blob: c1d566e1549f48c89120800c9fb7e59de90b034e [file] [log] [blame]
//===--- SILGenProlog.cpp - Function prologue emission --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGenFunction.h"
#include "Initialization.h"
#include "ManagedValue.h"
#include "Scope.h"
#include "swift/SIL/SILArgument.h"
#include "swift/Basic/Fallthrough.h"
using namespace swift;
using namespace Lowering;
SILValue SILGenFunction::emitSelfDecl(VarDecl *selfDecl) {
// Emit the implicit 'self' argument.
SILType selfType = getLoweredLoadableType(selfDecl->getType());
SILValue selfValue = new (SGM.M) SILArgument(F.begin(), selfType, selfDecl);
VarLocs[selfDecl] = VarLoc::get(selfValue);
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
B.createDebugValue(PrologueLoc, selfValue);
return selfValue;
}
namespace {
/// Cleanup that writes back to a inout argument on function exit.
class CleanupWriteBackToInOut : public Cleanup {
VarDecl *var;
SILValue inoutAddr;
public:
CleanupWriteBackToInOut(VarDecl *var, SILValue inoutAddr)
: var(var), inoutAddr(inoutAddr) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
// Assign from the local variable to the inout address with an
// 'autogenerated' copyaddr.
l.markAutoGenerated();
gen.B.createCopyAddr(l, gen.VarLocs[var].value, inoutAddr,
IsNotTake, IsNotInitialization);
}
};
class StrongReleaseCleanup : public Cleanup {
SILValue box;
public:
StrongReleaseCleanup(SILValue box) : box(box) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.emitStrongReleaseAndFold(l, box);
}
};
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
/*RetTy*/ ManagedValue>
{
public:
SILGenFunction &gen;
SILBasicBlock *parent;
SILLocation loc;
bool functionArgs;
ArrayRef<SILParameterInfo> &parameters;
EmitBBArguments(SILGenFunction &gen, SILBasicBlock *parent,
SILLocation l, bool functionArgs,
ArrayRef<SILParameterInfo> &parameters)
: gen(gen), parent(parent), loc(l), functionArgs(functionArgs),
parameters(parameters) {}
ManagedValue getManagedValue(SILValue arg, CanType t,
SILParameterInfo parameterInfo) const {
switch (parameterInfo.getConvention()) {
case ParameterConvention::Direct_Deallocating:
// If we have a deallocating parameter, it is passed in at +0 and will not
// be deallocated since we do not allow for resurrection.
return ManagedValue::forUnmanaged(arg);
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Indirect_In_Guaranteed:
// If we have a guaranteed parameter, it is passed in at +0, and its
// lifetime is guaranteed. We can potentially use the argument as-is
// if the parameter is bound as a 'let' without cleaning up.
return ManagedValue::forUnmanaged(arg);
case ParameterConvention::Direct_Unowned:
// An unowned parameter is passed at +0, like guaranteed, but it isn't
// kept alive by the caller, so we need to retain and manage it
// regardless.
return std::move(gen.emitManagedRetain(loc, arg));
case ParameterConvention::Indirect_Inout:
// An inout parameter is +0 and guaranteed, but represents an lvalue.
return ManagedValue::forLValue(arg);
case ParameterConvention::Direct_Owned:
case ParameterConvention::Indirect_In:
// An owned or 'in' parameter is passed in at +1. We can claim ownership
// of the parameter and clean it up when it goes out of scope.
return gen.emitManagedRValueWithCleanup(arg);
case ParameterConvention::Indirect_Out:
llvm_unreachable("should not emit @out parameters here");
}
}
ManagedValue visitType(CanType t) {
auto argType = gen.getLoweredType(t);
// Pop the next parameter info.
auto parameterInfo = parameters.front();
parameters = parameters.slice(1);
assert(argType == parent->getParent()
->mapTypeIntoContext(parameterInfo.getSILType()) &&
"argument does not have same type as specified by parameter info");
SILValue arg = new (gen.SGM.M)
SILArgument(parent, argType, loc.getAsASTNode<ValueDecl>());
ManagedValue mv = getManagedValue(arg, t, parameterInfo);
// If the value is a (possibly optional) ObjC block passed into the entry
// point of the function, then copy it so we can treat the value reliably
// as a heap object. Escape analysis can eliminate this copy if it's
// unneeded during optimization.
