDeclaredType()
: assocType->getType();
auto openedType = FunctionType::get(baseObjTy, memberTy);
return { openedType, memberTy };
}
// Figure out the declaration context to use when opening this type.
DeclContext *dc = value->getInnermostDeclContext();
unsigned minOpeningDepth =
value->getDeclContext()->getGenericTypeContextDepth();
// Open the type of the generic function or member of a generic type.
Type openedType;
auto isClassBoundExistential = false;
llvm::DenseMap<CanType, TypeVariableType *> replacements;
if (auto genericFn = value->getInterfaceType()->getAs<GenericFunctionType>()){
openedType = openType(genericFn, locator, replacements, dc,
/*skipProtocolSelfConstraint=*/true,
minOpeningDepth, opener);
} else {
openedType = TC.getUnopenedTypeOfReference(value, baseTy, DC, base,
/*wantInterfaceType=*/true);
Type selfTy;
if (auto sig = dc->getGenericSignatureOfContext()) {
// Open up the generic parameter list for the container.
openGeneric(dc, sig->getGenericParams(), sig->getRequirements(),
/*skipProtocolSelfConstraint=*/true, minOpeningDepth,
opener, locator, replacements);
// Open up the type of the member.
openedType = openType(openedType, locator, replacements, nullptr,
/*skipProtocolSelfConstraint=*/false,
minOpeningDepth, opener);
// Determine the object type of 'self'.
auto nominal = value->getDeclContext()->getDeclaredTypeOfContext()
->getAnyNominal();
// We want to track if the generic context is represented by a
// class-bound existential so we won't inappropriately wrap the
// self type in an inout later on.
if (auto metatype = nominal->getType()->getAs<AnyMetatypeType>()) {
isClassBoundExistential = metatype->getInstanceType()->
isClassExistentialType();
}
if (dc->isProtocolOrProtocolExtensionContext()) {
// Retrieve the type variable for 'Self'.
selfTy = replacements[dc->getProtocolSelf()->getDeclaredType()
->getCanonicalType()];
} else {
// Open the nominal type.
selfTy = openType(nominal->getDeclaredInterfaceType(), locator,
replacements);
}
} else {
selfTy = value->getDeclContext()->getDeclaredTypeOfContext();
}
// If we have a type reference, look through the metatype.
if (isTypeReference)
openedType = openedType->castTo<AnyMetatypeType>()->getInstanceType();
// If we're not coming from something function-like, prepend the type
// for 'self' to the type.
if (!isa<AbstractFunctionDecl>(value) && !isa<EnumElementDecl>(value)) {
// If self is a struct, properly qualify it based on our base
// qualification. If we have an lvalue coming in, we expect an inout.
if (!isClassBoundExistential &&
!selfTy->hasReferenceSemantics() &&
baseTy->is<LValueType>())
selfTy = InOutType::get(selfTy);
openedType = FunctionType::get(selfTy, openedType);
}
}
// If this is a method whose result type has a dynamic Self return, replace
// DynamicSelf with the actual object type.
if (auto func = dyn_cast<FuncDecl>(value)) {
if (func->hasDynamicSelf() ||
(baseObjTy->isExistentialType() &&
func->hasArchetypeSelf())) {
openedType = openedType->replaceCovariantResultType(
baseObjTy,
func->getNumParamPatterns());
}
}
// If this is an initializer, replace the result type with the base
// object type.
else if (auto ctor = dyn_cast<ConstructorDecl>(value)) {
auto resultTy = baseObjTy;
if (ctor->getFailability() != OTK_None)
resultTy = OptionalType::get(ctor->getFailability(), resultTy);
openedType = openedType->replaceCovariantResultType(
resultTy,
/*uncurryLevel=*/ 2,
/*preserveOptionality=*/ false);
}
// If we are looking at a member of an existential, open the existential.
Type baseOpenedTy = baseObjTy;
if (baseObjTy->isExistentialType()) {
ArchetypeType *openedArchetype = ArchetypeType::getOpened(baseObjTy);
OpenedExistentialTypes.push_back({ getConstraintLocator(locator),
openedArchetype });
baseOpenedTy = openedArchetype;
}
// Constrain the 'self' object type.
auto openedFnType = openedType->castTo<FunctionType>();
Type selfObjTy = openedFnType->getInput()->getRValueInstanceType();
if (value->getDeclContext()->isProtocolOrProtocolExtensionContext()) {
// For a protocol, substitute the base object directly. We don't need a
// conformance constraint because we wouldn't have found the declaration
// if it didn't conform.
addConstraint(ConstraintKind::Equal, baseOpenedTy, selfObjTy,
getConstraintLocator(locator));
} else if (!isDynamicResult) {
addSelfConstraint(*this, baseOpenedTy, selfObjTy, locator);
}
// Compute the type of the reference.
