blob: 3a0aced8679c226631dc3a351b442c70d2076a28 [file] [log] [blame]
//===--- CSGen.cpp - Constraint Generator ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements constraint generation for the type checker.
//
//===----------------------------------------------------------------------===//
#include "ConstraintGraph.h"
#include "ConstraintSystem.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Expr.h"
#include "swift/Sema/CodeCompletionTypeChecking.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/APInt.h"
using namespace swift;
using namespace swift::constraints;
/// \brief Skip any implicit conversions applied to this expression.
static Expr *skipImplicitConversions(Expr *expr) {
while (auto ice = dyn_cast<ImplicitConversionExpr>(expr))
expr = ice->getSubExpr();
return expr;
}
/// \brief Find the declaration directly referenced by this expression.
static ValueDecl *findReferencedDecl(Expr *expr, SourceLoc &loc) {
do {
expr = expr->getSemanticsProvidingExpr();
if (auto ice = dyn_cast<ImplicitConversionExpr>(expr)) {
expr = ice->getSubExpr();
continue;
}
if (auto dre = dyn_cast<DeclRefExpr>(expr)) {
loc = dre->getLoc();
return dre->getDecl();
}
return nullptr;
} while (true);
}
/// \brief Return 'true' if the decl in question refers to an operator that
/// could be added to the global scope via a delayed protocol conformance.
/// Currently, this is only true for '==', which is added via an Equatable
/// conformance.
static bool isDelayedOperatorDecl(ValueDecl *vd) {
return vd && (vd->getName().str() == "==");
}
namespace {
/// Internal struct for tracking information about types within a series
/// of "linked" expressions. (Such as a chain of binary operator invocations.)
struct LinkedTypeInfo {
uint haveIntLiteral : 1;
uint haveFloatLiteral : 1;
uint haveStringLiteral : 1;
llvm::SmallSet<TypeBase*, 16> collectedTypes;
LinkedTypeInfo() {
haveIntLiteral = false;
haveFloatLiteral = false;
haveStringLiteral = false;
}
};
/// Walks an expression sub-tree, and collects information about expressions
/// whose types are mutually dependent upon one another.
class LinkedExprCollector : public ASTWalker {
llvm::SmallVectorImpl<Expr*> &LinkedExprs;
public:
LinkedExprCollector(llvm::SmallVectorImpl<Expr*> &linkedExprs) :
LinkedExprs(linkedExprs) {}
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
// Store top-level binary exprs for further analysis.
if (isa<BinaryExpr>(expr) ||
// Literal exprs are contextually typed, so store them off as well.
isa<LiteralExpr>(expr)) {
LinkedExprs.push_back(expr);
return {false, expr};
}
return { true, expr };
}
Expr *walkToExprPost(Expr *expr) override {
return expr;
}
/// \brief Ignore statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
return { false, stmt };
}
/// \brief Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
};
/// Given a collection of "linked" expressions, analyzes them for
/// commonalities regarding their types. This will help us compute a
/// "best common type" from the expression types.
class LinkedExprAnalyzer : public ASTWalker {
LinkedTypeInfo &LTI;
ConstraintSystem &CS;
public:
LinkedExprAnalyzer(LinkedTypeInfo &lti, ConstraintSystem &cs) :
LTI(lti), CS(cs) {}
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
if (isa<IntegerLiteralExpr>(expr)) {
LTI.haveIntLiteral = true;
return {false, expr};
}
if (isa<FloatLiteralExpr>(expr)) {
LTI.haveFloatLiteral = true;
return {false, expr};
}
if (isa<StringLiteralExpr>(expr)) {
LTI.haveStringLiteral = true;
return {false, expr};
}
if (auto UDE = dyn_cast<UnresolvedDotExpr>(expr)) {
if (UDE->getType() &&
!isa<TypeVariableType>(UDE->getType().getPointer()))
LTI.collectedTypes.insert(UDE->getType().getPointer());
// Don't recurse into the base expression.
return {false, expr};
}
if (auto favoredType = CS.getFavoredType(expr)) {
LTI.collectedTypes.insert(favoredType);
return {false, expr};
}
// In the case of a function application, we would have already captured
// the return type during constraint generation, so there's no use in
// looking any further.
if (isa<ApplyExpr>(expr) &&
!(isa<BinaryExpr>(expr) || isa<PrefixUnaryExpr>(expr) ||
isa<PostfixUnaryExpr>(expr))) {
return { false, expr };
}
return { true, expr };
}
Expr *walkToExprPost(Expr *expr) override {
return expr;
}
/// \brief Ignore statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
return { false, stmt };
}
/// \brief Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
};
/// For a given expression, given information that is global to the
/// expression, attempt to derive a favored type for it.
bool computeFavoredTypeForExpr(Expr *expr, ConstraintSystem &CS) {
LinkedTypeInfo lti;
expr->walk(LinkedExprAnalyzer(lti, CS));
if (!lti.collectedTypes.empty()) {
// TODO: Compute the BCT.
CS.setFavoredType(expr, *lti.collectedTypes.begin());
return true;
}
if (lti.haveFloatLiteral) {
if (auto floatProto =
CS.TC.Context.getProtocol(
KnownProtocolKind::FloatLiteralConvertible)) {
if (auto defaultType = CS.TC.getDefaultType(floatProto, CS.DC)) {
CS.setFavoredType(expr, defaultType.getPointer());
return true;
}
}
}
if (lti.haveIntLiteral) {
if (auto intProto =
CS.TC.Context.getProtocol(
KnownProtocolKind::IntegerLiteralConvertible)) {
if (auto defaultType = CS.TC.getDefaultType(intProto, CS.DC)) {
CS.setFavoredType(expr, defaultType.getPointer());
return true;
}
}
}
if (lti.haveStringLiteral) {
if (auto stringProto =
CS.TC.Context.getProtocol(
KnownProtocolKind::StringLiteralConvertible)) {
if (auto defaultType = CS.TC.getDefaultType(stringProto, CS.DC)) {
CS.setFavoredType(expr, defaultType.getPointer());
return true;
}
}
}
return false;
}
/// Determine whether the given parameter and argument type should be
/// "favored" because they match exactly.
bool isFavoredParamAndArg(ConstraintSystem &CS,
Type paramTy,
Type argTy,
Type otherArgTy) {
if (argTy->getAs<LValueType>())
argTy = argTy->getLValueOrInOutObjectType();
if (!otherArgTy.isNull() &&
otherArgTy->getAs<LValueType>())
otherArgTy = otherArgTy->getLValueOrInOutObjectType();
// Do the types match exactly?
if (paramTy->isEqual(argTy))
return true;
// If the argument is a type variable created for a literal that has a
// default type, this is a favored param/arg pair if the parameter is of
// that default type.
// Is the argument a type variable...
if (auto argTypeVar = argTy->getAs<TypeVariableType>()) {
if (auto proto = argTypeVar->getImpl().literalConformanceProto) {
// If it's a struct type associated with the literal conformance,
// test against it directly. This helps to avoid 'widening' the
// favored type to the default type for the literal.
if (!otherArgTy.isNull() &&
otherArgTy->getAs<StructType>()) {
if (CS.TC.conformsToProtocol(otherArgTy,
proto,
CS.DC,
ConformanceCheckFlags::InExpression)) {
return otherArgTy->isEqual(paramTy);
}
} else if (auto defaultTy = CS.TC.getDefaultType(proto, CS.DC)) {
if (paramTy->isEqual(defaultTy)) {
return true;
}
}
}
}
return false;
}
/// Extracts == from a type's Equatable conformance.
///
/// This only applies to types whose Equatable conformance can be derived.
/// Performing the conformance check forces the function to be synthesized.
void addNewEqualsOperatorOverloads(ConstraintSystem &CS,
SmallVectorImpl<Constraint *> &newConstraints,
Type paramTy,
Type tyvarType,
ConstraintLocator *csLoc) {
ProtocolDecl *equatableProto =
CS.TC.Context.getProtocol(KnownProtocolKind::Equatable);
if (!equatableProto)
return;
paramTy = paramTy->getLValueOrInOutObjectType();
paramTy = paramTy->getReferenceStorageReferent();
auto nominal = paramTy->getAnyNominal();
if (!nominal)
return;
if (!nominal->derivesProtocolConformance(equatableProto))
return;
ProtocolConformance *conformance = nullptr;
if (!CS.TC.conformsToProtocol(paramTy, equatableProto,
CS.DC, ConformanceCheckFlags::InExpression,
&conformance))
return;
if (!conformance)
return;
auto requirement =
equatableProto->lookupDirect(CS.TC.Context.Id_EqualsOperator);
assert(requirement.size() == 1 && "broken Equatable protocol");
ConcreteDeclRef witness =
conformance->getWitness(requirement.front(), &CS.TC);
if (!witness)
return;
// FIXME: If we ever have derived == for generic types, we may need to
// revisit this.
if (witness.getDecl()->getType()->hasArchetype())
return;
OverloadChoice choice{
Type(), witness.getDecl(), /*specialized=*/false, CS
};
auto overload =
Constraint::createBindOverload(CS, tyvarType, choice, csLoc);
newConstraints.push_back(overload);
}
/// Favor certain overloads in a call based on some basic analysis
/// of the overload set and call arguments.
///
/// \param expr The application.
/// \param isFavored Determine whether the given overload is favored.
/// \param createReplacements If provided, a function that creates a set of
/// replacement fallback constraints.
/// \param mustConsider If provided, a function to detect the presence of
/// overloads which inhibit any overload from being favored.
void favorCallOverloads(ApplyExpr *expr,
ConstraintSystem &CS,
std::function<bool(ValueDecl *)> isFavored,
std::function<void(TypeVariableType *tyvarType,
ArrayRef<Constraint *>,
SmallVectorImpl<Constraint *>&)>
createReplacements = nullptr,
std::function<bool(ValueDecl *)>
mustConsider = nullptr) {
// Find the type variable associated with the function, if any.
auto tyvarType = expr->getFn()->getType()->getAs<TypeVariableType>();
if (!tyvarType)
return;
// This type variable is only currently associated with the function
// being applied, and the only constraint attached to it should
// be the disjunction constraint for the overload group.
auto &CG = CS.getConstraintGraph();
SmallVector<Constraint *, 4> constraints;
CG.gatherConstraints(tyvarType, constraints);
if (constraints.empty())
return;
// Look for the disjunction that binds the overload set.
for (auto constraint : constraints) {
if (constraint->getKind() != ConstraintKind::Disjunction)
continue;
auto oldConstraints = constraint->getNestedConstraints();
auto csLoc = CS.getConstraintLocator(expr->getFn());
// Only replace the disjunctive overload constraint.
if (oldConstraints[0]->getKind() != ConstraintKind::BindOverload) {
continue;
}
if (mustConsider) {
bool hasMustConsider = false;
for (auto oldConstraint : oldConstraints) {
auto overloadChoice = oldConstraint->getOverloadChoice();
if (mustConsider(overloadChoice.getDecl()))
hasMustConsider = true;
}
if (hasMustConsider) {
continue;
}
}
SmallVector<Constraint *, 4> favoredConstraints;
TypeBase *favoredTy = nullptr;
// Copy over the existing bindings, dividing the constraints up
// into "favored" and non-favored lists.
for (auto oldConstraint : oldConstraints) {
auto overloadChoice = oldConstraint->getOverloadChoice();
if (isFavored(overloadChoice.getDecl())) {
favoredConstraints.push_back(oldConstraint);
favoredTy = overloadChoice.getDecl()->
getType()->getAs<AnyFunctionType>()->
getResult().getPointer();
}
}
if (favoredConstraints.size() == 1) {
CS.setFavoredType(expr, favoredTy);
}
// If there might be replacement constraints, get them now.