CanType objectType = t;
if (auto theObjTy = t.getAnyOptionalObjectType())
objectType = theObjTy;
if (functionArgs
&& isa<FunctionType>(objectType)
&& cast<FunctionType>(objectType)->getRepresentation()
== FunctionType::Representation::Block) {
SILValue blockCopy = gen.B.createCopyBlock(loc, mv.getValue());
mv = gen.emitManagedRValueWithCleanup(blockCopy);
}
return mv;
}
ManagedValue visitTupleType(CanTupleType t) {
SmallVector<ManagedValue, 4> elements;
auto &tl = gen.getTypeLowering(t);
bool canBeGuaranteed = tl.isLoadable();
// Collect the exploded elements.
for (auto fieldType : t.getElementTypes()) {
auto elt = visit(fieldType);
// If we can't borrow one of the elements as a guaranteed parameter, then
// we have to +1 the tuple.
if (elt.hasCleanup())
canBeGuaranteed = false;
elements.push_back(elt);
}
if (tl.isLoadable()) {
SmallVector<SILValue, 4> elementValues;
if (canBeGuaranteed) {
// If all of the elements were guaranteed, we can form a guaranteed tuple.
for (auto element : elements)
elementValues.push_back(element.getUnmanagedValue());
} else {
// Otherwise, we need to move or copy values into a +1 tuple.
for (auto element : elements) {
SILValue value = element.hasCleanup()
? element.forward(gen)
: element.copyUnmanaged(gen, loc).forward(gen);
elementValues.push_back(value);
}
}
auto tupleValue = gen.B.createTuple(loc, tl.getLoweredType(),
elementValues);
return canBeGuaranteed
? ManagedValue::forUnmanaged(tupleValue)
: gen.emitManagedRValueWithCleanup(tupleValue);
} else {
// If the type is address-only, we need to move or copy the elements into
// a tuple in memory.
// TODO: It would be a bit more efficient to use a preallocated buffer
// in this case.
auto buffer = gen.emitTemporaryAllocation(loc, tl.getLoweredType());
for (auto i : indices(elements)) {
auto element = elements[i];
auto elementBuffer = gen.B.createTupleElementAddr(loc, buffer,
i, element.getType().getAddressType());
if (element.hasCleanup())
element.forwardInto(gen, loc, elementBuffer);
else
element.copyInto(gen, elementBuffer, loc);
}
return gen.emitManagedRValueWithCleanup(buffer);
}
}
};
/// A visitor for traversing a pattern, creating
/// SILArguments, and binding variables to the argument names.
struct ArgumentInitVisitor :
public PatternVisitor<ArgumentInitVisitor, /*RetTy=*/ void>
{
SILGenFunction &gen;
SILFunction &f;
SILGenBuilder &initB;
/// An ArrayRef that we use in our SILParameterList queue. Parameters are
/// sliced off of the front as they're emitted.
ArrayRef<SILParameterInfo> parameters;
ArgumentInitVisitor(SILGenFunction &gen, SILFunction &f)
: gen(gen), f(f), initB(gen.B),
parameters(f.getLoweredFunctionType()->getParameters()) {
// If we have an out parameter, skip it.
if (parameters.size() && parameters[0].isIndirectResult())
parameters = parameters.slice(1);
}
ManagedValue makeArgument(Type ty, SILBasicBlock *parent, SILLocation l) {
assert(ty && "no type?!");
// Create an RValue by emitting destructured arguments into a basic block.
CanType canTy = ty->getCanonicalType();
return EmitBBArguments(gen, parent, l, /*functionArgs*/ true,
parameters).visit(canTy);
}
/// Create a SILArgument and store its value into the given Initialization,
/// if not null.
void makeArgumentIntoBinding(Type ty, SILBasicBlock *parent, VarDecl *vd) {
SILLocation loc(vd);
loc.markAsPrologue();
ManagedValue argrv = makeArgument(ty, parent, loc);
// Create a shadow copy of inout parameters so they can be captured
// by closures. The InOutDeshadowing guaranteed optimization will
// eliminate the variable if it is not needed.
if (auto inOutTy = vd->getType()->getAs<InOutType>()) {
SILValue address = argrv.getUnmanagedValue();
CanType objectType = inOutTy->getObjectType()->getCanonicalType();
// As a special case, don't introduce a local variable for
// Builtin.UnsafeValueBuffer, which is not copyable.
if (isa<BuiltinUnsafeValueBufferType>(objectType)) {
// FIXME: mark a debug location?
