blob: 565984b1631c3ce2e65588bde005c76f40f35394 [file] [log] [blame]
//===--- SILGenConstructor.cpp - SILGen for constructors ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGenFunction.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "Scope.h"
#include "swift/AST/AST.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/Basic/Defer.h"
using namespace swift;
using namespace Lowering;
static SILValue emitConstructorMetatypeArg(SILGenFunction &gen,
ValueDecl *ctor) {
// In addition to the declared arguments, the constructor implicitly takes
// the metatype as its first argument, like a static function.
Type metatype = ctor->getType()->castTo<AnyFunctionType>()->getInput();
auto &AC = gen.getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ true, SourceLoc(),
AC.getIdentifier("$metatype"), SourceLoc(),
AC.getIdentifier("$metatype"), metatype,
ctor->getDeclContext());
gen.AllocatorMetatype = new (gen.F.getModule()) SILArgument(gen.F.begin(),
gen.getLoweredType(metatype), VD);
return gen.AllocatorMetatype;
}
static RValue emitImplicitValueConstructorArg(SILGenFunction &gen,
SILLocation loc,
CanType ty,
DeclContext *DC) {
// Restructure tuple arguments.
if (CanTupleType tupleTy = dyn_cast<TupleType>(ty)) {
RValue tuple(ty);
for (auto fieldType : tupleTy.getElementTypes())
tuple.addElement(emitImplicitValueConstructorArg(gen, loc, fieldType, DC));
return tuple;
} else {
auto &AC = gen.getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ true, SourceLoc(),
AC.getIdentifier("$implicit_value"),
SourceLoc(),
AC.getIdentifier("$implicit_value"), ty, DC);
SILValue arg = new (gen.F.getModule()) SILArgument(gen.F.begin(),
gen.getLoweredType(ty),
VD);
return RValue(gen, loc, ty, gen.emitManagedRValueWithCleanup(arg));
}
}
static void emitImplicitValueConstructor(SILGenFunction &gen,
ConstructorDecl *ctor) {
RegularLocation Loc(ctor);
Loc.markAutoGenerated();
// FIXME: Handle 'self' along with the other arguments.
auto *TP = cast<TuplePattern>(ctor->getBodyParamPatterns()[1]);
auto selfTyCan = ctor->getImplicitSelfDecl()->getType()->getInOutObjectType();
SILType selfTy = gen.getLoweredType(selfTyCan);
// Emit the indirect return argument, if any.
SILValue resultSlot;
if (selfTy.isAddressOnly(gen.SGM.M)) {
auto &AC = gen.getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ false, SourceLoc(),
AC.getIdentifier("$return_value"),
SourceLoc(),
AC.getIdentifier("$return_value"), selfTyCan,
ctor);
resultSlot = new (gen.F.getModule()) SILArgument(gen.F.begin(), selfTy, VD);
}
// Emit the elementwise arguments.
SmallVector<RValue, 4> elements;
for (size_t i = 0, size = TP->getNumElements(); i < size; ++i) {
auto *P = cast<TypedPattern>(TP->getElement(i).getPattern());
elements.push_back(
emitImplicitValueConstructorArg(gen, Loc,
P->getType()->getCanonicalType(), ctor));
}
emitConstructorMetatypeArg(gen, ctor);
auto *decl = selfTy.getStructOrBoundGenericStruct();
assert(decl && "not a struct?!");
// If we have an indirect return slot, initialize it in-place.
if (resultSlot) {
auto elti = elements.begin(), eltEnd = elements.end();
for (VarDecl *field : decl->getStoredProperties()) {
auto fieldTy = selfTy.getFieldType(field, gen.SGM.M);
auto &fieldTL = gen.getTypeLowering(fieldTy);
SILValue slot = gen.B.createStructElementAddr(Loc, resultSlot, field,
fieldTL.getLoweredType().getAddressType());
InitializationPtr init(new KnownAddressInitialization(slot));
// An initialized 'let' property has a single value specified by the
// initializer - it doesn't come from an argument.
if (!field->isStatic() && field->isLet() &&
field->getParentInitializer()) {
assert(field->getType()->isEqual(field->getParentInitializer()
->getType()) && "Checked by sema");
// Cleanup after this initialization.
