blob: 45afe7901507659fd570d47c9a506af11aea7316 [file] [log] [blame]
//===--- SILDeclRef.cpp - Implements SILDeclRef ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILLocation.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Mangle.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/SILLinkage.h"
#include "llvm/Support/raw_ostream.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
using namespace swift;
/// Get the method dispatch mechanism for a method.
MethodDispatch
swift::getMethodDispatch(AbstractFunctionDecl *method) {
// Final methods can be statically referenced.
if (method->isFinal())
return MethodDispatch::Static;
// Some methods are forced to be statically dispatched.
if (method->hasForcedStaticDispatch())
return MethodDispatch::Static;
// If this declaration is in a class but not marked final, then it is
// always dynamically dispatched.
auto dc = method->getDeclContext();
if (isa<ClassDecl>(dc))
return MethodDispatch::Class;
// Class extension methods are only dynamically dispatched if they're
// dispatched by objc_msgSend, which happens if they're foreign or dynamic.
if (dc->isClassOrClassExtensionContext()) {
if (method->hasClangNode())
return MethodDispatch::Class;
if (auto fd = dyn_cast<FuncDecl>(method)) {
if (fd->isAccessor() && fd->getAccessorStorageDecl()->hasClangNode())
return MethodDispatch::Class;
}
if (method->getAttrs().hasAttribute<DynamicAttr>())
return MethodDispatch::Class;
}
// Otherwise, it can be referenced statically.
return MethodDispatch::Static;
}
bool swift::requiresForeignToNativeThunk(ValueDecl *vd) {
// Functions imported from C, Objective-C methods imported from Objective-C,
// as well as methods in @objc protocols (even protocols defined in Swift)
// require a foreign to native thunk.
auto dc = vd->getDeclContext();
if (auto proto = dyn_cast<ProtocolDecl>(dc))
if (proto->isObjC())
return true;
if (auto fd = dyn_cast<FuncDecl>(vd))
return fd->hasClangNode();
return false;
}
/// FIXME: merge requiresObjCDispatch() into getMethodDispatch() and add
/// an ObjectiveC case to the MethodDispatch enum.
bool swift::requiresObjCDispatch(ValueDecl *vd) {
// Final functions never require ObjC dispatch.
if (vd->isFinal())
return false;
if (requiresForeignToNativeThunk(vd))
return true;
if (auto *fd = dyn_cast<FuncDecl>(vd)) {
// Property accessors should be generated alongside the property.
if (fd->isGetterOrSetter())
return requiresObjCDispatch(fd->getAccessorStorageDecl());
return fd->getAttrs().hasAttribute<DynamicAttr>();
}
if (auto *cd = dyn_cast<ConstructorDecl>(vd)) {
if (cd->hasClangNode())
return true;
return cd->getAttrs().hasAttribute<DynamicAttr>();
}
if (auto *asd = dyn_cast<AbstractStorageDecl>(vd))
return asd->requiresObjCGetterAndSetter();
return vd->getAttrs().hasAttribute<DynamicAttr>();
}
static unsigned getFuncNaturalUncurryLevel(AnyFunctionRef AFR) {
assert(AFR.getBodyParamPatterns().size() >= 1 && "no arguments for func?!");
unsigned Level = AFR.getBodyParamPatterns().size() - 1;
// Functions with captures have an extra uncurry level for the capture
// context.
if (AFR.getCaptureInfo().hasLocalCaptures())
Level += 1;
return Level;
}
SILDeclRef::SILDeclRef(ValueDecl *vd, SILDeclRef::Kind kind,
ResilienceExpansion expansion,
unsigned atUncurryLevel, bool isForeign)
: loc(vd), kind(kind), Expansion(unsigned(expansion)),
isForeign(isForeign), isDirectReference(0), defaultArgIndex(0)
{
unsigned naturalUncurryLevel;
// FIXME: restructure to use a "switch".