SmallVector<Constraint *, 4> replacementConstraints;
if (createReplacements)
createReplacements(tyvarType, oldConstraints, replacementConstraints);
// If we did not find any favored constraints, just introduce
// the replacement constraints (if they differ).
if (favoredConstraints.empty()) {
if (replacementConstraints.size() > oldConstraints.size()) {
// Remove the old constraint.
CS.removeInactiveConstraint(constraint);
CS.addConstraint(
Constraint::createDisjunction(CS,
replacementConstraints,
csLoc));
}
break;
}
// Remove the original constraint from the inactive constraint
// list and add the new one.
CS.removeInactiveConstraint(constraint);
// Create the disjunction of favored constraints.
auto favoredConstraintsDisjunction =
Constraint::createDisjunction(CS,
favoredConstraints,
csLoc);
// If we didn't actually build a disjunction, clone
// the underlying constraint so we can mark it as
// favored.
if (favoredConstraints.size() == 1) {
favoredConstraintsDisjunction
= favoredConstraintsDisjunction->clone(CS);
}
favoredConstraintsDisjunction->setFavored();
// Find the disjunction of fallback constraints. If any
// constraints were added here, create a new disjunction.
Constraint *fallbackConstraintsDisjunction = constraint;
if (replacementConstraints.size() > oldConstraints.size()) {
fallbackConstraintsDisjunction =
Constraint::createDisjunction(CS,
replacementConstraints,
csLoc);
}
// Form the (favored, fallback) disjunction.
auto aggregateConstraints = {
favoredConstraintsDisjunction,
fallbackConstraintsDisjunction
};
CS.addConstraint(
Constraint::createDisjunction(CS,
aggregateConstraints,
csLoc));
break;
}
}
/// Determine whether or not a given NominalTypeDecl has a failable
/// initializer member.
bool hasFailableInits(NominalTypeDecl *NTD,
ConstraintSystem *CS) {
// TODO: Note that we search manually, rather than invoking lookupMember
// on the ConstraintSystem object. Because this is a hot path, this keeps
// the overhead of the check low, and is twice as fast.
if (!NTD->getSearchedForFailableInits()) {
// Set flag before recursing to catch circularity.
NTD->setSearchedForFailableInits();
for (auto member : NTD->getMembers()) {
if (auto CD = dyn_cast<ConstructorDecl>(member)) {
if (CD->getFailability()) {
NTD->setHasFailableInits();
break;
}
}
}
if (!NTD->getHasFailableInits()) {
for (auto extension : NTD->getExtensions()) {
for (auto member : extension->getMembers()) {
if (auto CD = dyn_cast<ConstructorDecl>(member)) {
if (CD->getFailability()) {
NTD->setHasFailableInits();
break;
}
}
}
}
if (!NTD->getHasFailableInits()) {
for (auto parentTyLoc : NTD->getInherited()) {
if (auto nominalType =
parentTyLoc.getType()->getAs<NominalType>()) {
if (hasFailableInits(nominalType->getDecl(), CS)) {
NTD->setHasFailableInits();
break;
}
}
}
}
}
}
return NTD->getHasFailableInits();
}
Type getInnerParenType(const Type &t) {
if (auto parenType = dyn_cast<ParenType>(t.getPointer())) {
return getInnerParenType(parenType->getUnderlyingType());
}
return t;
}
size_t getOperandCount(Type t) {
size_t nOperands = 0;
if (auto parenTy = dyn_cast<ParenType>(t.getPointer())) {
if (parenTy->getDesugaredType())
nOperands = 1;
} else if (auto tupleTy = t->getAs<TupleType>()) {
nOperands = tupleTy->getElementTypes().size();
}
return nOperands;
}
/// Return a pair, containing the total parameter count of a function, coupled
/// with the number of non-default parameters.
std::pair<size_t, size_t> getParamCount(ValueDecl *VD) {
auto fty = VD->getType()->getAs<AnyFunctionType>();
assert(fty && "attempting to count parameters of a non-function type");
auto t = fty->getInput();
size_t nOperands = getOperandCount(t);
size_t nNoDefault = 0;
if (auto AFD = dyn_cast<AbstractFunctionDecl>(VD)) {
for (auto pattern : AFD->getBodyParamPatterns()) {
if (auto tuplePattern = dyn_cast<TuplePattern>(pattern)) {
for (auto elt : tuplePattern->getElements()) {
if (elt.getDefaultArgKind() == DefaultArgumentKind::None)
nNoDefault++;
}
}
}
} else {
nNoDefault = nOperands;
}
return { nOperands, nNoDefault };
}
/// Favor unary operator constraints where we have exact matches
/// for the operand and contextual type.
void favorMatchingUnaryOperators(ApplyExpr *expr,
ConstraintSystem &CS) {
// Find the argument type.
auto argTy = getInnerParenType(expr->getArg()->getType());
// Determine whether the given declaration is favored.
auto isFavoredDecl = [&](ValueDecl *value) -> bool {
auto valueTy = value->getType();
auto fnTy = valueTy->getAs<AnyFunctionType>();
if (!fnTy)
return false;
// Figure out the parameter type.
if (value->getDeclContext()->isTypeContext()) {
fnTy = fnTy->getResult()->castTo<AnyFunctionType>();
}
Type paramTy = fnTy->getInput();
auto resultTy = fnTy->getResult();
auto contextualTy = CS.getContextualType(expr);
return isFavoredParamAndArg(CS, paramTy, argTy, Type()) &&
(!contextualTy || contextualTy->isEqual(resultTy));
};
favorCallOverloads(expr, CS, isFavoredDecl);
}
void favorMatchingOverloadExprs(ApplyExpr *expr,
ConstraintSystem &CS) {
// Find the argument type.
size_t nArgs = getOperandCount(expr->getArg()->getType());
auto fnExpr = expr->getFn();
// Check to ensure that we have an OverloadedDeclRef, and that we're not
// favoring multiple overload constraints. (Otherwise, in this case
// favoring is useless.
if (auto ODR = dyn_cast<OverloadedDeclRefExpr>(fnExpr)) {
bool haveMultipleApplicableOverloads = false;
for (auto VD : ODR->getDecls()) {
if (VD->getType()->getAs<AnyFunctionType>()) {
auto nParams = getParamCount(VD);
if (nArgs == nParams.first) {
if (haveMultipleApplicableOverloads) {
return;
} else {
haveMultipleApplicableOverloads = true;
}
}
}
}
// Determine whether the given declaration is favored.
auto isFavoredDecl = [&](ValueDecl *value) -> bool {
auto valueTy = value->getType();
auto fnTy = valueTy->getAs<AnyFunctionType>();
if (!fnTy)
return false;
auto paramCount = getParamCount(value);
return nArgs == paramCount.first ||
nArgs == paramCount.second;
};
favorCallOverloads(expr, CS, isFavoredDecl);
}
if (auto favoredTy = CS.getFavoredType(expr->getArg())) {
// Determine whether the given declaration is favored.
auto isFavoredDecl = [&](ValueDecl *value) -> bool {
auto valueTy = value->getType();
auto fnTy = valueTy->getAs<AnyFunctionType>();
if (!fnTy)
return false;
// Figure out the parameter type, accounting for the implicit 'self' if
// necessary.
if (auto *FD = dyn_cast<AbstractFunctionDecl>(value)) {
if (FD->getImplicitSelfDecl()) {
if (auto resFnTy = fnTy->getResult()->getAs<AnyFunctionType>()) {
fnTy = resFnTy;
}
}
}
Type paramTy = fnTy->getInput();
return favoredTy->isEqual(paramTy);
};
// This is a hack to ensure we always consider the protocol requirement
// itself when calling something that has a default implementation in an
// extension. Otherwise, the extension method might be favored if we're
// inside an extension context, since any archetypes in the parameter
// list could match exactly.
auto mustConsider = [&](ValueDecl *value) -> bool {
return isa<ProtocolDecl>(value->getDeclContext());
};
favorCallOverloads(expr, CS,
isFavoredDecl,
/*createReplacements=*/nullptr,
mustConsider);
}
}
/// Favor binary operator constraints where we have exact matches
/// for the operands and contextual type.
void favorMatchingBinaryOperators(ApplyExpr *expr,
ConstraintSystem &CS) {
// If we're generating constraints for a binary operator application,
// there are two special situations to consider:
// 1. If the type checker has any newly created functions with the
// operator's name. If it does, the overloads were created after the
// associated overloaded id expression was created, and we'll need to
// add a new disjunction constraint for the new set of overloads.
// 2. If any component argument expressions (nested or otherwise) are
// literals, we can favor operator overloads whose argument types are
// identical to the literal type, or whose return types are identical
// to any contextual type associated with the application expression.
// Find the argument types.
auto argTy = expr->getArg()->getType();
auto argTupleTy = argTy->castTo<TupleType>();
auto argTupleExpr = dyn_cast<TupleExpr>(expr->getArg());
Type firstArgTy = getInnerParenType(argTupleTy->getElement(0).getType());
Type secondArgTy =
getInnerParenType(argTupleTy->getElement(1).getType());
auto firstFavoredTy = CS.getFavoredType(argTupleExpr->getElement(0));
auto secondFavoredTy = CS.getFavoredType(argTupleExpr->getElement(1));
auto favoredExprTy = CS.getFavoredType(expr);
// If the parent has been favored on the way down, propagate that
// information to its children.
if (!firstFavoredTy) {
CS.setFavoredType(argTupleExpr->getElement(0), favoredExprTy);
firstFavoredTy = favoredExprTy;
}
if (!secondFavoredTy) {
CS.setFavoredType(argTupleExpr->getElement(1), favoredExprTy);
secondFavoredTy = favoredExprTy;
}
if (firstFavoredTy && firstArgTy->getAs<TypeVariableType>()) {
firstArgTy = firstFavoredTy;
}
if (secondFavoredTy && secondArgTy->getAs<TypeVariableType>()) {
secondArgTy = secondFavoredTy;
}
// Determine whether the given declaration is favored.
auto isFavoredDecl = [&](ValueDecl *value) -> bool {
auto valueTy = value->getType();
auto fnTy = valueTy->getAs<AnyFunctionType>();
if (!fnTy)
return false;
// Figure out the parameter type.
if (value->getDeclContext()->isTypeContext()) {
fnTy = fnTy->getResult()->castTo<AnyFunctionType>();
}
Type paramTy = fnTy->getInput();
auto paramTupleTy = paramTy->getAs<TupleType>();
if (!paramTupleTy || paramTupleTy->getNumElements() != 2)
return false;
auto firstParamTy = paramTupleTy->getElement(0).getType();
auto secondParamTy = paramTupleTy->getElement(1).getType();
auto resultTy = fnTy->getResult();
auto contextualTy = CS.getContextualType(expr);
return
(isFavoredParamAndArg(CS, firstParamTy, firstArgTy, secondArgTy) ||
isFavoredParamAndArg(CS, secondParamTy, secondArgTy, firstArgTy)) &&
firstParamTy->isEqual(secondParamTy) &&
(!contextualTy || contextualTy->isEqual(resultTy));
};
auto createReplacements
= [&](TypeVariableType *tyvarType,
ArrayRef<Constraint *> oldConstraints,
SmallVectorImpl<Constraint *>& replacementConstraints) {
auto declRef = dyn_cast<OverloadedDeclRefExpr>(expr->getFn());
if (!declRef)
return;
if (!declRef->isPotentiallyDelayedGlobalOperator())
return;
Identifier eqOperator = CS.TC.Context.Id_EqualsOperator;
if (declRef->getDecls()[0]->getName() != eqOperator)
return;
if (declRef->isSpecialized())
return;
replacementConstraints.append(oldConstraints.begin(),
oldConstraints.end());
auto csLoc = CS.getConstraintLocator(expr->getFn());
addNewEqualsOperatorOverloads(CS, replacementConstraints, firstArgTy,
tyvarType, csLoc);
if (!firstArgTy->isEqual(secondArgTy)) {
addNewEqualsOperatorOverloads(CS, replacementConstraints,
secondArgTy,
tyvarType, csLoc);
}
};
favorCallOverloads(expr, CS, isFavoredDecl, createReplacements);
}
class ConstraintOptimizer : public ASTWalker {
ConstraintSystem &CS;
public:
ConstraintOptimizer(ConstraintSystem &cs) :
CS(cs) {}
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
if (auto applyExpr = dyn_cast<ApplyExpr>(expr)) {
if (isa<PrefixUnaryExpr>(applyExpr) ||
isa<PostfixUnaryExpr>(applyExpr)) {
favorMatchingUnaryOperators(applyExpr, CS);
} else if (isa<BinaryExpr>(applyExpr)) {
favorMatchingBinaryOperators(applyExpr, CS);
} else {
favorMatchingOverloadExprs(applyExpr, CS);
}
}
// If the paren expr has a favored type, and the subExpr doesn't,
// propagate downwards. Otherwise, propagate upwards.