Type type;
if (auto subscript = dyn_cast<SubscriptDecl>(value)) {
// For a subscript, turn the element type into an (@unchecked)
// optional or lvalue, depending on whether the result type is
// optional/dynamic, is settable, or is not.
auto fnType = openedFnType->getResult()->castTo<FunctionType>();
auto elementTy = fnType->getResult();
if (subscript->getAttrs().hasAttribute<OptionalAttr>())
elementTy = OptionalType::get(elementTy->getRValueType());
else if (isDynamicResult)
elementTy = ImplicitlyUnwrappedOptionalType::get(elementTy->getRValueType());
type = FunctionType::get(fnType->getInput(), elementTy);
} else if (isa<ProtocolDecl>(value->getDeclContext()) &&
isa<AssociatedTypeDecl>(value)) {
// When we have an associated type, the base type conforms to the
// given protocol, so use the type witness directly.
// FIXME: Diagnose existentials properly.
auto proto = cast<ProtocolDecl>(value->getDeclContext());
auto assocType = cast<AssociatedTypeDecl>(value);
type = openedFnType->getResult();
if (baseOpenedTy->is<ArchetypeType>()) {
// For an archetype, we substitute the base object for the base.
// FIXME: Feels like a total hack.
} else if (!baseOpenedTy->isExistentialType() &&
!baseOpenedTy->is<ArchetypeType>()) {
ProtocolConformance *conformance = nullptr;
if (TC.conformsToProtocol(baseOpenedTy, proto, DC,
ConformanceCheckFlags::InExpression,
&conformance)) {
type = conformance->getTypeWitness(assocType, &TC).getReplacement();
}
}
} else if (!value->isInstanceMember() || isInstance) {
// For a constructor, enum element, static method, static property,
// or an instance method referenced through an instance, we've consumed the
// curried 'self' already. For a type, strip off the 'self' we artificially
// added.
type = openedFnType->getResult();
} else if (isDynamicResult && isa<AbstractFunctionDecl>(value)) {
// For a dynamic result referring to an instance function through
// an object of metatype type, replace the 'Self' parameter with
// a AnyObject member.
Type anyObjectTy = TC.getProtocol(SourceLoc(),
KnownProtocolKind::AnyObject)
->getDeclaredTypeOfContext();
type = openedFnType->replaceSelfParameterType(anyObjectTy);
} else {
// For an unbound instance method reference, replace the 'Self'
// parameter with the base type.
type = openedFnType->replaceSelfParameterType(baseObjTy);
}
// If we opened up any type variables, record the replacements.
recordOpenedTypes(locator, replacements);
return { openedType, type };
}
void ConstraintSystem::addOverloadSet(Type boundType,
ArrayRef<OverloadChoice> choices,
ConstraintLocator *locator,
OverloadChoice *favoredChoice) {
assert(!choices.empty() && "Empty overload set");
SmallVector<Constraint *, 4> overloads;
// As we do for other favored constraints, if a favored overload has been
// specified, let it be the first term in the disjunction.
if (favoredChoice) {
auto bindOverloadConstraint =
Constraint::createBindOverload(*this,
boundType,
*favoredChoice,
locator);
bindOverloadConstraint->setFavored();
overloads.push_back(bindOverloadConstraint);
}
for (auto choice : choices) {
if (favoredChoice && (favoredChoice == &choice))
continue;
overloads.push_back(Constraint::createBindOverload(*this, boundType, choice,
locator));
}
auto disjunction = Constraint::createDisjunction(*this, overloads, locator);
if (favoredChoice)
disjunction->setFavored();
addConstraint(disjunction);
}
void ConstraintSystem::resolveOverload(ConstraintLocator *locator,
Type boundType,
OverloadChoice choice) {
// Determine the type to which we'll bind the overload set's type.