if (auto *func = dyn_cast<FuncDecl>(vd)) {
assert(kind == Kind::Func &&
"can only create a Func SILDeclRef for a func decl");
naturalUncurryLevel = getFuncNaturalUncurryLevel(func);
} else if (isa<ConstructorDecl>(vd)) {
assert((kind == Kind::Allocator || kind == Kind::Initializer)
&& "can only create Allocator or Initializer SILDeclRef for ctor");
naturalUncurryLevel = 1;
} else if (auto *ed = dyn_cast<EnumElementDecl>(vd)) {
assert(kind == Kind::EnumElement
&& "can only create EnumElement SILDeclRef for enum element");
naturalUncurryLevel = ed->hasArgumentType() ? 1 : 0;
} else if (isa<DestructorDecl>(vd)) {
assert((kind == Kind::Destroyer || kind == Kind::Deallocator)
&& "can only create destroyer/deallocator SILDeclRef for dtor");
naturalUncurryLevel = 0;
} else if (isa<ClassDecl>(vd)) {
assert((kind == Kind::IVarInitializer || kind == Kind::IVarDestroyer) &&
"can only create ivar initializer/destroyer SILDeclRef for class");
naturalUncurryLevel = 1;
} else if (auto *var = dyn_cast<VarDecl>(vd)) {
assert((kind == Kind::GlobalAccessor || kind == Kind::GlobalGetter) &&
"can only create GlobalAccessor or GlobalGetter SILDeclRef for var");
naturalUncurryLevel = 0;
assert(!var->getDeclContext()->isLocalContext() &&
"can't reference local var as global var");
assert(var->hasStorage() && "can't reference computed var as global var");
(void)var;
} else {
llvm_unreachable("Unhandled ValueDecl for SILDeclRef");
}
assert((atUncurryLevel == ConstructAtNaturalUncurryLevel
|| atUncurryLevel <= naturalUncurryLevel)
&& "can't emit SILDeclRef below natural uncurry level");
uncurryLevel = atUncurryLevel == ConstructAtNaturalUncurryLevel
? naturalUncurryLevel
: atUncurryLevel;
isCurried = uncurryLevel != naturalUncurryLevel;
}
SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc,
ResilienceExpansion expansion,
unsigned atUncurryLevel, bool asForeign)
: isDirectReference(0), defaultArgIndex(0)
{
unsigned naturalUncurryLevel;
if (ValueDecl *vd = baseLoc.dyn_cast<ValueDecl*>()) {
if (FuncDecl *fd = dyn_cast<FuncDecl>(vd)) {
// Map FuncDecls directly to Func SILDeclRefs.
loc = fd;
kind = Kind::Func;
naturalUncurryLevel = getFuncNaturalUncurryLevel(fd);
}
// Map ConstructorDecls to the Allocator SILDeclRef of the constructor.
else if (ConstructorDecl *cd = dyn_cast<ConstructorDecl>(vd)) {
loc = cd;
kind = Kind::Allocator;
naturalUncurryLevel = 1;
// FIXME: Should we require the caller to think about this?
asForeign = false;
}
// Map EnumElementDecls to the EnumElement SILDeclRef of the element.
else if (EnumElementDecl *ed = dyn_cast<EnumElementDecl>(vd)) {
loc = ed;
kind = Kind::EnumElement;
naturalUncurryLevel = ed->hasArgumentType() ? 1 : 0;
}
// VarDecl constants require an explicit kind.
else if (isa<VarDecl>(vd)) {
llvm_unreachable("must create SILDeclRef for VarDecl with explicit kind");
}
// Map DestructorDecls to the Deallocator of the destructor.
else if (auto dtor = dyn_cast<DestructorDecl>(vd)) {
loc = dtor;
kind = Kind::Deallocator;
naturalUncurryLevel = 0;
}
else {
llvm_unreachable("invalid loc decl for SILDeclRef!");
}
} else if (auto *ACE = baseLoc.dyn_cast<AbstractClosureExpr *>()) {
loc = ACE;
kind = Kind::Func;
assert(ACE->getParamPatterns().size() >= 1 &&
"no param patterns for function?!");
naturalUncurryLevel = getFuncNaturalUncurryLevel(ACE);
} else {
llvm_unreachable("impossible SILDeclRef loc");
}
// Set the uncurry level.
assert((atUncurryLevel == ConstructAtNaturalUncurryLevel
|| atUncurryLevel <= naturalUncurryLevel)
&& "can't emit SILDeclRef below natural uncurry level");
uncurryLevel = atUncurryLevel == ConstructAtNaturalUncurryLevel
? naturalUncurryLevel
: atUncurryLevel;
Expansion = (unsigned) expansion;
isCurried = uncurryLevel != naturalUncurryLevel;
isForeign = asForeign;
}
Optional<AnyFunctionRef> SILDeclRef::getAnyFunctionRef() const {
if (auto vd = loc.dyn_cast<ValueDecl*>()) {
if (auto afd = dyn_cast<AbstractFunctionDecl>(vd)) {
return AnyFunctionRef(afd);
} else {
return None;
}
}
return AnyFunctionRef(loc.get<AbstractClosureExpr*>());
}
static SILLinkage getLinkageForLocalContext(DeclContext *dc) {
auto isClangImported = [](AbstractFunctionDecl *fn) -> bool {
if (fn->hasClangNode())
return true;
if (auto func = dyn_cast<FuncDecl>(fn))
if (auto storage = func->getAccessorStorageDecl())
return storage->hasClangNode();
return false;
};
while (!dc->isModuleScopeContext()) {
// Local definitions in transparent contexts are forced public because
// external references to them can be exposed by mandatory inlining.