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(address);
return;
}
// Allocate the local variable for the inout.
auto initVar = gen.emitLocalVariableWithCleanup(vd, false);
// Initialize with the value from the inout with an "autogenerated"
// copyaddr.
loc.markAutoGenerated();
gen.B.createCopyAddr(loc, address, initVar->getAddress(),
IsNotTake, IsInitialization);
initVar->finishInitialization(gen);
// Set up a cleanup to write back to the inout.
gen.Cleanups.pushCleanup<CleanupWriteBackToInOut>(vd, address);
} else if (vd->isLet()) {
// If the variable is immutable, we can bind the value as is.
// Leave the cleanup on the argument, if any, in place to consume the
// argument if we're responsible for it.
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(argrv.getValue());
if (argrv.getType().isAddress())
gen.B.createDebugValueAddr(loc, argrv.getValue());
else
gen.B.createDebugValue(loc, argrv.getValue());
} else {
// If the variable is mutable, we need to copy or move the argument
// value to local mutable memory.
auto initVar = gen.emitLocalVariableWithCleanup(vd, false);
// If we have a cleanup on the value, we can move it into the variable.
if (argrv.hasCleanup())
argrv.forwardInto(gen, loc, initVar->getAddress());
// Otherwise, we need an independently-owned copy.
else
argrv.copyInto(gen, initVar->getAddress(), loc);
initVar->finishInitialization(gen);
}
}
// Paren, Typed, and Var patterns are no-ops. Just look through them.
void visitParenPattern(ParenPattern *P) {
visit(P->getSubPattern());
}
void visitTypedPattern(TypedPattern *P) {
visit(P->getSubPattern());
}
void visitVarPattern(VarPattern *P) {
visit(P->getSubPattern());
}
void visitTuplePattern(TuplePattern *P) {
// Destructure tuples into their elements.
for (size_t i = 0, size = P->getNumElements(); i < size; ++i)
visit(P->getElement(i).getPattern());
}
void visitAnyPattern(AnyPattern *P) {
llvm_unreachable("unnamed parameters should have a ParamDecl");
}
void visitNamedPattern(NamedPattern *P) {
auto PD = P->getDecl();
if (!PD->hasName()) {
// A value bound to _ is unused and can be immediately released.
Scope discardScope(gen.Cleanups, CleanupLocation(P));
makeArgument(P->getType(), &*f.begin(), PD);
// Popping the scope destroys the value.
} else {
makeArgumentIntoBinding(P->getType(), &*f.begin(), PD);
}
}
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) \
void visit##Id##Pattern(Id##Pattern *) { \
llvm_unreachable("pattern not valid in argument binding"); \
}
#include "swift/AST/PatternNodes.def"
};
// Unlike the ArgumentInitVisitor, this visitor generates arguments but leaves
// them destructured instead of storing them to lvalues so that the
// argument set can be easily forwarded to another function.
class ArgumentForwardVisitor
: public PatternVisitor<ArgumentForwardVisitor>
{
SILGenFunction &gen;
SmallVectorImpl<SILValue> &args;
public:
ArgumentForwardVisitor(SILGenFunction &gen,
SmallVectorImpl<SILValue> &args)
: gen(gen), args(args) {}
void makeArgument(Type ty, VarDecl *varDecl) {
assert(ty && "no type?!");
// Destructure tuple arguments.
if (TupleType *tupleTy = ty->getAs<TupleType>()) {
for (auto fieldType : tupleTy->getElementTypes())
makeArgument(fieldType, varDecl);
} else {
SILValue arg =
new (gen.F.getModule()) SILArgument(gen.F.begin(),
gen.getLoweredType(ty),
varDecl);
args.push_back(arg);
}
}
void visitParenPattern(ParenPattern *P) {
visit(P->getSubPattern());
}
void visitVarPattern(VarPattern *P) {
visit(P->getSubPattern());
}
void visitTypedPattern(TypedPattern *P) {
// FIXME: work around a bug in visiting the "self" argument of methods
if (auto NP = dyn_cast<NamedPattern>(P->getSubPattern()))
makeArgument(P->getType(), NP->getDecl());
else
visit(P->getSubPattern());
}
void visitTuplePattern(TuplePattern *P) {
for (auto &elt : P->getElements())
visit(elt.getPattern());
}
void visitAnyPattern(AnyPattern *P) {
llvm_unreachable("unnamed parameters should have a ParamDecl");
}
void visitNamedPattern(NamedPattern *P) {
makeArgument(P->getType(), P->getDecl());
}
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) \
void visit##Id##Pattern(Id##Pattern *) { \
llvm_unreachable("pattern not valid in argument binding"); \
}
#include "swift/AST/PatternNodes.def"
};
} // end anonymous namespace
void SILGenFunction::bindParametersForForwarding(Pattern *pattern,
SmallVectorImpl<SILValue> &parameters) {
ArgumentForwardVisitor(*this, parameters).visit(pattern);
}
/// Tuple values captured by a closure are passed as individual arguments to the
/// SILFunction since SILFunctionType canonicalizes away tuple types.
