blob: d769c10a6a8780eb7af1fbb99810975f665ce7ac [file] [log] [blame]
//===-- Devirtualize.cpp - Helper for devirtualizing apply ------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-devirtualize-utility"
#include "swift/SILOptimizer/Analysis/ClassHierarchyAnalysis.h"
#include "swift/SILOptimizer/Utils/Devirtualize.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Casting.h"
using namespace swift;
STATISTIC(NumClassDevirt, "Number of class_method applies devirtualized");
STATISTIC(NumWitnessDevirt, "Number of witness_method applies devirtualized");
//===----------------------------------------------------------------------===//
// Class Method Optimization
//===----------------------------------------------------------------------===//
/// Compute all subclasses of a given class.
///
/// \p CHA class hierarchy analysis
/// \p CD class declaration
/// \p ClassType type of the instance
/// \p M SILModule
/// \p Subs a container to be used for storing the set of subclasses
static void getAllSubclasses(ClassHierarchyAnalysis *CHA,
ClassDecl *CD,
SILType ClassType,
SILModule &M,
ClassHierarchyAnalysis::ClassList &Subs) {
// Collect the direct and indirect subclasses for the class.
// Sort these subclasses in the order they should be tested by the
// speculative devirtualization. Different strategies could be used,
// E.g. breadth-first, depth-first, etc.
// Currently, let's use the breadth-first strategy.
// The exact static type of the instance should be tested first.
auto &DirectSubs = CHA->getDirectSubClasses(CD);
auto &IndirectSubs = CHA->getIndirectSubClasses(CD);
Subs.append(DirectSubs.begin(), DirectSubs.end());
//SmallVector<ClassDecl *, 8> Subs(DirectSubs);
Subs.append(IndirectSubs.begin(), IndirectSubs.end());
if (isa<BoundGenericClassType>(ClassType.getSwiftRValueType())) {
// Filter out any subclassses that do not inherit from this
// specific bound class.
auto RemovedIt = std::remove_if(Subs.begin(), Subs.end(),
[&ClassType, &M](ClassDecl *Sub){
auto SubCanTy = Sub->getDeclaredType()->getCanonicalType();
// Unbound generic type can override a method from
// a bound generic class, but this unbound generic
// class is not considered to be a subclass of a
// bound generic class in a general case.
if (isa<UnboundGenericType>(SubCanTy))
return false;
// Handle the usual case here: the class in question
// should be a real subclass of a bound generic class.
return !ClassType.isSuperclassOf(
SILType::getPrimitiveObjectType(SubCanTy));
});
Subs.erase(RemovedIt, Subs.end());
}
}
/// \brief Returns true, if a method implementation corresponding to
/// the class_method applied to an instance of the class CD is
/// effectively final, i.e. it is statically known to be not overridden
/// by any subclasses of the class CD.
///
/// \p AI invocation instruction
/// \p ClassType type of the instance
/// \p CD static class of the instance whose method is being invoked
/// \p CHA class hierarchy analysis
bool isEffectivelyFinalMethod(FullApplySite AI,
SILType ClassType,
ClassDecl *CD,
ClassHierarchyAnalysis *CHA) {
if (CD && CD->isFinal())
return true;
const DeclContext *DC = AI.getModule().getAssociatedContext();
// Without an associated context we cannot perform any
// access-based optimizations.
if (!DC)
return false;
auto *CMI = cast<MethodInst>(AI.getCallee());
if (!calleesAreStaticallyKnowable(AI.getModule(), CMI->getMember()))
return false;
auto *Method = CMI->getMember().getAbstractFunctionDecl();
assert(Method && "Expected abstract function decl!");
assert(!Method->isFinal() && "Unexpected indirect call to final method!");
// If this method is not overridden in the module,
// there is no other implementation.
if (!Method->isOverridden())
return true;
// Class declaration may be nullptr, e.g. for cases like:
// func foo<C:Base>(c: C) {}, where C is a class, but
// it does not have a class decl.
if (!CD)
return false;
if (!CHA)
return false;
// This is a private or a module internal class.
//
// We can analyze the class hierarchy rooted at it and
// eventually devirtualize a method call more efficiently.