if (auto parenExpr = dyn_cast<ParenExpr>(expr)) {
if (!CS.getFavoredType(parenExpr->getSubExpr())) {
CS.setFavoredType(parenExpr->getSubExpr(),
CS.getFavoredType(parenExpr));
} else if (!CS.getFavoredType(parenExpr)) {
CS.setFavoredType(parenExpr,
CS.getFavoredType(parenExpr->getSubExpr()));
}
}
return { true, expr };
}
Expr *walkToExprPost(Expr *expr) override {
return expr;
}
/// \brief Ignore statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
return { false, stmt };
}
/// \brief Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
};
}
namespace {
class ConstraintGenerator : public ExprVisitor<ConstraintGenerator, Type> {
ConstraintSystem &CS;
/// \brief Add constraints for a reference to a named member of the given
/// base type, and return the type of such a reference.
Type addMemberRefConstraints(Expr *expr, Expr *base, DeclName name) {
// The base must have a member of the given name, such that accessing
// that member through the base returns a value convertible to the type
// of this expression.
auto baseTy = base->getType();
auto tv = CS.createTypeVariable(
CS.getConstraintLocator(expr, ConstraintLocator::Member),
TVO_CanBindToLValue);
CS.addValueMemberConstraint(baseTy, name, tv,
CS.getConstraintLocator(expr, ConstraintLocator::Member));
return tv;
}
/// \brief Add constraints for a reference to a specific member of the given
/// base type, and return the type of such a reference.
Type addMemberRefConstraints(Expr *expr, Expr *base, ValueDecl *decl) {
// If we're referring to an invalid declaration, fail.
if (!decl)
return nullptr;
CS.getTypeChecker().validateDecl(decl, true);
if (decl->isInvalid())
return nullptr;
auto memberLocator =
CS.getConstraintLocator(expr, ConstraintLocator::Member);
auto tv = CS.createTypeVariable(memberLocator, TVO_CanBindToLValue);
OverloadChoice choice(base->getType(), decl, /*isSpecialized=*/false, CS);
auto locator = CS.getConstraintLocator(expr, ConstraintLocator::Member);
CS.addBindOverloadConstraint(tv, choice, locator);
return tv;
}
/// \brief Add constraints for a subscript operation.
Type addSubscriptConstraints(Expr *expr, Expr *base, Expr *index,
ValueDecl *decl) {
ASTContext &Context = CS.getASTContext();
// Locators used in this expression.
auto indexLocator
= CS.getConstraintLocator(expr, ConstraintLocator::SubscriptIndex);
auto resultLocator
= CS.getConstraintLocator(expr, ConstraintLocator::SubscriptResult);
Type outputTy;
// The base type must have a subscript declaration with type
// I -> inout? O, where I and O are fresh type variables. The index
// expression must be convertible to I and the subscript expression
// itself has type inout? O, where O may or may not be an lvalue.
auto inputTv = CS.createTypeVariable(indexLocator, /*options=*/0);
// For an integer subscript expression on an array slice type, instead of
// introducing a new type variable we can easily obtain the element type.
if (auto subscriptExpr = dyn_cast<SubscriptExpr>(expr)) {
auto isLValueBase = false;
auto baseTy = subscriptExpr->getBase()->getType();
if (baseTy->getAs<LValueType>()) {
isLValueBase = true;
baseTy = baseTy->getLValueOrInOutObjectType();
}
if (auto arraySliceTy = dyn_cast<ArraySliceType>(baseTy.getPointer())) {
baseTy = arraySliceTy->getDesugaredType();
auto indexExpr = subscriptExpr->getIndex();
if (auto parenExpr = dyn_cast<ParenExpr>(indexExpr)) {
indexExpr = parenExpr->getSubExpr();
}
if(isa<IntegerLiteralExpr>(indexExpr)) {
outputTy = baseTy->getAs<BoundGenericType>()->getGenericArgs()[0];
if (isLValueBase)
outputTy = LValueType::get(outputTy);
}
} else if (auto dictTy = CS.isDictionaryType(baseTy)) {
auto keyTy = dictTy->first;
auto valueTy = dictTy->second;
if (isFavoredParamAndArg(CS, keyTy, index->getType(), Type())) {
outputTy = OptionalType::get(valueTy);
if (isLValueBase)
outputTy = LValueType::get(outputTy);
}
}
}
if (outputTy.isNull()) {
outputTy = CS.createTypeVariable(resultLocator,
TVO_CanBindToLValue);
} else {
CS.setFavoredType(expr, outputTy.getPointer());
}
auto subscriptMemberLocator
= CS.getConstraintLocator(expr, ConstraintLocator::SubscriptMember);
// Add the member constraint for a subscript declaration.
// FIXME: lame name!
auto baseTy = base->getType();
auto fnTy = FunctionType::get(inputTv, outputTy);
// FIXME: synthesizeMaterializeForSet() wants to statically dispatch to
// a known subscript here. This might be cleaner if we split off a new
// UnresolvedSubscriptExpr from SubscriptExpr.
if (decl) {
OverloadChoice choice(base->getType(), decl, /*isSpecialized=*/false,
CS);
CS.addBindOverloadConstraint(fnTy, choice, subscriptMemberLocator);
} else {
CS.addValueMemberConstraint(baseTy, Context.Id_subscript,
fnTy, subscriptMemberLocator);
}
// Add the constraint that the index expression's type be convertible
// to the input type of the subscript operator.
CS.addConstraint(ConstraintKind::ArgumentTupleConversion,
index->getType(), inputTv, indexLocator);
return outputTy;
}
public:
ConstraintGenerator(ConstraintSystem &CS) : CS(CS) { }
virtual ~ConstraintGenerator() = default;
ConstraintSystem &getConstraintSystem() const { return CS; }
virtual Type visitErrorExpr(ErrorExpr *E) {
// FIXME: Can we do anything with error expressions at this point?
return nullptr;
}
virtual Type visitCodeCompletionExpr(CodeCompletionExpr *E) {
// If the expression has already been assigned a type; just use that type.
return E->getType();
}
Type visitLiteralExpr(LiteralExpr *expr) {
// If the expression has already been assigned a type; just use that type.
if (expr->getType() && !expr->getType()->hasTypeVariable())
return expr->getType();
auto protocol = CS.getTypeChecker().getLiteralProtocol(expr);
if (!protocol)
return nullptr;
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding);
tv->getImpl().literalConformanceProto = protocol;
CS.addConstraint(ConstraintKind::ConformsTo, tv,
protocol->getDeclaredType(),
CS.getConstraintLocator(expr));
return tv;
}
Type
visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *expr) {
// Dig out the StringInterpolationConvertible protocol.
auto &tc = CS.getTypeChecker();
auto &C = CS.getASTContext();
auto interpolationProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::StringInterpolationConvertible);
if (!interpolationProto) {
tc.diagnose(expr->getStartLoc(), diag::interpolation_missing_proto);
return nullptr;
}
// The type of the expression must conform to the
// StringInterpolationConvertible protocol.
auto locator = CS.getConstraintLocator(expr);
auto tv = CS.createTypeVariable(locator, TVO_PrefersSubtypeBinding);
tv->getImpl().literalConformanceProto = interpolationProto;
CS.addConstraint(ConstraintKind::ConformsTo, tv,
interpolationProto->getDeclaredType(),
locator);
// Each of the segments is passed as an argument to
// init(stringInterpolationSegment:).
unsigned index = 0;
auto tvMeta = MetatypeType::get(tv);
for (auto segment : expr->getSegments()) {
auto locator = CS.getConstraintLocator(
expr,
LocatorPathElt::getInterpolationArgument(index++));
auto segmentTyV = CS.createTypeVariable(locator, /*options=*/0);
auto returnTyV = CS.createTypeVariable(locator, /*options=*/0);
auto methodTy = FunctionType::get(segmentTyV, returnTyV);
CS.addConstraint(Constraint::create(CS, ConstraintKind::Conversion,
segment->getType(),
segmentTyV,
Identifier(),
locator));
DeclName segmentName(C, C.Id_init, { C.Id_stringInterpolationSegment });
CS.addConstraint(Constraint::create(CS, ConstraintKind::ValueMember,
tvMeta,
methodTy,
segmentName,
locator));
}
return tv;
}
Type visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *expr) {
switch (expr->getKind()) {
case MagicIdentifierLiteralExpr::Column:
case MagicIdentifierLiteralExpr::File:
case MagicIdentifierLiteralExpr::Function:
case MagicIdentifierLiteralExpr::Line:
return visitLiteralExpr(expr);
case MagicIdentifierLiteralExpr::DSOHandle: {
// __DSO_HANDLE__ has type UnsafeMutablePointer<Void>.
auto &tc = CS.getTypeChecker();
if (tc.requirePointerArgumentIntrinsics(expr->getLoc()))
return nullptr;
return CS.DC->getParentModule()->getDSOHandle()->getInterfaceType();
}
}
}
Type visitObjectLiteralExpr(ObjectLiteralExpr *expr) {
// If the expression has already been assigned a type; just use that type.
if (expr->getType() && !expr->getType()->hasTypeVariable())
return expr->getType();
auto &tc = CS.getTypeChecker();
auto protocol = tc.getLiteralProtocol(expr);
if (!protocol) {
tc.diagnose(expr->getLoc(), diag::use_unknown_object_literal,
expr->getName());
return nullptr;
}
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding);
tv->getImpl().literalConformanceProto = protocol;
CS.addConstraint(ConstraintKind::ConformsTo, tv,
protocol->getDeclaredType(),
CS.getConstraintLocator(expr));
// Add constraint on args.
DeclName constrName = tc.getObjectLiteralConstructorName(expr);
assert(constrName);
ArrayRef<ValueDecl *> constrs = protocol->lookupDirect(constrName);
if (constrs.size() != 1 || !isa<ConstructorDecl>(constrs.front())) {
tc.diagnose(protocol, diag::object_literal_broken_proto);
return nullptr;
}
auto *constr = cast<ConstructorDecl>(constrs.front());
CS.addConstraint(ConstraintKind::ArgumentTupleConversion,
expr->getArg()->getType(), constr->getArgumentType(),
CS.getConstraintLocator(expr, ConstraintLocator::ApplyArgument));
Type result = tv;
if (constr->getFailability() != OTK_None) {
result = OptionalType::get(constr->getFailability(), result);
}
return result;
}
Type visitDeclRefExpr(DeclRefExpr *E) {
// If this is a ParamDecl for a closure argument that has an Unresolved
// type, then this is a situation where CSDiags is trying to perform
// error recovery within a ClosureExpr. Just create a new type variable
// for the decl that isn't bound to anything. This will ensure that it
// is considered ambiguous.
if (E->getDecl()->hasType() &&
E->getDecl()->getType()->is<UnresolvedType>()) {
return CS.createTypeVariable(CS.getConstraintLocator(E),
TVO_CanBindToLValue);
}
// If we're referring to an invalid declaration, don't type-check.