FullExpr scope(gen.Cleanups, field->getParentPatternBinding());
gen.emitRValue(field->getParentInitializer())
.forwardInto(gen, init.get(), Loc);
continue;
}
assert(elti != eltEnd && "number of args does not match number of fields");
(void)eltEnd;
std::move(*elti).forwardInto(gen, init.get(), Loc);
++elti;
}
gen.B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(Loc),
gen.emitEmptyTuple(Loc));
return;
}
// Otherwise, build a struct value directly from the elements.
SmallVector<SILValue, 4> eltValues;
auto elti = elements.begin(), eltEnd = elements.end();
for (VarDecl *field : decl->getStoredProperties()) {
auto fieldTy = selfTy.getFieldType(field, gen.SGM.M);
SILValue v;
// An initialized 'let' property has a single value specified by the
// initializer - it doesn't come from an argument.
if (!field->isStatic() && field->isLet() && field->getParentInitializer()) {
// Cleanup after this initialization.
FullExpr scope(gen.Cleanups, field->getParentPatternBinding());
v = gen.emitRValue(field->getParentInitializer())
.forwardAsSingleStorageValue(gen, fieldTy, Loc);
} else {
assert(elti != eltEnd && "number of args does not match number of fields");
(void)eltEnd;
v = std::move(*elti).forwardAsSingleStorageValue(gen, fieldTy, Loc);
++elti;
}
eltValues.push_back(v);
}
SILValue selfValue = gen.B.createStruct(Loc, selfTy, eltValues);
gen.B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(Loc),
selfValue);
return;
}
void SILGenFunction::emitValueConstructor(ConstructorDecl *ctor) {
MagicFunctionName = SILGenModule::getMagicFunctionName(ctor);
if (ctor->isMemberwiseInitializer())
return emitImplicitValueConstructor(*this, ctor);
// True if this constructor delegates to a peer constructor with self.init().
bool isDelegating = ctor->getDelegatingOrChainedInitKind(nullptr) ==
ConstructorDecl::BodyInitKind::Delegating;
// Get the 'self' decl and type.
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
auto &lowering = getTypeLowering(selfDecl->getType()->getInOutObjectType());
SILType selfTy = lowering.getLoweredType();
(void)selfTy;
assert(!selfTy.getClassOrBoundGenericClass()
&& "can't emit a class ctor here");
// Allocate the local variable for 'self'.
emitLocalVariableWithCleanup(selfDecl, false)->finishInitialization(*this);
// Mark self as being uninitialized so that DI knows where it is and how to
// check for it.
SILValue selfLV;
{
auto &SelfVarLoc = VarLocs[selfDecl];
auto MUIKind = isDelegating ? MarkUninitializedInst::DelegatingSelf
: MarkUninitializedInst::RootSelf;
selfLV = B.createMarkUninitialized(selfDecl, SelfVarLoc.value, MUIKind);
SelfVarLoc.value = selfLV;
}
// Emit the prolog.
emitProlog(ctor->getBodyParamPatterns()[1], ctor->getResultType(), ctor);
emitConstructorMetatypeArg(*this, ctor);
// Create a basic block to jump to for the implicit 'self' return.
// We won't emit this until after we've emitted the body.
// The epilog takes a void return because the return of 'self' is implicit.
prepareEpilog(Type(), ctor->isBodyThrowing(), CleanupLocation(ctor));
// If the constructor can fail, set up an alternative epilog for constructor
// failure.
SILBasicBlock *failureExitBB = nullptr;
SILArgument *failureExitArg = nullptr;
auto &resultLowering = getTypeLowering(ctor->getResultType());
if (ctor->getFailability() != OTK_None) {
SILBasicBlock *failureBB = createBasicBlock(FunctionSection::Postmatter);
// On failure, we'll clean up everything (except self, which should have
// been cleaned up before jumping here) and return nil instead.