ClassHierarchyAnalysis::ClassList Subs;
getAllSubclasses(CHA, CD, ClassType, AI.getModule(), Subs);
// This is the implementation of the method to be used
// if the exact class of the instance would be CD.
auto *ImplMethod = CD->findImplementingMethod(Method);
// First, analyze all direct subclasses.
for (auto S : Subs) {
// Check if the subclass overrides a method and provides
// a different implementation.
auto *ImplFD = S->findImplementingMethod(Method);
if (ImplFD != ImplMethod)
return false;
}
return true;
}
/// Check if a given class is final in terms of a current
/// compilation, i.e.:
/// - it is really final
/// - or it is private and has not sub-classes
/// - or it is an internal class without sub-classes and
/// it is a whole-module compilation.
static bool isKnownFinalClass(ClassDecl *CD, SILModule &M,
ClassHierarchyAnalysis *CHA) {
const DeclContext *DC = M.getAssociatedContext();
if (CD->isFinal())
return true;
// Without an associated context we cannot perform any
// access-based optimizations.
if (!DC)
return false;
// Only handle classes defined within the SILModule's associated context.
if (!CD->isChildContextOf(DC))
return false;
if (!CD->hasAccessibility())
return false;
// Only consider 'private' members, unless we are in whole-module compilation.
switch (CD->getEffectiveAccess()) {
case Accessibility::Public:
return false;
case Accessibility::Internal:
if (!M.isWholeModule())
return false;
break;
case Accessibility::Private:
break;
}
// Take the ClassHieararchyAnalysis into account.
// If a given class has no subclasses and
// - private
// - or internal and it is a WMO compilation
// then this class can be considered final for the purpose
// of devirtualization.
if (CHA) {
if (!CHA->hasKnownDirectSubclasses(CD)) {
switch (CD->getEffectiveAccess()) {
case Accessibility::Public:
return false;
case Accessibility::Internal:
if (!M.isWholeModule())
return false;
break;
case Accessibility::Private:
break;
}
return true;
}
}
return false;
}
// Attempt to get the instance for S, whose static type is the same as
// its exact dynamic type, returning a null SILValue() if we cannot find it.
// The information that a static type is the same as the exact dynamic,
// can be derived e.g.:
// - from a constructor or
// - from a successful outcome of a checked_cast_br [exact] instruction.
static SILValue getInstanceWithExactDynamicType(SILValue S, SILModule &M,
ClassHierarchyAnalysis *CHA) {
while (S) {
S = S.stripCasts();
if (isa<AllocRefInst>(S) || isa<MetatypeInst>(S))
return S;
auto *Arg = dyn_cast<SILArgument>(S);
if (!Arg)
break;
auto *SinglePred = Arg->getParent()->getSinglePredecessor();
if (!SinglePred) {
if (!Arg->isFunctionArg())
break;
auto *CD = Arg->getType().getClassOrBoundGenericClass();
// Check if this class is effectively final.
if (!CD || !isKnownFinalClass(CD, M, CHA))
break;
return Arg;
}
// Traverse the chain of predecessors.
if (isa<BranchInst>(SinglePred->getTerminator()) ||
isa<CondBranchInst>(SinglePred->getTerminator())) {
S = Arg->getIncomingValue(SinglePred);
continue;
}
// If it is a BB argument received on a success branch
// of a checked_cast_br, then we know its exact type.
auto *CCBI = dyn_cast<CheckedCastBranchInst>(SinglePred->getTerminator());
if (!CCBI)
break;
if (!CCBI->isExact() || CCBI->getSuccessBB() != Arg->getParent())
break;
return S;
}
return SILValue();
}
/// Return bound generic type for the unbound type Superclass,
/// which is a superclass of a bound generic type BoundDerived
/// (Base may be also the same as BoundDerived or may be
/// non-generic at all).
static CanType bindSuperclass(CanType Superclass,
SILType BoundDerived) {
assert(BoundDerived && "Expected non-null type!");
SILType BoundSuperclass = BoundDerived;
do {
// Get declaration of the superclass.
auto *Decl = BoundSuperclass.getNominalOrBoundGenericNominal();
// Obtain the unbound variant of the current superclass
CanType UnboundSuperclass = Decl->getDeclaredType()->getCanonicalType();
// Check if we found a superclass we are looking for.