//
// FIXME: If the decl is in error, we get no information from this.
// We may, alternatively, want to use a type variable in that case,
// and possibly infer the type of the variable that way.
CS.getTypeChecker().validateDecl(E->getDecl(), true);
if (E->getDecl()->isInvalid())
return nullptr;
auto locator = CS.getConstraintLocator(E);
// Create an overload choice referencing this declaration and immediately
// resolve it. This records the overload for use later.
auto tv = CS.createTypeVariable(locator, TVO_CanBindToLValue);
CS.resolveOverload(locator, tv,
OverloadChoice(Type(), E->getDecl(),
E->isSpecialized(), CS));
if (E->getDecl()->getType() &&
!E->getDecl()->getType()->getAs<TypeVariableType>()) {
CS.setFavoredType(E, E->getDecl()->getType().getPointer());
}
return tv;
}
Type visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *E) {
return E->getType();
}
Type visitSuperRefExpr(SuperRefExpr *E) {
if (E->getType())
return E->getType();
// Resolve the super type of 'self'.
return getSuperType(E->getSelf(), E->getLoc(),
diag::super_not_in_class_method,
diag::super_with_no_base_class);
}
Type visitTypeExpr(TypeExpr *E) {
Type type;
// If this is an implicit TypeExpr, don't validate its contents.
if (auto *rep = E->getTypeRepr()) {
TypeResolutionOptions options = TR_AllowUnboundGenerics;
options |= TR_InExpression;
type = CS.TC.resolveType(rep, CS.DC, options);
} else {
type = E->getTypeLoc().getType();
}
if (!type || type->is<ErrorType>()) return Type();
auto locator = CS.getConstraintLocator(E);
type = CS.openType(type, locator);
E->getTypeLoc().setType(type, /*validated=*/true);
return MetatypeType::get(type);
}
Type visitUnresolvedConstructorExpr(UnresolvedConstructorExpr *expr) {
ASTContext &C = CS.getASTContext();
// Open a member constraint for constructor delegations on the subexpr
// type.
if (CS.TC.getSelfForInitDelegationInConstructor(CS.DC, expr)){
auto baseTy = expr->getSubExpr()->getType()
->getLValueOrInOutObjectType();
// 'self' or 'super' will reference an instance, but the constructor
// is semantically a member of the metatype. This:
// self.init()
// super.init()
// is really more like:
// self = Self.init()
// self.super = Super.init()
baseTy = MetatypeType::get(baseTy, CS.getASTContext());
auto argsTy = CS.createTypeVariable(
CS.getConstraintLocator(expr),
TVO_CanBindToLValue|TVO_PrefersSubtypeBinding);
auto resultTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
/*options=*/0);
auto methodTy = FunctionType::get(argsTy, resultTy);
CS.addValueMemberConstraint(baseTy, C.Id_init,
methodTy,
CS.getConstraintLocator(expr, ConstraintLocator::ConstructorMember));
// The result of the expression is the partial application of the
// constructor to the subexpression.
return methodTy;
}
// If we aren't delegating from within an initializer, then 'x.init' is
// just a reference to the constructor as a member of the metatype value
// 'x'.
return addMemberRefConstraints(expr, expr->getSubExpr(), C.Id_init);
}
Type visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitOverloadedDeclRefExpr(OverloadedDeclRefExpr *expr) {
// For a reference to an overloaded declaration, we create a type variable
// that will be equal to different types depending on which overload
// is selected.
auto locator = CS.getConstraintLocator(expr);
auto tv = CS.createTypeVariable(locator, TVO_CanBindToLValue);
ArrayRef<ValueDecl*> decls = expr->getDecls();
SmallVector<OverloadChoice, 4> choices;
if (!decls.empty() && isDelayedOperatorDecl(decls[0]))
expr->setIsPotentiallyDelayedGlobalOperator();
for (unsigned i = 0, n = decls.size(); i != n; ++i) {
// If the result is invalid, skip it.
// FIXME: Note this as invalid, in case we don't find a solution,
// so we don't let errors cascade further.
CS.getTypeChecker().validateDecl(decls[i], true);
if (decls[i]->isInvalid())
continue;
choices.push_back(OverloadChoice(Type(), decls[i],
expr->isSpecialized(),
CS));
}
// If there are no valid overloads, give up.
if (choices.empty())
return nullptr;
// Record this overload set.
CS.addOverloadSet(tv, choices, locator);
return tv;
}
Type visitOverloadedMemberRefExpr(OverloadedMemberRefExpr *expr) {
// For a reference to an overloaded declaration, we create a type variable
// that will be bound to different types depending on which overload
// is selected.
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_CanBindToLValue);
ArrayRef<ValueDecl*> decls = expr->getDecls();
SmallVector<OverloadChoice, 4> choices;
auto baseTy = expr->getBase()->getType();
for (unsigned i = 0, n = decls.size(); i != n; ++i) {
// If the result is invalid, skip it.
// FIXME: Note this as invalid, in case we don't find a solution,
// so we don't let errors cascade further.
CS.getTypeChecker().validateDecl(decls[i], true);
if (decls[i]->isInvalid())
continue;
choices.push_back(OverloadChoice(baseTy, decls[i],
/*isSpecialized=*/false,
CS));
}
// If there are no valid overloads, give up.
if (choices.empty())
return nullptr;
// Record this overload set.
auto locator = CS.getConstraintLocator(expr, ConstraintLocator::Member);
CS.addOverloadSet(tv, choices, locator);
return tv;
}
Type visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *expr) {
// This is an error case, where we're trying to use type inference
// to help us determine which declaration the user meant to refer to.
// FIXME: Do we need to note that we're doing some kind of recovery?
return CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_CanBindToLValue);
}
Type visitMemberRefExpr(MemberRefExpr *expr) {
return addMemberRefConstraints(expr, expr->getBase(),
expr->getMember().getDecl());
}
Type visitDynamicMemberRefExpr(DynamicMemberRefExpr *expr) {
return addMemberRefConstraints(expr, expr->getBase(),
expr->getMember().getDecl());
}
virtual Type visitUnresolvedMemberExpr(UnresolvedMemberExpr *expr) {
auto baseLocator = CS.getConstraintLocator(
expr,
ConstraintLocator::MemberRefBase);
auto memberLocator
= CS.getConstraintLocator(expr, ConstraintLocator::UnresolvedMember);
auto baseTy = CS.createTypeVariable(baseLocator, /*options=*/0);
auto memberTy = CS.createTypeVariable(memberLocator, TVO_CanBindToLValue);
// An unresolved member expression '.member' is modeled as a value member
// constraint
//
// T0.Type[.member] == T1
//
// for fresh type variables T0 and T1, which pulls out a static
// member, i.e., an enum case or a static variable.
auto baseMetaTy = MetatypeType::get(baseTy);
CS.addUnresolvedValueMemberConstraint(baseMetaTy, expr->getName(),
memberTy, memberLocator);
// If there is an argument, apply it.
if (auto arg = expr->getArgument()) {
// The result type of the function must be convertible to the base type.
// TODO: we definitely want this to include ImplicitlyUnwrappedOptional; does it
// need to include everything else in the world?
auto outputTy
= CS.createTypeVariable(
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction),
/*options=*/0);
CS.addConstraint(ConstraintKind::Conversion, outputTy, baseTy,
CS.getConstraintLocator(expr, ConstraintLocator::RvalueAdjustment));
// The function/enum case must be callable with the given argument.
auto funcTy = FunctionType::get(arg->getType(), outputTy);
CS.addConstraint(ConstraintKind::ApplicableFunction, funcTy,
memberTy,
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction));
return baseTy;
}
// Otherwise, the member needs to be convertible to the base type.
CS.addConstraint(ConstraintKind::Conversion, memberTy, baseTy,
CS.getConstraintLocator(expr, ConstraintLocator::RvalueAdjustment));
// The member type also needs to be convertible to the context type, which
// preserves lvalue-ness.
auto resultTy = CS.createTypeVariable(memberLocator, TVO_CanBindToLValue);
CS.addConstraint(ConstraintKind::Conversion, memberTy, resultTy,
memberLocator);
CS.addConstraint(ConstraintKind::Equal, resultTy, baseTy,
memberLocator);
return resultTy;
}
Type visitUnresolvedDotExpr(UnresolvedDotExpr *expr) {
return addMemberRefConstraints(expr, expr->getBase(), expr->getName());
}
Type visitUnresolvedSelectorExpr(UnresolvedSelectorExpr *expr) {
return addMemberRefConstraints(expr, expr->getBase(), expr->getName());
}
Type visitUnresolvedSpecializeExpr(UnresolvedSpecializeExpr *expr) {
auto baseTy = expr->getSubExpr()->getType();
// We currently only support explicit specialization of generic types.
// FIXME: We could support explicit function specialization.
auto &tc = CS.getTypeChecker();
if (baseTy->is<AnyFunctionType>()) {
tc.diagnose(expr->getSubExpr()->getLoc(),
diag::cannot_explicitly_specialize_generic_function);
tc.diagnose(expr->getLAngleLoc(),
diag::while_parsing_as_left_angle_bracket);
return Type();
}
if (AnyMetatypeType *meta = baseTy->getAs<AnyMetatypeType>()) {
if (BoundGenericType *bgt
= meta->getInstanceType()->getAs<BoundGenericType>()) {
ArrayRef<Type> typeVars = bgt->getGenericArgs();
ArrayRef<TypeLoc> specializations = expr->getUnresolvedParams();
// If we have too many generic arguments, complain.
if (specializations.size() > typeVars.size()) {
tc.diagnose(expr->getSubExpr()->getLoc(),
diag::type_parameter_count_mismatch,
bgt->getDecl()->getName(),
typeVars.size(), specializations.size(),
false)
.highlight(SourceRange(expr->getLAngleLoc(),
expr->getRAngleLoc()));
tc.diagnose(bgt->getDecl(), diag::generic_type_declared_here,
bgt->getDecl()->getName());
return Type();
}
// Bind the specified generic arguments to the type variables in the
// open type.
auto locator = CS.getConstraintLocator(expr);
for (size_t i = 0, size = specializations.size(); i < size; ++i) {
CS.addConstraint(ConstraintKind::Equal,
typeVars[i], specializations[i].getType(),
locator);
}
return baseTy;
} else {
tc.diagnose(expr->getSubExpr()->getLoc(), diag::not_a_generic_type,
meta->getInstanceType());
tc.diagnose(expr->getLAngleLoc(),
diag::while_parsing_as_left_angle_bracket);
return Type();
}
}
// FIXME: If the base type is a type variable, constrain it to a metatype
// of a bound generic type.
tc.diagnose(expr->getSubExpr()->getLoc(),
diag::not_a_generic_definition);
tc.diagnose(expr->getLAngleLoc(),
diag::while_parsing_as_left_angle_bracket);
return Type();
}
Type visitSequenceExpr(SequenceExpr *expr) {
// If a SequenceExpr survived until CSGen, then there was an upstream
// error that was already reported.
return Type();
}
Type visitIdentityExpr(IdentityExpr *expr) {
expr->setType(expr->getSubExpr()->getType());
return expr->getType();
}
Type visitAnyTryExpr(AnyTryExpr *expr) {
expr->setType(expr->getSubExpr()->getType());
return expr->getType();
}
Type visitOptionalTryExpr(OptionalTryExpr *expr) {
auto valueTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding);
Type optTy = getOptionalType(expr->getSubExpr()->getLoc(), valueTy);
if (!optTy)
return Type();
CS.addConstraint(ConstraintKind::OptionalObject,
optTy, expr->getSubExpr()->getType(),
CS.getConstraintLocator(expr));
return optTy;
}
virtual Type visitParenExpr(ParenExpr *expr) {
auto &ctx = CS.getASTContext();
expr->setType(ParenType::get(ctx, expr->getSubExpr()->getType()));
if (auto favoredTy = CS.getFavoredType(expr->getSubExpr())) {
CS.setFavoredType(expr, favoredTy);
}
return expr->getType();
}
virtual Type visitTupleExpr(TupleExpr *expr) {
// The type of a tuple expression is simply a tuple of the types of
// its subexpressions.