Type refType;
Type openedFullType;
switch (choice.getKind()) {
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::Decl:
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
case OverloadChoiceKind::TypeDecl: {
bool isTypeReference = choice.getKind() == OverloadChoiceKind::TypeDecl;
bool isDynamicResult
= choice.getKind() == OverloadChoiceKind::DeclViaDynamic;
// Retrieve the type of a reference to the specific declaration choice.
if (choice.getBaseType()) {
auto getDotBase = [](const Expr *E) -> const DeclRefExpr * {
if (E == nullptr) return nullptr;
switch (E->getKind()) {
case ExprKind::MemberRef: {
auto Base = cast<MemberRefExpr>(E)->getBase();
return dyn_cast<const DeclRefExpr>(Base);
}
case ExprKind::UnresolvedDot: {
auto Base = cast<UnresolvedDotExpr>(E)->getBase();
return dyn_cast<const DeclRefExpr>(Base);
}
default:
return nullptr;
}
};
auto anchor = locator ? locator->getAnchor() : nullptr;
auto base = getDotBase(anchor);
std::tie(openedFullType, refType)
= getTypeOfMemberReference(choice.getBaseType(), choice.getDecl(),
isTypeReference, isDynamicResult,
locator, base, nullptr);
} else {
std::tie(openedFullType, refType)
= getTypeOfReference(choice.getDecl(), isTypeReference,
choice.isSpecialized(), locator);
}
if (choice.getDecl()->getAttrs().hasAttribute<OptionalAttr>() &&
!isa<SubscriptDecl>(choice.getDecl())) {
// For a non-subscript declaration that is an optional
// requirement in a protocol, strip off the lvalue-ness (FIXME:
// one cannot assign to such declarations for now) and make a
// reference to that declaration be optional.
//
// Subscript declarations are handled within
// getTypeOfMemberReference(); their result types are optional.
refType = OptionalType::get(refType->getRValueType());
}
// For a non-subscript declaration found via dynamic lookup, strip
// off the lvalue-ness (FIXME: as a temporary hack. We eventually
// want this to work) and make a reference to that declaration be
// an implicitly unwrapped optional.
//
// Subscript declarations are handled within
// getTypeOfMemberReference(); their result types are unchecked
// optional.
else if (isDynamicResult && !isa<SubscriptDecl>(choice.getDecl())) {
refType = ImplicitlyUnwrappedOptionalType::get(refType->getRValueType());
}
// If the declaration is unavailable, note that in the score.
if (choice.getDecl()->getAttrs().isUnavailable(getASTContext())) {
increaseScore(SK_Unavailable);
}
break;
}
case OverloadChoiceKind::BaseType:
refType = choice.getBaseType();
break;
case OverloadChoiceKind::TupleIndex:
if (auto lvalueTy = choice.getBaseType()->getAs<LValueType>()) {
// When the base of a tuple lvalue, the member is always an lvalue.
auto tuple = lvalueTy->getObjectType()->castTo<TupleType>();
refType = tuple->getElementType(choice.getTupleIndex())->getRValueType();
refType = LValueType::get(refType);
} else {
// When the base is a tuple rvalue, the member is always an rvalue.
auto tuple = choice.getBaseType()->castTo<TupleType>();
refType = tuple->getElementType(choice.getTupleIndex());
}
break;
}
// If we have a type variable for the 'Self' of a protocol
// requirement that's being opened, and the resulting type has an
// archetype in it, replace the 'Self' archetype with the
// corresponding type variable.
// FIXME: See the comment for SelfTypeVar for information about this hack.
if (SelfTypeVar && refType->hasArchetype()) {
refType = refType.transform([&](Type type) -> Type {
if (auto archetype = type->getAs<ArchetypeType>()) {
return replaceSelfTypeInArchetype(archetype);
}
return type;
});
}
assert(!refType->hasTypeParameter() && "Cannot have a dependent type here");
// If we're binding to an init member, the 'throws' need to line up between
// the bound and reference types.
if (choice.isDecl()) {
auto decl = choice.getDecl();
if (auto CD = dyn_cast<ConstructorDecl>(decl)) {
auto boundFunctionType = boundType->getAs<AnyFunctionType>();
if (boundFunctionType &&
CD->isBodyThrowing() != boundFunctionType->throws()) {
boundType = FunctionType::get(boundFunctionType->getInput(),
boundFunctionType->getResult(),
boundFunctionType->getExtInfo().
withThrows());
}
}
}
// Add the type binding constraint.