if (UnboundSuperclass == Superclass)
return BoundSuperclass.getSwiftRValueType();
// Get the superclass of current one
BoundSuperclass = BoundSuperclass.getSuperclass(nullptr);
} while (BoundSuperclass);
llvm_unreachable("Expected to find a bound generic superclass!");
}
// Returns true if any generic types parameters of the class are
// unbound.
bool swift::isNominalTypeWithUnboundGenericParameters(SILType Ty, SILModule &M) {
auto *ND = Ty.getNominalOrBoundGenericNominal();
if (ND && ND->getGenericSignature()) {
auto InstanceTypeSubsts =
Ty.gatherAllSubstitutions(M);
if (!InstanceTypeSubsts.empty()) {
if (hasUnboundGenericTypes(InstanceTypeSubsts))
return true;
}
}
if (Ty.hasArchetype())
return true;
return false;
}
// Start with the substitutions from the apply.
// Try to propagate them to find out the real substitutions required
// to invoke the method.
static ArrayRef<Substitution>
getSubstitutionsForCallee(SILModule &M, CanSILFunctionType GenCalleeType,
SILType ClassInstanceType, FullApplySite AI) {
// *NOTE*:
// Apply instruction substitutions are for the Member from a protocol or
// class B, where this member was first defined, before it got overridden by
// derived classes.
//
// The implementation F (the implementing method) which was found may have
// a different set of generic parameters, e.g. because it is implemented by a
// class D1 derived from B.
//
// ClassInstanceType may have a type different from both the type B
// the Member belongs to and from the ClassInstanceType, e.g. if
// ClassInstance is of a class D2, which is derived from D1, but does not
// override the Member.
//
// As a result, substitutions provided by AI are for Member, whereas
// substitutions in ClassInstanceType are for D2. And substitutions for D1
// are not available directly in a general case. Therefore, they have to
// be computed.
//
// What we know for sure:
// B is a superclass of D1
// D1 is a superclass of D2.
// D1 can be the same as D2. D1 can be the same as B.
//
// So, substitutions from AI are for class B.
// Substitutions for class D1 by means of bindSuperclass(), which starts
// with a bound type ClassInstanceType and checks its superclasses until it
// finds a bound superclass matching D1 and returns its substitutions.
// Class F belongs to.
CanType FSelfClass = GenCalleeType->getSelfParameter().getType();
SILType FSelfSubstType;
auto *Module = M.getSwiftModule();
ArrayRef<Substitution> ClassSubs;
if (GenCalleeType->isPolymorphic()) {
// Declaration of the class F belongs to.
if (auto *FSelfTypeDecl = FSelfClass.getNominalOrBoundGenericNominal()) {
// Get the unbound generic type F belongs to.
CanType FSelfGenericType =
FSelfTypeDecl->getDeclaredType()->getCanonicalType();
assert((isa<BoundGenericType>(ClassInstanceType.getSwiftRValueType()) ||
isa<NominalType>(ClassInstanceType.getSwiftRValueType())) &&
"Self type should be either a bound generic type"
"or a non-generic type");
assert((isa<UnboundGenericType>(FSelfGenericType) ||
isa<NominalType>(FSelfGenericType)) &&
"Method implementation self type should be generic");
if (isa<BoundGenericType>(ClassInstanceType.getSwiftRValueType())) {
auto BoundBaseType = bindSuperclass(FSelfGenericType,
ClassInstanceType);
if (auto BoundTy = BoundBaseType->getAs<BoundGenericType>()) {
ClassSubs = BoundTy->getSubstitutions(Module, nullptr);
}
}
}
} else {
// If the callee is not polymorphic, no substitutions are required.
return {};
}
if (ClassSubs.empty())
return AI.getSubstitutions();
auto AISubs = AI.getSubstitutions();
CanSILFunctionType AIGenCalleeType =
AI.getCallee().getType().castTo<SILFunctionType>();
CanType AISelfClass = AIGenCalleeType->getSelfParameter().getType();
unsigned NextMethodParamIdx = 0;
unsigned NumMethodParams = 0;
if (AIGenCalleeType->isPolymorphic()) {
NextMethodParamIdx = 0;
// Generic parameters of the method start after generic parameters
// of the instance class.
if (auto AISelfClassSig =
AISelfClass.getClassBound()->getGenericSignature()) {
NextMethodParamIdx = AISelfClassSig->getGenericParams().size();
}
NumMethodParams = AISubs.size() - NextMethodParamIdx;
}
unsigned NumSubs = ClassSubs.size() + NumMethodParams;
if (ClassSubs.size() == NumSubs)
return ClassSubs;
// Mix class subs with method specific subs from the AI substitutions.