SmallVector<TupleTypeElt, 4> elements;
elements.reserve(expr->getNumElements());
for (unsigned i = 0, n = expr->getNumElements(); i != n; ++i) {
elements.push_back(TupleTypeElt(expr->getElement(i)->getType(),
expr->getElementName(i)));
}
return TupleType::get(elements, CS.getASTContext());
}
Type visitSubscriptExpr(SubscriptExpr *expr) {
ValueDecl *decl = nullptr;
if (expr->hasDecl()) {
decl = expr->getDecl().getDecl();
if (decl->isInvalid())
return Type();
}
return addSubscriptConstraints(expr, expr->getBase(), expr->getIndex(),
decl);
}
Type visitArrayExpr(ArrayExpr *expr) {
ASTContext &C = CS.getASTContext();
// An array expression can be of a type T that conforms to the
// ArrayLiteralConvertible protocol.
auto &tc = CS.getTypeChecker();
ProtocolDecl *arrayProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::ArrayLiteralConvertible);
if (!arrayProto) {
return Type();
}
// FIXME: Protect against broken standard library.
auto elementAssocTy = cast<AssociatedTypeDecl>(
arrayProto->lookupDirect(
C.getIdentifier("Element")).front());
auto locator = CS.getConstraintLocator(expr);
auto contextualType = CS.getContextualType(expr);
Type contextualArrayType = nullptr;
Type contextualArrayElementType = nullptr;
// If a contextual type exists for this expression, apply it directly.
if (contextualType && CS.isArrayType(contextualType)) {
// Is the array type a contextual type
contextualArrayType = contextualType;
contextualArrayElementType =
CS.getBaseTypeForArrayType(contextualType.getPointer());
CS.addConstraint(ConstraintKind::ConformsTo, contextualType,
arrayProto->getDeclaredType(),
locator);
unsigned index = 0;
for (auto element : expr->getElements()) {
CS.addConstraint(ConstraintKind::Conversion,
element->getType(),
contextualArrayElementType,
CS.getConstraintLocator(expr,
LocatorPathElt::
getTupleElement(index++)));
}
return contextualArrayType;
}
auto arrayTy = CS.createTypeVariable(locator, TVO_PrefersSubtypeBinding);
// The array must be an array literal type.
CS.addConstraint(ConstraintKind::ConformsTo, arrayTy,
arrayProto->getDeclaredType(),
locator);
// Its subexpression should be convertible to a tuple (T.Element...).
// FIXME: We should really go through the conformance above to extract
// the element type, rather than just looking for the element type.
// FIXME: Member constraint is still weird here.
ConstraintLocatorBuilder builder(locator);
auto arrayElementTy = CS.getMemberType(arrayTy, elementAssocTy,
builder.withPathElement(
ConstraintLocator::Member),
/*options=*/0);
// Introduce conversions from each element to the element type of the
// array.
unsigned index = 0;
for (auto element : expr->getElements()) {
CS.addConstraint(ConstraintKind::Conversion,
element->getType(),
arrayElementTy,
CS.getConstraintLocator(
expr,
LocatorPathElt::getTupleElement(index++)));
}
return arrayTy;
}
Type visitDictionaryExpr(DictionaryExpr *expr) {
ASTContext &C = CS.getASTContext();
// A dictionary expression can be of a type T that conforms to the
// DictionaryLiteralConvertible protocol.
// FIXME: This isn't actually used for anything at the moment.
auto &tc = CS.getTypeChecker();
ProtocolDecl *dictionaryProto
= tc.getProtocol(expr->getLoc(),
KnownProtocolKind::DictionaryLiteralConvertible);
if (!dictionaryProto) {
return Type();
}
// FIXME: Protect against broken standard library.
auto keyAssocTy = cast<AssociatedTypeDecl>(
dictionaryProto->lookupDirect(
C.getIdentifier("Key")).front());
auto valueAssocTy = cast<AssociatedTypeDecl>(
dictionaryProto->lookupDirect(
C.getIdentifier("Value")).front());
auto locator = CS.getConstraintLocator(expr);
auto dictionaryTy = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding);
// The array must be a dictionary literal type.
CS.addConstraint(ConstraintKind::ConformsTo, dictionaryTy,
dictionaryProto->getDeclaredType(),
locator);
// Its subexpression should be convertible to a tuple ((T.Key,T.Value)...).
ConstraintLocatorBuilder locatorBuilder(locator);
auto dictionaryKeyTy = CS.getMemberType(dictionaryTy,
keyAssocTy,
locatorBuilder.withPathElement(
ConstraintLocator::Member),
/*options=*/0);
/// FIXME: ArrayElementType is a total hack here.
auto dictionaryValueTy = CS.getMemberType(dictionaryTy,
valueAssocTy,
locatorBuilder.withPathElement(
ConstraintLocator::ArrayElementType),
/*options=*/0);
TupleTypeElt tupleElts[2] = { TupleTypeElt(dictionaryKeyTy),
TupleTypeElt(dictionaryValueTy) };
Type elementTy = TupleType::get(tupleElts, C);
// Introduce conversions from each element to the element type of the
// dictionary.
unsigned index = 0;
for (auto element : expr->getElements()) {
CS.addConstraint(ConstraintKind::Conversion,
element->getType(),
elementTy,
CS.getConstraintLocator(
expr,
LocatorPathElt::getTupleElement(index++)));
}
return dictionaryTy;
}
Type visitDynamicSubscriptExpr(DynamicSubscriptExpr *expr) {
return addSubscriptConstraints(expr, expr->getBase(), expr->getIndex(),
nullptr);
}
Type visitTupleElementExpr(TupleElementExpr *expr) {
ASTContext &context = CS.getASTContext();
Identifier name
= context.getIdentifier(llvm::utostr(expr->getFieldNumber()));
return addMemberRefConstraints(expr, expr->getBase(), name);
}
/// \brief Produces a type for the given pattern, filling in any missing
/// type information with fresh type variables.
///
/// \param pattern The pattern.
Type getTypeForPattern(Pattern *pattern, bool forFunctionParam,
ConstraintLocatorBuilder locator) {
switch (pattern->getKind()) {
case PatternKind::Paren:
// Parentheses don't affect the type.
return getTypeForPattern(cast<ParenPattern>(pattern)->getSubPattern(),
forFunctionParam, locator);
case PatternKind::Var:
// Var doesn't affect the type.
return getTypeForPattern(cast<VarPattern>(pattern)->getSubPattern(),
forFunctionParam, locator);
case PatternKind::Any:
// For a pattern of unknown type, create a new type variable.
return CS.createTypeVariable(CS.getConstraintLocator(locator),
/*options=*/0);
case PatternKind::Named: {
auto var = cast<NamedPattern>(pattern)->getDecl();
auto boundExpr = locator.trySimplifyToExpr();
auto haveBoundCollectionLiteral = boundExpr &&
!var->hasNonPatternBindingInit() &&
(isa<ArrayExpr>(boundExpr) ||
isa<DictionaryExpr>(boundExpr));
// For a named pattern without a type, create a new type variable
// and use it as the type of the variable.
//
// FIXME: For now, substitute in the bound type for literal collection
// exprs that would otherwise result in a simple conversion constraint
// being placed between two type variables. (The bound type and the
// collection type, which will always be the same in this case.)
// This will avoid exponential typecheck behavior in the case of nested
// array and dictionary literals.
Type ty = haveBoundCollectionLiteral ?
boundExpr->getType() :
CS.createTypeVariable(CS.getConstraintLocator(locator),
/*options=*/0);
// For weak variables, use Optional<T>.
if (auto *OA = var->getAttrs().getAttribute<OwnershipAttr>())
if (!forFunctionParam && OA->get() == Ownership::Weak) {
ty = CS.getTypeChecker().getOptionalType(var->getLoc(), ty);
if (!ty) return Type();
}
// We want to set the variable's type here when type-checking
// a function's parameter clauses because we're going to
// type-check the entire function body within the context of
// the constraint system. In contrast, when type-checking a
// variable binding, we really don't want to set the
// variable's type because it can easily escape the constraint
// system and become a dangling type reference.
if (forFunctionParam)
var->overwriteType(ty);
return ty;
}
case PatternKind::Typed: {
auto typedPattern = cast<TypedPattern>(pattern);
// FIXME: Need a better locator for a pattern as a base.
Type openedType = CS.openType(typedPattern->getType(), locator);
if (auto weakTy = openedType->getAs<WeakStorageType>())
openedType = weakTy->getReferentType();
// For a typed pattern, simply return the opened type of the pattern.
// FIXME: Error recovery if the type is an error type?
return openedType;
}
case PatternKind::Tuple: {
auto tuplePat = cast<TuplePattern>(pattern);
SmallVector<TupleTypeElt, 4> tupleTypeElts;
tupleTypeElts.reserve(tuplePat->getNumElements());
for (unsigned i = 0, e = tuplePat->getNumElements(); i != e; ++i) {
auto &tupleElt = tuplePat->getElement(i);
bool hasEllipsis = tupleElt.hasEllipsis();
Type eltTy = getTypeForPattern(tupleElt.getPattern(),forFunctionParam,
locator.withPathElement(
LocatorPathElt::getTupleElement(i)));
Type varArgBaseTy;
tupleTypeElts.push_back(TupleTypeElt(eltTy, tupleElt.getLabel(),
tupleElt.getDefaultArgKind(),
hasEllipsis));
}
return TupleType::get(tupleTypeElts, CS.getASTContext());
}
// Refutable patterns occur when checking the PatternBindingDecls in an
// if/let or while/let condition. They always require an initial value,
// so they always allow unspecified types.
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) case PatternKind::Id:
#include "swift/AST/PatternNodes.def"
// TODO: we could try harder here, e.g. for enum elements to provide the
// enum type.
return CS.createTypeVariable(CS.getConstraintLocator(locator),
/*options=*/0);
}
llvm_unreachable("Unhandled pattern kind");
}
Type visitCaptureListExpr(CaptureListExpr *expr) {
// The type of the capture list is just the type of its closure.
expr->setType(expr->getClosureBody()->getType());
return expr->getType();
}
/// \brief Walk a closure body to determine if it's possible for
/// it to return with a non-void result.
static bool closureHasNoResult(ClosureExpr *expr) {
// A walker that looks for 'return' statements that aren't
// nested within closures or nested declarations.
class FindReturns : public ASTWalker {
bool FoundResultReturn = false;
bool FoundNoResultReturn = false;
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
return { false, expr };
}
bool walkToDeclPre(Decl *decl) override {
return false;
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
// Record return statements.
if (auto ret = dyn_cast<ReturnStmt>(stmt)) {
// If it has a result, remember that we saw one, but keep
// traversing in case there's a no-result return somewhere.
if (ret->hasResult()) {
FoundResultReturn = true;
// Otherwise, stop traversing.