// For Clang-imported decls, though, the closure should get re-synthesized
// on use.
if (auto fn = dyn_cast<AbstractFunctionDecl>(dc))
if (fn->isTransparent() && !isClangImported(fn))
return SILLinkage::Public;
// Check that this local context is not itself in a local transparent
// context.
dc = dc->getParent();
}
// FIXME: Once we have access control at the AST level, we should not assume
// shared always, but rather base it off of the local decl context.
return SILLinkage::Shared;
}
bool SILDeclRef::isThunk() const {
return isCurried || isForeignToNativeThunk() || isNativeToForeignThunk();
}
bool SILDeclRef::isClangImported() const {
if (!hasDecl())
return false;
ValueDecl *d = getDecl();
DeclContext *moduleContext = d->getDeclContext()->getModuleScopeContext();
if (isa<ClangModuleUnit>(moduleContext)) {
if (isClangGenerated())
return true;
if (isa<ConstructorDecl>(d) || isa<EnumElementDecl>(d))
return true;
if (auto *FD = dyn_cast<FuncDecl>(d))
if (FD->isAccessor() ||
isa<NominalTypeDecl>(d->getDeclContext()))
return true;
}
return false;
}
bool SILDeclRef::isClangGenerated() const {
if (!hasDecl())
return false;
auto clangNode = getDecl()->getClangNode().getAsDecl();
if (auto nd = dyn_cast_or_null<clang::NamedDecl>(clangNode)) {
if (!nd->isExternallyVisible())
return true;
}
return false;
}
SILLinkage SILDeclRef::getLinkage(ForDefinition_t forDefinition) const {
// Anonymous functions have local linkage.
if (auto closure = getAbstractClosureExpr())
return getLinkageForLocalContext(closure->getParent());
// Native function-local declarations have local linkage.
// FIXME: @objc declarations should be too, but we currently have no way
// of marking them "used" other than making them external.
ValueDecl *d = getDecl();
DeclContext *moduleContext = d->getDeclContext();
while (!moduleContext->isModuleScopeContext()) {
if (!isForeign && moduleContext->isLocalContext())
return getLinkageForLocalContext(moduleContext);
moduleContext = moduleContext->getParent();
}
// Currying and calling convention thunks have shared linkage.
if (isThunk())
return SILLinkage::Shared;
// Enum constructors are essentially the same as thunks, they are
// emitted by need and have shared linkage.
if (kind == Kind::EnumElement)
return SILLinkage::Shared;
// Declarations imported from Clang modules have shared linkage.
// FIXME: They shouldn't.
const SILLinkage ClangLinkage = SILLinkage::Shared;
if (isClangImported())
return ClangLinkage;
// Declarations that were derived on behalf of types in Clang modules get
// shared linkage.
if (auto *FD = dyn_cast<FuncDecl>(d)) {
if (auto derivedFor = FD->getDerivedForTypeDecl())
if (isa<ClangModuleUnit>(derivedFor->getModuleScopeContext()))
return ClangLinkage;
}
// Otherwise, we have external linkage.
switch (d->getEffectiveAccess()) {
case Accessibility::Private:
return (forDefinition ? SILLinkage::Private : SILLinkage::PrivateExternal);
case Accessibility::Internal:
return (forDefinition ? SILLinkage::Hidden : SILLinkage::HiddenExternal);
default:
return (forDefinition ? SILLinkage::Public : SILLinkage::PublicExternal);
}
}
SILDeclRef SILDeclRef::getDefaultArgGenerator(Loc loc,
unsigned defaultArgIndex) {
SILDeclRef result;
result.loc = loc;
result.kind = Kind::DefaultArgGenerator;
result.defaultArgIndex = defaultArgIndex;
return result;
}
/// \brief True if the function should be treated as transparent.
bool SILDeclRef::isTransparent() const {
if (isEnumElement())
return true;
if (hasAutoClosureExpr())
return true;
return hasDecl() ? getDecl()->isTransparent() : false;
}
/// \brief True if the function has noinline attribute.
bool SILDeclRef::isNoinline() const {
if (!hasDecl())
return false;
if (auto InlineA = getDecl()->getAttrs().getAttribute<InlineAttr>())
if (InlineA->getKind() == InlineKind::Never)
return true;
return false;
}
/// \brief True if the function has noinline attribute.