// Assumptions: AI substitutions contain first the substitutions for
// a class of the method being invoked and then the substitutions
// for a method being invoked.
auto Subs = M.getASTContext().Allocate<Substitution>(NumSubs);
unsigned i = 0;
for (auto &S : ClassSubs) {
Subs[i++] = S;
}
for (; i < NumSubs; ++i, ++NextMethodParamIdx) {
Subs[i] = AISubs[NextMethodParamIdx];
}
return Subs;
}
static SILFunction *getTargetClassMethod(SILModule &M,
SILType ClassOrMetatypeType,
SILDeclRef Member) {
if (ClassOrMetatypeType.is<MetatypeType>())
ClassOrMetatypeType = ClassOrMetatypeType.getMetatypeInstanceType(M);
auto *CD = ClassOrMetatypeType.getClassOrBoundGenericClass();
return M.lookUpFunctionInVTable(CD, Member);
}
/// \brief Check if it is possible to devirtualize an Apply instruction
/// and a class member obtained using the class_method instruction into
/// a direct call to a specific member of a specific class.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatypeType is the class type or metatype type we are
/// devirtualizing for.
/// return true if it is possible to devirtualize, false - otherwise.
bool swift::canDevirtualizeClassMethod(FullApplySite AI,
SILType ClassOrMetatypeType) {
DEBUG(llvm::dbgs() << " Trying to devirtualize : " << *AI.getInstruction());
SILModule &Mod = AI.getModule();
// First attempt to lookup the origin for our class method. The origin should
// either be a metatype or an alloc_ref.
DEBUG(llvm::dbgs() << " Origin Type: " << ClassOrMetatypeType);
auto *MI = cast<MethodInst>(AI.getCallee());
// Find the implementation of the member which should be invoked.
auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI->getMember());
// If we do not find any such function, we have no function to devirtualize
// to... so bail.
if (!F) {
DEBUG(llvm::dbgs() << " FAIL: Could not find matching VTable or "
"vtable method for this class.\n");
return false;
}
if (AI.getFunction()->isFragile()) {
// function_ref inside fragile function cannot reference a private or
// hidden symbol.
if (!(F->isFragile() || isValidLinkageForFragileRef(F->getLinkage()) ||
F->isExternalDeclaration()))
return false;
}
CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();
auto Subs = getSubstitutionsForCallee(Mod, GenCalleeType,
ClassOrMetatypeType, AI);
// For polymorphic functions, bail if the number of substitutions is
// not the same as the number of expected generic parameters.
if (GenCalleeType->isPolymorphic()) {
auto GenericSig = GenCalleeType->getGenericSignature();
// Get the number of expected generic parameters, which
// is a sum of the number of explicit generic parameters
// and the number of their recursive member types exposed
// through protocol requirements.
auto DepTypes = GenericSig->getAllDependentTypes();
unsigned ExpectedGenParamsNum = 0;
for (auto DT: DepTypes) {
(void)DT;
ExpectedGenParamsNum++;
}
if (ExpectedGenParamsNum != Subs.size())
return false;
}
// Check if the optimizer knows how to cast the return type.
CanSILFunctionType SubstCalleeType = GenCalleeType;
if (GenCalleeType->isPolymorphic())
SubstCalleeType =
GenCalleeType->substGenericArgs(Mod, Mod.getSwiftModule(), Subs);
// If we have a direct return type, make sure we use the subst callee return
// type. If we have an indirect return type, AI's return type of the empty
// tuple should be ok.
SILType ReturnType = AI.getType();
if (!SubstCalleeType->hasIndirectResult()) {
ReturnType = SubstCalleeType->getSILResult();
}
if (!canCastValueToABICompatibleType(Mod, ReturnType, AI.getType()))
return false;
return true;
}
/// \brief Devirtualize an apply of a class method.