} else {
FoundNoResultReturn = true;
return { false, nullptr };
}
}
return { true, stmt };
}
public:
bool hasNoResult() const {
return FoundNoResultReturn || !FoundResultReturn;
}
};
// Don't apply this to single-expression-body closures.
if (expr->hasSingleExpressionBody())
return false;
auto body = expr->getBody();
if (!body) return false;
FindReturns finder;
body->walk(finder);
return finder.hasNoResult();
}
/// \brief Walk a closure AST to determine if it can throw.
bool closureCanThrow(ClosureExpr *expr) {
// A walker that looks for 'try' or 'throw' expressions
// that aren't nested within closures, nested declarations,
// or exhaustive catches.
class FindInnerThrows : public ASTWalker {
ConstraintSystem &CS;
bool FoundThrow = false;
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
// If we've found a 'try', record it and terminate the traversal.
if (isa<TryExpr>(expr)) {
FoundThrow = true;
return { false, nullptr };
}
// Don't walk into a 'try!' or 'try?'.
if (isa<ForceTryExpr>(expr) || isa<OptionalTryExpr>(expr)) {
return { false, expr };
}
// Do not recurse into other closures.
if (isa<ClosureExpr>(expr))
return { false, expr };
return { true, expr };
}
bool walkToDeclPre(Decl *decl) override {
// Do not walk into function or type declarations.
if (!isa<PatternBindingDecl>(decl))
return false;
return true;
}
bool isSyntacticallyExhaustive(DoCatchStmt *stmt) {
for (auto catchClause : stmt->getCatches()) {
if (isSyntacticallyExhaustive(catchClause))
return true;
}
return false;
}
bool isSyntacticallyExhaustive(CatchStmt *clause) {
// If it's obviously non-exhaustive, great.
if (clause->getGuardExpr())
return false;
// If we can show that it's exhaustive without full
// type-checking, great.
if (clause->isSyntacticallyExhaustive())
return true;
// Okay, resolve the pattern.
Pattern *pattern = clause->getErrorPattern();
pattern = CS.TC.resolvePattern(pattern, CS.DC,
/*isStmtCondition*/false);
if (!pattern) return false;
// Save that aside while we explore the type.
clause->setErrorPattern(pattern);
// Require the pattern to have a particular shape: a number
// of is-patterns applied to an irrefutable pattern.
pattern = pattern->getSemanticsProvidingPattern();
while (auto isp = dyn_cast<IsPattern>(pattern)) {
if (CS.TC.validateType(isp->getCastTypeLoc(), CS.DC,
TR_InExpression))
return false;
if (!isp->hasSubPattern()) {
pattern = nullptr;
break;
} else {
pattern = isp->getSubPattern()->getSemanticsProvidingPattern();
}
}
if (pattern && pattern->isRefutablePattern()) {
return false;
}
// Okay, now it should be safe to coerce the pattern.
// Pull the top-level pattern back out.
pattern = clause->getErrorPattern();
Type exnType = CS.TC.getExceptionType(CS.DC, clause->getCatchLoc());
if (!exnType ||
CS.TC.coercePatternToType(pattern, CS.DC, exnType,
TR_InExpression)) {
return false;
}
clause->setErrorPattern(pattern);
return clause->isSyntacticallyExhaustive();
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
// If we've found a 'throw', record it and terminate the traversal.
if (isa<ThrowStmt>(stmt)) {
FoundThrow = true;
return { false, nullptr };
}
// Handle do/catch differently.
if (auto doCatch = dyn_cast<DoCatchStmt>(stmt)) {
// Only walk into the 'do' clause of a do/catch statement
// if the catch isn't syntactically exhaustive.
if (!isSyntacticallyExhaustive(doCatch)) {
if (!doCatch->getBody()->walk(*this))
return { false, nullptr };
}
// Walk into all the catch clauses.
for (auto catchClause : doCatch->getCatches()) {
if (!catchClause->walk(*this))
return { false, nullptr };
}
// We've already walked all the children we care about.
return { false, stmt };
}
return { true, stmt };
}
public:
FindInnerThrows(ConstraintSystem &cs) : CS(cs) {}
bool foundThrow() { return FoundThrow; }
};
if (expr->getThrowsLoc().isValid())
return true;
auto body = expr->getBody();
if (!body)
return false;
auto tryFinder = FindInnerThrows(CS);
body->walk(tryFinder);
return tryFinder.foundThrow();
}
Type visitClosureExpr(ClosureExpr *expr) {
// If a contextual function type exists, we can use that to obtain the
// expected return type, rather than allocating a fresh type variable.
auto contextualType = CS.getContextualType(expr);
Type crt;
if (contextualType) {
if (auto cft = contextualType->getAs<AnyFunctionType>()) {
crt = cft->getResult();
}
}
// Closure expressions always have function type. In cases where a
// parameter or return type is omitted, a fresh type variable is used to
// stand in for that parameter or return type, allowing it to be inferred
// from context.
Type funcTy;
if (expr->hasExplicitResultType() &&
expr->getExplicitResultTypeLoc().getType()) {
funcTy = expr->getExplicitResultTypeLoc().getType();
} else if (!crt.isNull()) {
funcTy = crt;
} else{
auto locator =
CS.getConstraintLocator(expr, ConstraintLocator::ClosureResult);
// If no return type was specified, create a fresh type
// variable for it.
funcTy = CS.createTypeVariable(locator, /*options=*/0);
// Allow it to default to () if there are no return statements.
if (closureHasNoResult(expr)) {
CS.addConstraint(ConstraintKind::Defaultable,
funcTy,
TupleType::getEmpty(CS.getASTContext()),
locator);
}
}
// Walk through the patterns in the func expression, backwards,
// computing the type of each pattern (which may involve fresh type
// variables where parameter types where no provided) and building the
// eventual function type.
auto paramTy = getTypeForPattern(
expr->getParams(), /*forFunctionParam*/ true,
CS.getConstraintLocator(
expr,
LocatorPathElt::getTupleElement(0)));
auto extInfo = FunctionType::ExtInfo();
if (closureCanThrow(expr))
extInfo = extInfo.withThrows();
// FIXME: If we want keyword arguments for closures, add them here.
funcTy = FunctionType::get(paramTy, funcTy, extInfo);
return funcTy;
}
Type visitAutoClosureExpr(AutoClosureExpr *expr) {
// AutoClosureExpr is introduced by CSApply.
llvm_unreachable("Already type-checked");
}
Type visitInOutExpr(InOutExpr *expr) {
// The address-of operator produces an explicit inout T from an lvalue T.
// We model this with the constraint
//
// S < lvalue T
//
// where T is a fresh type variable.
auto lvalue = CS.createTypeVariable(CS.getConstraintLocator(expr),
/*options=*/0);
auto bound = LValueType::get(lvalue);
auto result = InOutType::get(lvalue);
CS.addConstraint(ConstraintKind::Conversion,
expr->getSubExpr()->getType(), bound,
CS.getConstraintLocator(expr->getSubExpr()));
return result;
}
Type visitDynamicTypeExpr(DynamicTypeExpr *expr) {
auto tv = CS.createTypeVariable(CS.getConstraintLocator(expr),
/*options=*/0);
CS.addConstraint(ConstraintKind::DynamicTypeOf, tv,
expr->getBase()->getType(),
CS.getConstraintLocator(expr, ConstraintLocator::RvalueAdjustment));
return tv;
}
Type visitOpaqueValueExpr(OpaqueValueExpr *expr) {
return expr->getType();
}
Type visitDefaultValueExpr(DefaultValueExpr *expr) {
expr->setType(expr->getSubExpr()->getType());
return expr->getType();
}
Type visitApplyExpr(ApplyExpr *expr) {
Type outputTy;
auto fnExpr = expr->getFn();
if (isa<DeclRefExpr>(fnExpr)) {
if (auto fnType = fnExpr->getType()->getAs<AnyFunctionType>()) {
outputTy = fnType->getResult();
}
} else if (auto TE = dyn_cast<TypeExpr>(fnExpr)) {
outputTy = TE->getType()->getAs<MetatypeType>()->getInstanceType();
NominalTypeDecl *NTD = nullptr;
if (auto nominalType = outputTy->getAs<NominalType>()) {
NTD = nominalType->getDecl();
} else if (auto bgT = outputTy->getAs<BoundGenericType>()) {
NTD = bgT->getDecl();
}
if (NTD) {
if (!(isa<ClassDecl>(NTD) || isa<StructDecl>(NTD)) ||
hasFailableInits(NTD, &CS)) {
outputTy = Type();
}
} else {
outputTy = Type();
}
} else if (auto OSR = dyn_cast<OverloadSetRefExpr>(fnExpr)) {
if (auto FD = dyn_cast<FuncDecl>(OSR->getDecls()[0])) {
// If we've already agreed upon an overloaded return type, use it.
if (FD->getHaveSearchedForCommonOverloadReturnType()) {
if (FD->getHaveFoundCommonOverloadReturnType()) {
outputTy = FD->getType()->getAs<AnyFunctionType>()->getResult();
}
} else {
// Determine if the overloads all share a common return type.
Type commonType;
Type resultType;
for (auto OD : OSR->getDecls()) {
if (auto OFD = dyn_cast<FuncDecl>(OD)) {
auto OFT = OFD->getType()->getAs<AnyFunctionType>();
if (!OFT) {
commonType = Type();
break;
}
resultType = OFT->getResult();
if (commonType.isNull()) {
commonType = resultType;
} else if (!commonType->isEqual(resultType)) {
commonType = Type();
break;
}
} else {
// TODO: unreachable?
commonType = Type();
break;
}
}
// TODO: For now, disallow tyvar, archetype and function types.
if (!(commonType.isNull() ||
commonType->getAs<TypeVariableType>() ||
commonType->getAs<ArchetypeType>() ||
commonType->getAs<AnyFunctionType>())) {
outputTy = commonType;
}
// Set the search bits appropriately.
for (auto OD : OSR->getDecls()) {
if (auto OFD = dyn_cast<FuncDecl>(OD)) {
OFD->setHaveSearchedForCommonOverloadReturnType();
if (!outputTy.isNull())
OFD->setHaveFoundCommonOverloadReturnType();
}
}
}
}
}
// The function subexpression has some rvalue type T1 -> T2 for fresh
// variables T1 and T2.
if (outputTy.isNull()) {
outputTy = CS.createTypeVariable(
CS.getConstraintLocator(expr,
ConstraintLocator::ApplyFunction),
/*options=*/0);
} else {
// Since we know what the output type is, we can set it as the favored
// type of this expression.
CS.setFavoredType(expr, outputTy.getPointer());
}
// A direct call to a ClosureExpr makes it noescape.
FunctionType::ExtInfo extInfo;
if (isa<ClosureExpr>(fnExpr->getSemanticsProvidingExpr()))
extInfo = extInfo.withNoEscape();
auto funcTy = FunctionType::get(expr->getArg()->getType(), outputTy,
extInfo);
CS.addConstraint(ConstraintKind::ApplicableFunction, funcTy,
expr->getFn()->getType(),
CS.getConstraintLocator(expr, ConstraintLocator::ApplyFunction));
return outputTy;
}
Type getSuperType(ValueDecl *selfDecl,
SourceLoc diagLoc,
Diag<> diag_not_in_class,
Diag<> diag_no_base_class) {
DeclContext *typeContext = selfDecl->getDeclContext()->getParent();
assert(typeContext && "constructor without parent context?!");
auto &tc = CS.getTypeChecker();
ClassDecl *classDecl = typeContext->getDeclaredTypeInContext()
->getClassOrBoundGenericClass();
if (!classDecl) {
tc.diagnose(diagLoc, diag_not_in_class);
return Type();
}
if (!classDecl->hasSuperclass()) {
tc.diagnose(diagLoc, diag_no_base_class);
return Type();
}
Type superclassTy = typeContext->getDeclaredTypeInContext()
->getSuperclass(&tc);
if (selfDecl->hasType() && selfDecl->getType()->is<AnyMetatypeType>())
superclassTy = MetatypeType::get(superclassTy);
return superclassTy;
}
Type visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *expr) {
// The result is void.
return TupleType::getEmpty(CS.getASTContext());
}
Type visitIfExpr(IfExpr *expr) {
// The conditional expression must conform to LogicValue.