static SILValue
emitReconstitutedConstantCaptureArguments(SILType ty,
ValueDecl *capture,
SILGenFunction &gen) {
auto TT = ty.getAs<TupleType>();
if (!TT)
return new (gen.SGM.M) SILArgument(gen.F.begin(), ty, capture);
SmallVector<SILValue, 4> Elts;
for (unsigned i = 0, e = TT->getNumElements(); i != e; ++i) {
auto EltTy = ty.getTupleElementType(i);
auto EV =
emitReconstitutedConstantCaptureArguments(EltTy, capture, gen);
Elts.push_back(EV);
}
return gen.B.createTuple(capture, ty, Elts);
}
static void emitCaptureArguments(SILGenFunction &gen, CapturedValue capture) {
auto *VD = capture.getDecl();
auto type = VD->getType();
switch (gen.SGM.Types.getDeclCaptureKind(capture)) {
case CaptureKind::None:
break;
case CaptureKind::Constant: {
auto &lowering = gen.getTypeLowering(VD->getType());
// Constant decls are captured by value. If the captured value is a tuple
// value, we need to reconstitute it before sticking it in VarLocs.
SILType ty = lowering.getLoweredType();
SILValue val = emitReconstitutedConstantCaptureArguments(ty, VD, gen);
// If the original variable was settable, then Sema will have treated the
// VarDecl as an lvalue, even in the closure's use. As such, we need to
// allow formation of the address for this captured value. Create a
// temporary within the closure to provide this address.
if (VD->isSettable(VD->getDeclContext())) {
auto addr = gen.emitTemporaryAllocation(VD, ty);
gen.B.createStore(VD, val, addr);
val = addr;
}
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(val);
if (!lowering.isTrivial())
gen.enterDestroyCleanup(val);
break;
}
case CaptureKind::Box: {
// LValues are captured as two arguments: a retained NativeObject that owns
// the captured value, and the address of the value itself.
SILType ty = gen.getLoweredType(type).getAddressType();
SILType boxTy = SILType::getPrimitiveObjectType(
SILBoxType::get(ty.getSwiftRValueType()));
SILValue box = new (gen.SGM.M) SILArgument(gen.F.begin(), boxTy, VD);
SILValue addr = new (gen.SGM.M) SILArgument(gen.F.begin(), ty, VD);
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr, box);
gen.Cleanups.pushCleanup<StrongReleaseCleanup>(box);
break;
}
case CaptureKind::StorageAddress: {
// Non-escaping stored decls are captured as the address of the value.
SILType ty = gen.getLoweredType(type).getAddressType();
SILValue addr = new (gen.SGM.M) SILArgument(gen.F.begin(), ty, VD);
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr);
break;
}
}
}
void SILGenFunction::emitProlog(AnyFunctionRef TheClosure,
ArrayRef<Pattern *> paramPatterns,
Type resultType) {
emitProlog(paramPatterns, resultType, TheClosure.getAsDeclContext());
// Emit the capture argument variables. These are placed last because they
// become the first curry level of the SIL function.
auto captureInfo = SGM.Types.getLoweredLocalCaptures(TheClosure);
for (auto capture : captureInfo.getCaptures())
emitCaptureArguments(*this, capture);
}
void SILGenFunction::emitProlog(ArrayRef<Pattern *> paramPatterns,
Type resultType, DeclContext *DeclCtx) {
// If the return type is address-only, emit the indirect return argument.
const TypeLowering &returnTI = getTypeLowering(resultType);
if (returnTI.isReturnedIndirectly()) {
auto &AC = getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ false, SourceLoc(),
AC.getIdentifier("$return_value"), SourceLoc(),
AC.getIdentifier("$return_value"), resultType,
DeclCtx);
IndirectReturnAddress = new (SGM.M)
SILArgument(F.begin(), returnTI.getLoweredType(), VD);
}
// Emit the argument variables in calling convention order.
ArgumentInitVisitor argVisitor(*this, F);
for (Pattern *p : reversed(paramPatterns)) {
// Add the SILArguments and use them to initialize the local argument
// values.
argVisitor.visit(p);
}
}