///
/// \p AI is the apply to devirtualize.
/// \p ClassOrMetatype is a class value or metatype value that is the
/// self argument of the apply we will devirtualize.
/// return the result value of the new ApplyInst if created one or null.
DevirtualizationResult swift::devirtualizeClassMethod(FullApplySite AI,
SILValue ClassOrMetatype) {
DEBUG(llvm::dbgs() << " Trying to devirtualize : " << *AI.getInstruction());
SILModule &Mod = AI.getModule();
auto *MI = cast<MethodInst>(AI.getCallee());
auto ClassOrMetatypeType = ClassOrMetatype.getType();
auto *F = getTargetClassMethod(Mod, ClassOrMetatypeType, MI->getMember());
CanSILFunctionType GenCalleeType = F->getLoweredFunctionType();
auto Subs = getSubstitutionsForCallee(Mod, GenCalleeType,
ClassOrMetatypeType, AI);
CanSILFunctionType SubstCalleeType = GenCalleeType;
if (GenCalleeType->isPolymorphic())
SubstCalleeType = GenCalleeType->substGenericArgs(Mod, Mod.getSwiftModule(), Subs);
SILBuilderWithScope B(AI.getInstruction());
FunctionRefInst *FRI = B.createFunctionRef(AI.getLoc(), F);
// Create the argument list for the new apply, casting when needed
// in order to handle covariant indirect return types and
// contravariant argument types.
llvm::SmallVector<SILValue, 8> NewArgs;
auto Args = AI.getArguments();
auto ParamTypes = SubstCalleeType->getParameterSILTypes();
for (unsigned i = 0, e = Args.size() - 1; i != e; ++i)
NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(), Args[i],
Args[i].getType(),
ParamTypes[i]).getValue());
// Add the self argument, upcasting if required because we're
// calling a base class's method.
auto SelfParamTy = SubstCalleeType->getSelfParameter().getSILType();
NewArgs.push_back(castValueToABICompatibleType(&B, AI.getLoc(),
ClassOrMetatype,
ClassOrMetatypeType,
SelfParamTy).getValue());
// If we have a direct return type, make sure we use the subst callee return
// type. If we have an indirect return type, AI's return type of the empty
// tuple should be ok.
SILType ResultTy = AI.getType();
if (!SubstCalleeType->hasIndirectResult()) {
ResultTy = SubstCalleeType->getSILResult();
}
SILType SubstCalleeSILType =
SILType::getPrimitiveObjectType(SubstCalleeType);
FullApplySite NewAI;
SILBasicBlock *ResultBB = nullptr;
SILBasicBlock *NormalBB = nullptr;
SILValue ResultValue;
bool ResultCastRequired = false;
SmallVector<Operand *, 4> OriginalResultUses;
if (!isa<TryApplyInst>(AI)) {
NewAI = B.createApply(AI.getLoc(), FRI, SubstCalleeSILType, ResultTy,
Subs, NewArgs, cast<ApplyInst>(AI)->isNonThrowing());
ResultValue = SILValue(NewAI.getInstruction(), 0);
} else {
auto *TAI = cast<TryApplyInst>(AI);
// Create new normal and error BBs only if:
// - re-using a BB would create a critical edge
// - or, the result of the new apply would be of different
// type than the argument of the original normal BB.
if (TAI->getNormalBB()->getSinglePredecessor())
ResultBB = TAI->getNormalBB();
else {
ResultBB = B.getFunction().createBasicBlock();
ResultBB->createBBArg(ResultTy);
}
NormalBB = TAI->getNormalBB();
SILBasicBlock *ErrorBB = nullptr;
if (TAI->getErrorBB()->getSinglePredecessor())
ErrorBB = TAI->getErrorBB();
else {
ErrorBB = B.getFunction().createBasicBlock();
ErrorBB->createBBArg(TAI->getErrorBB()->getBBArg(0)->getType());
}
NewAI = B.createTryApply(AI.getLoc(), FRI, SubstCalleeSILType,
Subs, NewArgs,
ResultBB, ErrorBB);
if (ErrorBB != TAI->getErrorBB()) {
B.setInsertionPoint(ErrorBB);
B.createBranch(TAI->getLoc(), TAI->getErrorBB(),
{ErrorBB->getBBArg(0)});
}
// Does the result value need to be casted?