Expr *condExpr = expr->getCondExpr();
auto booleanType
= CS.getTypeChecker().getProtocol(expr->getQuestionLoc(),
KnownProtocolKind::BooleanType);
if (!booleanType)
return Type();
CS.addConstraint(ConstraintKind::ConformsTo, condExpr->getType(),
booleanType->getDeclaredType(),
CS.getConstraintLocator(condExpr));
// The branches must be convertible to a common type.
auto resultTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding);
CS.addConstraint(ConstraintKind::Conversion,
expr->getThenExpr()->getType(), resultTy,
CS.getConstraintLocator(expr->getThenExpr()));
CS.addConstraint(ConstraintKind::Conversion,
expr->getElseExpr()->getType(), resultTy,
CS.getConstraintLocator(expr->getElseExpr()));
return resultTy;
}
virtual Type visitImplicitConversionExpr(ImplicitConversionExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitForcedCheckedCastExpr(ForcedCheckedCastExpr *expr) {
auto &tc = CS.getTypeChecker();
// Validate the resulting type.
TypeResolutionOptions options = TR_AllowUnboundGenerics;
options |= TR_InExpression;
if (tc.validateType(expr->getCastTypeLoc(), CS.DC, options))
return nullptr;
// Open the type we're casting to.
auto toType = CS.openType(expr->getCastTypeLoc().getType(),
CS.getConstraintLocator(expr));
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
auto fromType = expr->getSubExpr()->getType();
auto locator = CS.getConstraintLocator(expr->getSubExpr());
// The source type can be checked-cast to the destination type.
CS.addConstraint(ConstraintKind::CheckedCast, fromType, toType, locator);
return toType;
}
Type visitCoerceExpr(CoerceExpr *expr) {
auto &tc = CS.getTypeChecker();
// Validate the resulting type.
TypeResolutionOptions options = TR_AllowUnboundGenerics;
options |= TR_InExpression;
if (tc.validateType(expr->getCastTypeLoc(), CS.DC, options))
return nullptr;
// Open the type we're casting to.
auto toType = CS.openType(expr->getCastTypeLoc().getType(),
CS.getConstraintLocator(expr));
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
auto fromType = expr->getSubExpr()->getType();
auto locator = CS.getConstraintLocator(expr);
if (CS.shouldAttemptFixes()) {
Constraint *coerceConstraint =
Constraint::create(CS, ConstraintKind::ExplicitConversion,
fromType, toType, DeclName(), locator);
Constraint *downcastConstraint =
Constraint::createFixed(CS, ConstraintKind::CheckedCast,
FixKind::CoerceToCheckedCast, fromType,
toType, locator);
coerceConstraint->setFavored();
auto constraints = { coerceConstraint, downcastConstraint };
CS.addConstraint(Constraint::createDisjunction(CS, constraints,
locator,
RememberChoice));
} else {
// The source type can be explicitly converted to the destination type.
CS.addConstraint(ConstraintKind::ExplicitConversion, fromType, toType,
locator);
}
return toType;
}
Type visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *expr) {
auto &tc = CS.getTypeChecker();
// Validate the resulting type.
TypeResolutionOptions options = TR_AllowUnboundGenerics;
options |= TR_InExpression;
if (tc.validateType(expr->getCastTypeLoc(), CS.DC, options))
return nullptr;
// Open the type we're casting to.
auto toType = CS.openType(expr->getCastTypeLoc().getType(),
CS.getConstraintLocator(expr));
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
auto fromType = expr->getSubExpr()->getType();
auto locator = CS.getConstraintLocator(expr->getSubExpr());
CS.addConstraint(ConstraintKind::CheckedCast, fromType, toType, locator);
return OptionalType::get(toType);
}
Type visitIsExpr(IsExpr *expr) {
// Validate the type.
auto &tc = CS.getTypeChecker();
TypeResolutionOptions options = TR_AllowUnboundGenerics;
options |= TR_InExpression;
if (tc.validateType(expr->getCastTypeLoc(), CS.DC, options))
return nullptr;
// Open up the type we're checking.
// FIXME: Locator for the cast type?
auto toType = CS.openType(expr->getCastTypeLoc().getType(),
CS.getConstraintLocator(expr));
expr->getCastTypeLoc().setType(toType, /*validated=*/true);
// Add a checked cast constraint.
auto fromType = expr->getSubExpr()->getType();
CS.addConstraint(ConstraintKind::CheckedCast, fromType, toType,
CS.getConstraintLocator(expr));
// The result is Bool.
return CS.getTypeChecker().lookupBoolType(CS.DC);
}
Type visitDiscardAssignmentExpr(DiscardAssignmentExpr *expr) {
auto locator = CS.getConstraintLocator(expr);
auto typeVar = CS.createTypeVariable(locator, /*options=*/0);
return LValueType::get(typeVar);
}
Type visitAssignExpr(AssignExpr *expr) {
// Handle invalid code.
if (!expr->getDest() || !expr->getSrc())
return Type();
// Compute the type to which the source must be converted to allow
// assignment to the destination.
auto destTy = CS.computeAssignDestType(expr->getDest(), expr->getLoc());
if (!destTy)
return Type();
// The source must be convertible to the destination.
CS.addConstraint(ConstraintKind::Conversion,
expr->getSrc()->getType(), destTy,
CS.getConstraintLocator(expr->getSrc()));
expr->setType(TupleType::getEmpty(CS.getASTContext()));
return expr->getType();
}
Type visitUnresolvedPatternExpr(UnresolvedPatternExpr *expr) {
// If there are UnresolvedPatterns floating around after name binding,
// they are pattern productions in invalid positions.
CS.TC.diagnose(expr->getLoc(), diag::pattern_in_expr,
expr->getSubPattern()->getKind());
return Type();
}
/// Get the type T?
///
/// This is not the ideal source location, but it's only used for
/// diagnosing ill-formed standard libraries, so it really isn't
/// worth QoI efforts.
Type getOptionalType(SourceLoc optLoc, Type valueTy) {
auto optTy = CS.getTypeChecker().getOptionalType(optLoc, valueTy);
if (!optTy || CS.getTypeChecker().requireOptionalIntrinsics(optLoc))
return Type();
return optTy;
}
Type visitBindOptionalExpr(BindOptionalExpr *expr) {
// The operand must be coercible to T?, and we will have type T.
auto locator = CS.getConstraintLocator(expr);
auto objectTy = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding
| TVO_CanBindToLValue);
// The result is the object type of the optional subexpression.
CS.addConstraint(ConstraintKind::OptionalObject,
expr->getSubExpr()->getType(), objectTy,
locator);
return objectTy;
}
Type visitOptionalEvaluationExpr(OptionalEvaluationExpr *expr) {
// The operand must be coercible to T? for some type T. We'd
// like this to be the smallest possible nesting level of
// optional types, e.g. T? over T??; otherwise we don't really
// have a preference.
auto valueTy = CS.createTypeVariable(CS.getConstraintLocator(expr),
TVO_PrefersSubtypeBinding);
Type optTy = getOptionalType(expr->getSubExpr()->getLoc(), valueTy);
if (!optTy)
return Type();
CS.addConstraint(ConstraintKind::Conversion,
expr->getSubExpr()->getType(), optTy,
CS.getConstraintLocator(expr));
return optTy;
}
Type visitForceValueExpr(ForceValueExpr *expr) {
// Force-unwrap an optional of type T? to produce a T.
auto locator = CS.getConstraintLocator(expr);
auto objectTy = CS.createTypeVariable(locator,
TVO_PrefersSubtypeBinding
| TVO_CanBindToLValue);
// The result is the object type of the optional subexpression.
CS.addConstraint(ConstraintKind::OptionalObject,
expr->getSubExpr()->getType(), objectTy,
locator);
return objectTy;
}
Type visitOpenExistentialExpr(OpenExistentialExpr *expr) {
llvm_unreachable("Already type-checked");
}
Type visitEditorPlaceholderExpr(EditorPlaceholderExpr *E) {
if (E->getTypeLoc().isNull()) {
auto locator = CS.getConstraintLocator(E);
auto placeholderTy = CS.createTypeVariable(locator, /*options*/0);
// A placeholder may have any type, but default to Void type if
// otherwise unconstrained.
CS.addConstraint(ConstraintKind::Defaultable,
placeholderTy, TupleType::getEmpty(CS.getASTContext()),
locator);
E->setType(placeholderTy);
}
// NOTE: The type loc may be there but have failed to validate, in which
// case we return the null type.
return E->getType();
}
};
/// \brief AST walker that "sanitizes" an expression for the
/// constraint-based type checker.
///
/// This is only necessary because Sema fills in too much type information
/// before the type-checker runs, causing redundant work.
class SanitizeExpr : public ASTWalker {
TypeChecker &TC;
public:
SanitizeExpr(TypeChecker &tc) : TC(tc) { }
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
// Don't recurse into default-value expressions.
return { !isa<DefaultValueExpr>(expr), expr };
}
Expr *walkToExprPost(Expr *expr) override {
if (auto implicit = dyn_cast<ImplicitConversionExpr>(expr)) {
// Skip implicit conversions completely.
return implicit->getSubExpr();
}
if (auto dotCall = dyn_cast<DotSyntaxCallExpr>(expr)) {
// A DotSyntaxCallExpr is a member reference that has already been
// type-checked down to a call; turn it back into an overloaded
// member reference expression.
SourceLoc memberLoc;
if (auto member = findReferencedDecl(dotCall->getFn(), memberLoc)) {
auto base = skipImplicitConversions(dotCall->getArg());
auto members
= TC.Context.AllocateCopy(ArrayRef<ValueDecl *>(&member, 1));
return new (TC.Context) OverloadedMemberRefExpr(base,
dotCall->getDotLoc(), members, memberLoc,
expr->isImplicit());
}
}
if (auto dotIgnored = dyn_cast<DotSyntaxBaseIgnoredExpr>(expr)) {
// A DotSyntaxBaseIgnoredExpr is a static member reference that has
// already been type-checked down to a call where the argument doesn't
// actually matter; turn it back into an overloaded member reference
// expression.
SourceLoc memberLoc;
if (auto member = findReferencedDecl(dotIgnored->getRHS(), memberLoc)) {
auto base = skipImplicitConversions(dotIgnored->getLHS());
auto members
= TC.Context.AllocateCopy(ArrayRef<ValueDecl *>(&member, 1));
return new (TC.Context) OverloadedMemberRefExpr(base,
dotIgnored->getDotLoc(), members,
memberLoc, expr->isImplicit());
}
}
return expr;
}
/// \brief Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
};
class ConstraintWalker : public ASTWalker {
ConstraintGenerator &CG;
public:
ConstraintWalker(ConstraintGenerator &CG) : CG(CG) { }
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
// For closures containing only a single expression, the body participates
// in type checking.
if (auto closure = dyn_cast<ClosureExpr>(expr)) {
if (closure->hasSingleExpressionBody()) {
// Visit the closure itself, which produces a function type.
auto funcTy = CG.visit(expr)->castTo<FunctionType>();
expr->setType(funcTy);
}
return { true, expr };
}
// We don't visit default value expressions; they've already been
// type-checked.
if (isa<DefaultValueExpr>(expr)) {
return { false, expr };
}
return { true, expr };
}
/// \brief Once we've visited the children of the given expression,
/// generate constraints from the expression.