bool SILDeclRef::isAlwaysInline() const {
if (!hasDecl())
return false;
if (auto InlineA = getDecl()->getAttrs().getAttribute<InlineAttr>())
if (InlineA->getKind() == InlineKind::Always)
return true;
return false;
}
bool SILDeclRef::hasEffectsAttribute() const {
if (!hasDecl())
return false;
return getDecl()->getAttrs().hasAttribute<EffectsAttr>();
}
EffectsKind SILDeclRef::getEffectsAttribute() const {
assert(hasEffectsAttribute());
EffectsAttr *MA = getDecl()->getAttrs().getAttribute<EffectsAttr>();
return MA->getKind();
}
bool SILDeclRef::isForeignToNativeThunk() const {
// Non-decl entry points are never natively foreign, so they would never
// have a foreign-to-native thunk.
if (!hasDecl())
return false;
if (requiresForeignToNativeThunk(getDecl()))
return !isForeign;
// ObjC initializing constructors and factories are foreign.
// We emit a special native allocating constructor though.
if (isa<ConstructorDecl>(getDecl())
&& (kind == Kind::Initializer
|| cast<ConstructorDecl>(getDecl())->isFactoryInit())
&& getDecl()->hasClangNode())
return !isForeign;
return false;
}
bool SILDeclRef::isNativeToForeignThunk() const {
// We can have native-to-foreign thunks over closures.
if (!hasDecl())
return isForeign;
// We can have native-to-foreign thunks over global or local native functions.
// TODO: Static functions too.
if (auto func = dyn_cast<FuncDecl>(getDecl())) {
if (!func->getDeclContext()->isTypeContext()
&& !func->hasClangNode())
return isForeign;
}
return false;
}
/// Use the Clang importer to mangle a Clang declaration.
static void mangleClangDecl(raw_ostream &buffer,
const clang::NamedDecl *clangDecl,
ASTContext &ctx) {
auto *importer = static_cast<ClangImporter *>(ctx.getClangModuleLoader());
importer->getMangledName(buffer, clangDecl);
}
static void mangleConstant(SILDeclRef c, llvm::raw_ostream &buffer,
StringRef prefix) {
using namespace Mangle;
Mangler mangler(buffer);
// Almost everything below gets one of the common prefixes:
// mangled-name ::= '_T' global // Native symbol
// mangled-name ::= '_TTo' global // ObjC interop thunk
// mangled-name ::= '_TTO' global // Foreign function thunk
// mangled-name ::= '_TTd' global // Direct
StringRef introducer = "_T";
if (!prefix.empty()) {
introducer = prefix;
} else if (c.isForeign) {
assert(prefix.empty() && "can't have custom prefix on thunk");
introducer = "_TTo";
} else if (c.isDirectReference) {
introducer = "_TTd";
} else if (c.isForeignToNativeThunk()) {
assert(prefix.empty() && "can't have custom prefix on thunk");
introducer = "_TTO";
}
switch (c.kind) {
// entity ::= declaration // other declaration
case SILDeclRef::Kind::Func:
if (!c.hasDecl()) {
buffer << introducer;
mangler.mangleClosureEntity(c.getAbstractClosureExpr(),
c.getResilienceExpansion(),
c.uncurryLevel);
return;
}
// As a special case, functions can have external asm names.
// Use the asm name only for the original non-thunked, non-curried entry
// point.
if (auto AsmA = c.getDecl()->getAttrs().getAttribute<SILGenNameAttr>())
if (!c.isForeignToNativeThunk() && !c.isNativeToForeignThunk()
&& !c.isCurried) {
buffer << AsmA->Name;
return;
}
// Otherwise, fall through into the 'other decl' case.
SWIFT_FALLTHROUGH;
case SILDeclRef::Kind::EnumElement:
// As a special case, Clang functions and globals don't get mangled at all.
if (auto clangDecl = c.getDecl()->getClangDecl()) {
if (!c.isForeignToNativeThunk() && !c.isNativeToForeignThunk()
&& !c.isCurried) {
if (auto namedClangDecl = dyn_cast<clang::DeclaratorDecl>(clangDecl)) {
if (auto asmLabel = namedClangDecl->getAttr<clang::AsmLabelAttr>()) {
buffer << '\01' << asmLabel->getLabel();
} else if (namedClangDecl->hasAttr<clang::OverloadableAttr>()) {
// FIXME: When we can import C++, use Clang's mangler all the time.