ResultCastRequired = ResultTy != NormalBB->getBBArg(0)->getType();
if (ResultBB != NormalBB)
B.setInsertionPoint(ResultBB);
else if (ResultCastRequired) {
B.setInsertionPoint(NormalBB->begin());
// Collect all uses, before casting.
for (auto *Use : NormalBB->getBBArg(0)->getUses()) {
OriginalResultUses.push_back(Use);
}
NormalBB->getBBArg(0)->replaceAllUsesWith(SILUndef::get(AI.getType(), Mod));
NormalBB->replaceBBArg(0, ResultTy, nullptr);
}
// The result value is passed as a parameter to the normal block.
ResultValue = ResultBB->getBBArg(0);
}
// Check if any casting is required for the return value.
ResultValue = castValueToABICompatibleType(&B, NewAI.getLoc(), ResultValue,
ResultTy, AI.getType()).getValue();
DEBUG(llvm::dbgs() << " SUCCESS: " << F->getName() << "\n");
NumClassDevirt++;
if (NormalBB) {
if (NormalBB != ResultBB) {
// If artificial normal BB was introduced, branch
// to the original normal BB.
B.createBranch(NewAI.getLoc(), NormalBB, { ResultValue });
} else if (ResultCastRequired) {
// Update all original uses by the new value.
for(auto *Use: OriginalResultUses) {
Use->set(ResultValue);
}
}
return std::make_pair(NewAI.getInstruction(), NewAI);
}
// We need to return a pair of values here:
// - the first one is the actual result of the devirtualized call, possibly
// casted into an appropriate type. This SILValue may be a BB arg, if it
// was a cast between optional types.
// - the second one is the new apply site.
return std::make_pair(ResultValue.getDef(), NewAI);
}
DevirtualizationResult swift::tryDevirtualizeClassMethod(FullApplySite AI,
SILValue ClassInstance) {
if (!canDevirtualizeClassMethod(AI, ClassInstance.getType()))
return std::make_pair(nullptr, FullApplySite());
return devirtualizeClassMethod(AI, ClassInstance);
}
//===----------------------------------------------------------------------===//
// Witness Method Optimization
//===----------------------------------------------------------------------===//
/// Generate a new apply of a function_ref to replace an apply of a
/// witness_method when we've determined the actual function we'll end
/// up calling.
static ApplySite devirtualizeWitnessMethod(ApplySite AI, SILFunction *F,
ArrayRef<Substitution> Subs) {
// We know the witness thunk and the corresponding set of substitutions
// required to invoke the protocol method at this point.
auto &Module = AI.getModule();
// Collect all the required substitutions.
//
// The complete set of substitutions may be different, e.g. because the found
// witness thunk F may have been created by a specialization pass and have
// additional generic parameters.
SmallVector<Substitution, 16> NewSubstList(Subs.begin(), Subs.end());
// Add the non-self-derived substitutions from the original application.
ArrayRef<Substitution> SubstList;
SubstList = AI.getSubstitutionsWithoutSelfSubstitution();
for (auto &origSub : SubstList)
if (!origSub.getArchetype()->isSelfDerived())
NewSubstList.push_back(origSub);
// Figure out the exact bound type of the function to be called by
// applying all substitutions.
auto CalleeCanType = F->getLoweredFunctionType();
auto SubstCalleeCanType = CalleeCanType->substGenericArgs(
Module, Module.getSwiftModule(), NewSubstList);
// Collect arguments from the apply instruction.
auto Arguments = SmallVector<SILValue, 4>();
auto ParamTypes = SubstCalleeCanType->getParameterSILTypes();
// Iterate over the non self arguments and add them to the
// new argument list, upcasting when required.
SILBuilderWithScope B(AI.getInstruction());
for (unsigned ArgN = 0, ArgE = AI.getNumArguments(); ArgN != ArgE; ++ArgN) {
SILValue A = AI.getArgument(ArgN);
auto ParamType = ParamTypes[ParamTypes.size() - AI.getNumArguments() + ArgN];
if (A.getType() != ParamType)
A = B.createUpcast(AI.getLoc(), A, ParamType);
Arguments.push_back(A);
}
// Replace old apply instruction by a new apply instruction that invokes
// the witness thunk.