Expr *walkToExprPost(Expr *expr) override {
if (auto closure = dyn_cast<ClosureExpr>(expr)) {
if (closure->hasSingleExpressionBody()) {
// Visit the body. It's type needs to be convertible to the function's
// return type.
auto resultTy = closure->getResultType();
auto bodyTy = closure->getSingleExpressionBody()->getType();
CG.getConstraintSystem()
.addConstraint(ConstraintKind::Conversion, bodyTy,
resultTy,
CG.getConstraintSystem()
.getConstraintLocator(
expr,
ConstraintLocator::ClosureResult));
return expr;
}
}
if (auto type = CG.visit(expr)) {
expr->setType(CG.getConstraintSystem().simplifyType(type));
return expr;
}
return nullptr;
}
/// \brief Ignore statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
return { false, stmt };
}
/// \brief Ignore declarations.
bool walkToDeclPre(Decl *decl) override { return false; }
};
/// AST walker that records the keyword arguments provided at each
/// call site.
class ArgumentLabelWalker : public ASTWalker {
ConstraintSystem &CS;
llvm::DenseMap<Expr *, Expr *> ParentMap;
public:
ArgumentLabelWalker(ConstraintSystem &cs, Expr *expr)
: CS(cs), ParentMap(expr->getParentMap()) { }
void associateArgumentLabels(Expr *arg, ArrayRef<Identifier> labels,
bool labelsArePermanent) {
// Our parent must be a call.
auto call = dyn_cast_or_null<CallExpr>(ParentMap[arg]);
if (!call)
return;
// We must have originated at the call argument.
if (arg != call->getArg())
return;
// Dig out the function, looking through, parentheses, ?, and !.
auto fn = call->getFn();
do {
fn = fn->getSemanticsProvidingExpr();
if (auto force = dyn_cast<ForceValueExpr>(fn)) {
fn = force->getSubExpr();
continue;
}
if (auto bind = dyn_cast<BindOptionalExpr>(fn)) {
fn = bind->getSubExpr();
continue;
}
break;
} while (true);
// Record the labels.
if (!labelsArePermanent)
labels = CS.allocateCopy(labels);
CS.ArgumentLabels[CS.getConstraintLocator(fn)] = labels;
}
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
if (auto tuple = dyn_cast<TupleExpr>(expr)) {
if (tuple->hasElementNames())
associateArgumentLabels(expr, tuple->getElementNames(), true);
else {
llvm::SmallVector<Identifier, 4> names(tuple->getNumElements(),
Identifier());
associateArgumentLabels(expr, names, false);
}
} else if (auto paren = dyn_cast<ParenExpr>(expr)) {
associateArgumentLabels(paren, { Identifier() }, false);
}
return { true, expr };
}
};
} // end anonymous namespace
Expr *ConstraintSystem::generateConstraints(Expr *expr) {
// Remove implicit conversions from the expression.
expr = expr->walk(SanitizeExpr(getTypeChecker()));
// Walk the expression to associate labeled arguments.
expr->walk(ArgumentLabelWalker(*this, expr));
// Walk the expression, generating constraints.
ConstraintGenerator cg(*this);
ConstraintWalker cw(cg);
Expr* result = expr->walk(cw);
if (result)
this->optimizeConstraints(result);
return result;
}
Expr *ConstraintSystem::generateConstraintsShallow(Expr *expr) {
// Sanitize the expression.
expr = SanitizeExpr(getTypeChecker()).walkToExprPost(expr);
// Visit the top-level expression generating constraints.
ConstraintGenerator cg(*this);
auto type = cg.visit(expr);
if (!type)
return nullptr;
this->optimizeConstraints(expr);
expr->setType(type);
return expr;
}
Type ConstraintSystem::generateConstraints(Pattern *pattern,
ConstraintLocatorBuilder locator) {
ConstraintGenerator cg(*this);
return cg.getTypeForPattern(pattern, /*forFunctionParam*/ false, locator);
}
void ConstraintSystem::optimizeConstraints(Expr *e) {
SmallVector<Expr *, 16> linkedExprs;
// Collect any linked expressions.
LinkedExprCollector collector(linkedExprs);
e->walk(collector);
// Favor types, as appropriate.
for (auto linkedExpr : linkedExprs) {
computeFavoredTypeForExpr(linkedExpr, *this);
}
// Optimize the constraints.
ConstraintOptimizer optimizer(*this);
e->walk(optimizer);
}
class InferUnresolvedMemberConstraintGenerator : public ConstraintGenerator {
Expr *Target;
TypeVariableType *VT;
TypeVariableType *createFreeTypeVariableType(Expr *E) {
auto &CS = getConstraintSystem();
return CS.createTypeVariable(CS.getConstraintLocator(nullptr),
TypeVariableOptions::TVO_CanBindToLValue);
}
public:
InferUnresolvedMemberConstraintGenerator(Expr *Target, ConstraintSystem &CS) :
ConstraintGenerator(CS), Target(Target), VT(nullptr) {};
virtual ~InferUnresolvedMemberConstraintGenerator() = default;
Type visitUnresolvedMemberExpr(UnresolvedMemberExpr *Expr) override {
if (Target != Expr) {
// If expr is not the target, do the default constraint generation.
return ConstraintGenerator::visitUnresolvedMemberExpr(Expr);
}
// Otherwise, create a type variable saying we know nothing about this expr.
assert(!VT && "cannot reassign type variable.");
return VT = createFreeTypeVariableType(Expr);
}
Type visitParenExpr(ParenExpr *Expr) override {
if (Target != Expr) {
// If expr is not the target, do the default constraint generation.
return ConstraintGenerator::visitParenExpr(Expr);
}
// Otherwise, create a type variable saying we know nothing about this expr.
assert(!VT && "cannot reassign type variable.");
return VT = createFreeTypeVariableType(Expr);
}
Type visitTupleExpr(TupleExpr *Expr) override {
if (Target != Expr) {
// If expr is not the target, do the default constraint generation.
return ConstraintGenerator::visitTupleExpr(Expr);
}
// Otherwise, create a type variable saying we know nothing about this expr.
assert(!VT && "cannot reassign type variable.");
return VT = createFreeTypeVariableType(Expr);
}
Type visitErrorExpr(ErrorExpr *Expr) override {
return createFreeTypeVariableType(Expr);
}
Type visitCodeCompletionExpr(CodeCompletionExpr *Expr) override {
return createFreeTypeVariableType(Expr);
}
Type visitImplicitConversionExpr(ImplicitConversionExpr *Expr) override {
// We override this function to avoid assertion failures. Typically, we do have
// a type-checked AST when trying to infer the types of unresolved members.
return Expr->getType();
}
void collectResolvedType(Solution &S, SmallVectorImpl<Type> &PossibleTypes) {
if (auto Bind = S.typeBindings[VT]) {
if (Bind->getKind() != TypeKind::TypeVariable)
PossibleTypes.push_back(Bind);
}
}
};
bool swift::typeCheckUnresolvedExpr(DeclContext &DC,
Expr *E, Expr *Parent,
SmallVectorImpl<Type> &PossibleTypes) {
ConstraintSystemOptions Options = ConstraintSystemFlags::AllowFixes;
auto *TC = static_cast<TypeChecker*>(DC.getASTContext().getLazyResolver());
ConstraintSystem CS(*TC, &DC, Options);
InferUnresolvedMemberConstraintGenerator MCG(E, CS);
ConstraintWalker cw(MCG);
Parent->walk(cw);
SmallVector<Solution, 3> solutions;
if (CS.solve(solutions, FreeTypeVariableBinding::Allow)) {
return false;
}
for (auto &S : solutions) {
MCG.collectResolvedType(S, PossibleTypes);
}
return !PossibleTypes.empty();
}
Type swift::checkMemberType(DeclContext &DC, Type BaseTy,
ArrayRef<Identifier> Names) {
if (Names.empty())
return BaseTy;
ConstraintSystemOptions Options = ConstraintSystemFlags::AllowFixes;
auto *TC = static_cast<TypeChecker*>(DC.getASTContext().getLazyResolver());
assert(TC && "Expected a type resolver");
ConstraintSystem CS(*TC, &DC, Options);
auto Loc = CS.getConstraintLocator(nullptr);
Type Ty = BaseTy;
for (auto Id : Names) {
auto TV = CS.createTypeVariable(CS.getConstraintLocator(nullptr),
TypeVariableOptions::TVO_CanBindToLValue);
CS.addConstraint(Constraint::createDisjunction(CS, {
Constraint::create(CS, ConstraintKind::TypeMember, Ty,
TV, DeclName(Id), Loc),
Constraint::create(CS, ConstraintKind::ValueMember, Ty,
TV, DeclName(Id), Loc)
}, Loc));
Ty = TV;
}
assert(Ty->getKind() == TypeKind::TypeVariable && "Type is not variable");
if (auto OS = CS.solveSingle()) {
return OS.getValue().typeBindings[Ty->getAs<TypeVariableType>()];
}
return Type();
}
bool swift::isExtensionApplied(DeclContext &DC, Type BaseTy,
const ExtensionDecl *ED) {
// We need to make sure the extension is about the give type decl.
bool FoundExtension = false;
if (auto ND = BaseTy->getNominalOrBoundGenericNominal()) {
for (auto ET : ND->getExtensions()) {
if (ET == ED) {
FoundExtension = true;
break;
}
}
}
assert(FoundExtension && "Cannot find the extension.");
ConstraintSystemOptions Options;
std::unique_ptr<TypeChecker> CreatedTC;
// If the current ast context has no type checker, create one for it.
auto *TC = static_cast<TypeChecker*>(DC.getASTContext().getLazyResolver());
if (!TC) {
CreatedTC.reset(new TypeChecker(DC.getASTContext()));
TC = CreatedTC.get();
}
// Build substitution map for the given type.
SmallVector<Type, 3> Scratch;
auto genericArgs = BaseTy->getAllGenericArgs(Scratch);
TypeSubstitutionMap substitutions;
auto genericParams = BaseTy->getNominalOrBoundGenericNominal()->getGenericParamTypes();
assert(genericParams.size() == genericArgs.size());
for (unsigned i = 0, n = genericParams.size(); i != n; ++i) {
auto gp = genericParams[i]->getCanonicalType()->castTo<GenericTypeParamType>();
substitutions[gp] = genericArgs[i];
}
ConstraintSystem CS(*TC, &DC, Options);
auto Loc = CS.getConstraintLocator(nullptr);
if (ED->getGenericRequirements().empty())
return true;
auto createMemberConstraint = [&](Requirement &Req, ConstraintKind Kind) {
// Use the substitution map of the given type to substitute the parameter of
// the extension.
auto First = Req.getFirstType().subst(ED->getParentModule(), substitutions,
SubstFlags::IgnoreMissing);
// Add constraints accordingly.
CS.addConstraint(Constraint::create(CS, Kind, First, Req.getSecondType(),
DeclName(), Loc));
};
// For every requirement, add a constraint.
for (auto Req : ED->getGenericRequirements()) {
switch(Req.getKind()) {
case RequirementKind::Conformance:
createMemberConstraint(Req, ConstraintKind::ConformsTo);
break;
case RequirementKind::SameType:
createMemberConstraint(Req, ConstraintKind::Equal);
break;
default:
break;
}
}
// Having a solution implies the extension's requirements have been fulfilled.
return CS.solveSingle().hasValue();
}