mangleClangDecl(buffer, namedClangDecl,
c.getDecl()->getASTContext());
} else {
buffer << namedClangDecl->getName();
}
return;
}
}
}
buffer << introducer;
mangler.mangleEntity(c.getDecl(), c.getResilienceExpansion(), c.uncurryLevel);
return;
// entity ::= context 'D' // deallocating destructor
case SILDeclRef::Kind::Deallocator:
buffer << introducer;
mangler.mangleDestructorEntity(cast<DestructorDecl>(c.getDecl()),
/*isDeallocating*/ true);
return;
// entity ::= context 'd' // destroying destructor
case SILDeclRef::Kind::Destroyer:
buffer << introducer;
mangler.mangleDestructorEntity(cast<DestructorDecl>(c.getDecl()),
/*isDeallocating*/ false);
return;
// entity ::= context 'C' type // allocating constructor
case SILDeclRef::Kind::Allocator:
buffer << introducer;
mangler.mangleConstructorEntity(cast<ConstructorDecl>(c.getDecl()),
/*allocating*/ true,
c.getResilienceExpansion(),
c.uncurryLevel);
return;
// entity ::= context 'c' type // initializing constructor
case SILDeclRef::Kind::Initializer:
buffer << introducer;
mangler.mangleConstructorEntity(cast<ConstructorDecl>(c.getDecl()),
/*allocating*/ false,
c.getResilienceExpansion(),
c.uncurryLevel);
return;
// entity ::= declaration 'e' // ivar initializer
// entity ::= declaration 'E' // ivar destroyer
case SILDeclRef::Kind::IVarInitializer:
case SILDeclRef::Kind::IVarDestroyer:
buffer << introducer;
mangler.mangleIVarInitDestroyEntity(
cast<ClassDecl>(c.getDecl()),
c.kind == SILDeclRef::Kind::IVarDestroyer);
return;
// entity ::= declaration 'a' // addressor
case SILDeclRef::Kind::GlobalAccessor:
buffer << introducer;
mangler.mangleAddressorEntity(c.getDecl());
return;
// entity ::= declaration 'G' // getter
case SILDeclRef::Kind::GlobalGetter:
buffer << introducer;
mangler.mangleGlobalGetterEntity(c.getDecl());
return;
// entity ::= context 'e' index // default arg generator
case SILDeclRef::Kind::DefaultArgGenerator:
buffer << introducer;
mangler.mangleDefaultArgumentEntity(cast<AbstractFunctionDecl>(c.getDecl()),
c.defaultArgIndex);
return;
}
llvm_unreachable("bad entity kind!");
}
StringRef SILDeclRef::mangle(SmallVectorImpl<char> &buffer,
StringRef prefix) const {
assert(buffer.empty());
llvm::raw_svector_ostream stream(buffer);
mangleConstant(*this, stream, prefix);
return stream.str();
}
SILDeclRef SILDeclRef::getNextOverriddenVTableEntry() const {
if (auto overridden = getOverridden()) {
// If we overrode a foreign decl, a dynamic method, this is an
// accessor for a property that overrides an ObjC decl, or if it is an
// @NSManaged property, then it won't be in the vtable.
if (overridden.getDecl()->hasClangNode())
return SILDeclRef();
if (overridden.getDecl()->getAttrs().hasAttribute<DynamicAttr>())
return SILDeclRef();
if (auto *ovFD = dyn_cast<FuncDecl>(overridden.getDecl()))
if (auto *asd = ovFD->getAccessorStorageDecl()) {
if (asd->hasClangNode())
return SILDeclRef();
}
// If we overrode a decl from an extension, it won't be in a vtable
// either. This can occur for extensions to ObjC classes.
if (isa<ExtensionDecl>(overridden.getDecl()->getDeclContext()))
return SILDeclRef();
// If we overrode a non-required initializer, there won't be a vtable
// slot for the allocator.
if (overridden.kind == SILDeclRef::Kind::Allocator &&
!cast<ConstructorDecl>(overridden.getDecl())->isRequired()) {
return SILDeclRef();
}
return overridden;
}
return SILDeclRef();
}
SILDeclRef SILDeclRef::getBaseOverriddenVTableEntry() const {
// 'method' is the most final method in the hierarchy which we
// haven't yet found a compatible override for. 'cur' is the method
// we're currently looking at. Compatibility is transitive,
// so we can forget our original method and just keep going up.
SILDeclRef method = *this;
SILDeclRef cur = method;
while ((cur = cur.getNextOverriddenVTableEntry())) {
method = cur;
}
return method;
}
SILLocation SILDeclRef::getAsRegularLocation() const {
if (hasDecl())
return RegularLocation(getDecl());
return RegularLocation(getAbstractClosureExpr());
}