SILBuilderWithScope Builder(AI.getInstruction());
SILLocation Loc = AI.getLoc();
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, F);
auto SubstCalleeSILType = SILType::getPrimitiveObjectType(SubstCalleeCanType);
auto ResultSILType = SubstCalleeCanType->getSILResult();
ApplySite SAI;
if (auto *A = dyn_cast<ApplyInst>(AI))
SAI = Builder.createApply(Loc, FRI, SubstCalleeSILType,
ResultSILType, NewSubstList, Arguments,
A->isNonThrowing());
if (auto *TAI = dyn_cast<TryApplyInst>(AI))
SAI = Builder.createTryApply(Loc, FRI, SubstCalleeSILType,
NewSubstList, Arguments,
TAI->getNormalBB(), TAI->getErrorBB());
if (auto *PAI = dyn_cast<PartialApplyInst>(AI))
SAI = Builder.createPartialApply(Loc, FRI, SubstCalleeSILType,
NewSubstList, Arguments, PAI->getType());
NumWitnessDevirt++;
return SAI;
}
/// In the cases where we can statically determine the function that
/// we'll call to, replace an apply of a witness_method with an apply
/// of a function_ref, returning the new apply.
DevirtualizationResult swift::tryDevirtualizeWitnessMethod(ApplySite AI) {
SILFunction *F;
ArrayRef<Substitution> Subs;
SILWitnessTable *WT;
auto *WMI = cast<WitnessMethodInst>(AI.getCallee());
std::tie(F, WT, Subs) =
AI.getModule().lookUpFunctionInWitnessTable(WMI->getConformance(),
WMI->getMember());
if (!F)
return std::make_pair(nullptr, FullApplySite());
auto Result = devirtualizeWitnessMethod(AI, F, Subs);
return std::make_pair(Result.getInstruction(), Result);
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
/// Attempt to devirtualize the given apply if possible, and return a
/// new instruction in that case, or nullptr otherwise.
DevirtualizationResult
swift::tryDevirtualizeApply(FullApplySite AI, ClassHierarchyAnalysis *CHA) {
DEBUG(llvm::dbgs() << " Trying to devirtualize: " << *AI.getInstruction());
// Devirtualize apply instructions that call witness_method instructions:
//
// %8 = witness_method $Optional<UInt16>, #LogicValue.boolValue!getter.1
// %9 = apply %8<Self = CodeUnit?>(%6#1) : ...
//
if (isa<WitnessMethodInst>(AI.getCallee()))
return tryDevirtualizeWitnessMethod(AI);
/// Optimize a class_method and alloc_ref pair into a direct function
/// reference:
///
/// \code
/// %XX = alloc_ref $Foo
/// %YY = class_method %XX : $Foo, #Foo.get!1 : $@convention(method)...
/// \endcode
///
/// or
///
/// %XX = metatype $...
/// %YY = class_method %XX : ...
///
/// into
///
/// %YY = function_ref @...
if (auto *CMI = dyn_cast<ClassMethodInst>(AI.getCallee())) {
auto &M = AI.getModule();
auto Instance = CMI->getOperand().stripUpCasts();
auto ClassType = Instance.getType();
if (ClassType.is<MetatypeType>())
ClassType = ClassType.getMetatypeInstanceType(M);
auto *CD = ClassType.getClassOrBoundGenericClass();
if (isEffectivelyFinalMethod(AI, ClassType, CD, CHA))
return tryDevirtualizeClassMethod(AI, Instance);
// Try to check if the exact dynamic type of the instance is statically
// known.
if (auto Instance = getInstanceWithExactDynamicType(CMI->getOperand(),
CMI->getModule(),
CHA))
return tryDevirtualizeClassMethod(AI, Instance);
}
if (isa<SuperMethodInst>(AI.getCallee())) {
if (AI.hasSelfArgument()) {
return tryDevirtualizeClassMethod(AI, AI.getSelfArgument());
}
// It is an invocation of a class method.
// Last operand is the metatype that should be used for dispatching.
return tryDevirtualizeClassMethod(AI, AI.getArguments().back());
}
return std::make_pair(nullptr, FullApplySite());
}