addConstraint(ConstraintKind::Bind, boundType, refType, locator);
// Note that we have resolved this overload.
resolvedOverloadSets
= new (*this) ResolvedOverloadSetListItem{resolvedOverloadSets,
boundType,
choice,
locator,
openedFullType,
refType};
if (TC.getLangOpts().DebugConstraintSolver) {
auto &log = getASTContext().TypeCheckerDebug->getStream();
log.indent(solverState? solverState->depth * 2 : 2)
<< "(overload set choice binding "
<< boundType->getString() << " := "
<< refType->getString() << ")\n";
}
}
/// Given that we're accessing a member of an ImplicitlyUnwrappedOptional<T>, is
/// the DC one of the special cases where we should not instead look at T?
static bool isPrivilegedAccessToImplicitlyUnwrappedOptional(DeclContext *DC,
NominalTypeDecl *D) {
assert(D == DC->getASTContext().getImplicitlyUnwrappedOptionalDecl());
// Walk up through the chain of current contexts.
for (; ; DC = DC->getParent()) {
assert(DC && "ran out of contexts before finding a module scope?");
// Look through local contexts.
if (DC->isLocalContext()) {
continue;
// If we're in a type context that's defining or extending
// ImplicitlyUnwrappedOptional<T>, we're privileged.
} else if (DC->isTypeContext()) {
if (DC->getDeclaredTypeInContext()->getAnyNominal() == D)
return true;
// Otherwise, we're privileged if we're within the same file that
// defines ImplicitlyUnwrappedOptional<T>.
} else {
assert(DC->isModuleScopeContext());
return (DC == D->getModuleScopeContext());
}
}
}
Type ConstraintSystem::lookThroughImplicitlyUnwrappedOptionalType(Type type) {
if (auto boundTy = type->getAs<BoundGenericEnumType>()) {
auto boundDecl = boundTy->getDecl();
if (boundDecl == TC.Context.getImplicitlyUnwrappedOptionalDecl() &&
!isPrivilegedAccessToImplicitlyUnwrappedOptional(DC, boundDecl))
return boundTy->getGenericArgs()[0];
}
return Type();
}
Type ConstraintSystem::simplifyType(Type type,
llvm::SmallPtrSet<TypeVariableType *, 16> &substituting) {
return type.transform([&](Type type) -> Type {
if (auto tvt = dyn_cast<TypeVariableType>(type.getPointer())) {
tvt = getRepresentative(tvt);
if (auto fixed = getFixedType(tvt)) {
if (substituting.insert(tvt).second) {
auto result = simplifyType(fixed, substituting);
substituting.erase(tvt);
return result;
}
}
return tvt;
}
// If this is a FunctionType and we inferred new function attributes, apply
// them.
if (auto ft = dyn_cast<FunctionType>(type.getPointer())) {
auto it = extraFunctionAttrs.find(ft);
if (it != extraFunctionAttrs.end()) {
auto extInfo = ft->getExtInfo();
if (it->second.isNoEscape())
extInfo = extInfo.withNoEscape();
if (it->second.isNoReturn())
extInfo = extInfo.withIsNoReturn();
if (it->second.throws())
extInfo = extInfo.withThrows();
return FunctionType::get(ft->getInput(), ft->getResult(), extInfo);
}
}
return type;
});
}
Type Solution::simplifyType(TypeChecker &tc, Type type) const {
return type.transform([&](Type type) -> Type {
if (auto tvt = dyn_cast<TypeVariableType>(type.getPointer())) {
auto known = typeBindings.find(tvt);
assert(known != typeBindings.end());
return known->second;
}
// If this is a FunctionType and we inferred new function attributes, apply
// them.
if (auto ft = dyn_cast<FunctionType>(type.getPointer())) {
auto &CS = getConstraintSystem();
auto it = CS.extraFunctionAttrs.find(ft);
if (it != CS.extraFunctionAttrs.end()) {
auto extInfo = ft->getExtInfo();
if (it->second.isNoEscape())
extInfo = extInfo.withNoEscape();
if (it->second.isNoReturn())
extInfo = extInfo.withIsNoReturn();
if (it->second.throws())
extInfo = extInfo.withThrows();
return FunctionType::get(simplifyType(tc, ft->getInput()),
simplifyType(tc, ft->getResult()),
extInfo);
}
}
return type;
});
}