SavedInsertionPoint savedIP(*this, failureBB, FunctionSection::Postmatter);
failureExitBB = createBasicBlock();
Cleanups.emitCleanupsForReturn(ctor);
// Return nil.
if (lowering.isAddressOnly()) {
// Inject 'nil' into the indirect return.
B.createInjectEnumAddr(ctor, IndirectReturnAddress,
getASTContext().getOptionalNoneDecl(ctor->getFailability()));
B.createBranch(ctor, failureExitBB);
B.setInsertionPoint(failureExitBB);
B.createReturn(ctor, emitEmptyTuple(ctor));
} else {
// Pass 'nil' as the return value to the exit BB.
failureExitArg = new (F.getModule())
SILArgument(failureExitBB, resultLowering.getLoweredType());
SILValue nilResult = B.createEnum(ctor, {},
getASTContext().getOptionalNoneDecl(ctor->getFailability()),
resultLowering.getLoweredType());
B.createBranch(ctor, failureExitBB, nilResult);
B.setInsertionPoint(failureExitBB);
B.createReturn(ctor, failureExitArg);
}
FailDest = JumpDest(failureBB, Cleanups.getCleanupsDepth(), ctor);
}
// If this is not a delegating constructor, emit member initializers.
if (!isDelegating) {
auto nominal = ctor->getDeclContext()->getDeclaredTypeInContext()
->getNominalOrBoundGenericNominal();
emitMemberInitializers(selfDecl, nominal);
}
emitProfilerIncrement(ctor->getBody());
// Emit the constructor body.
emitStmt(ctor->getBody());
// Build a custom epilog block, since the AST representation of the
// constructor decl (which has no self in the return type) doesn't match the
// SIL representation.
SILValue selfValue;
{
SavedInsertionPoint savedIP(*this, ReturnDest.getBlock());
assert(B.getInsertionBB()->empty() && "Epilog already set up?");
auto cleanupLoc = CleanupLocation::get(ctor);
if (!lowering.isAddressOnly()) {
// Otherwise, load and return the final 'self' value.
selfValue = B.createLoad(cleanupLoc, selfLV);
// Emit a retain of the loaded value, since we return it +1.
lowering.emitRetainValue(B, cleanupLoc, selfValue);
// Inject the self value into an optional if the constructor is failable.
if (ctor->getFailability() != OTK_None) {
selfValue = B.createEnum(ctor, selfValue,
getASTContext().getOptionalSomeDecl(ctor->getFailability()),
getLoweredLoadableType(ctor->getResultType()));
}
} else {
// If 'self' is address-only, copy 'self' into the indirect return slot.
assert(IndirectReturnAddress &&
"no indirect return for address-only ctor?!");
// Get the address to which to store the result.
SILValue returnAddress;
switch (ctor->getFailability()) {
// For non-failable initializers, store to the return address directly.
case OTK_None:
returnAddress = IndirectReturnAddress;
break;
// If this is a failable initializer, project out the payload.
case OTK_Optional:
case OTK_ImplicitlyUnwrappedOptional:
returnAddress = B.createInitEnumDataAddr(ctor, IndirectReturnAddress,
getASTContext().getOptionalSomeDecl(ctor->getFailability()),
selfLV.getType());
break;
}
// We have to do a non-take copy because someone else may be using the
// box (e.g. someone could have closed over it).
B.createCopyAddr(cleanupLoc, selfLV, returnAddress,
IsNotTake, IsInitialization);
// Inject the enum tag if the result is optional because of failability.
if (ctor->getFailability() != OTK_None) {
// Inject the 'Some' tag.
B.createInjectEnumAddr(ctor, IndirectReturnAddress,
getASTContext().getOptionalSomeDecl(ctor->getFailability()));
}
}
}
// Finally, emit the epilog and post-matter.
auto returnLoc = emitEpilog(ctor, /*UsesCustomEpilog*/true);
// Finish off the epilog by returning. If this is a failable ctor, then we
// actually jump to the failure epilog to keep the invariant that there is
// only one SIL return instruction per SIL function.
if (B.hasValidInsertionPoint()) {
if (!failureExitBB) {
if (!selfValue)
selfValue = emitEmptyTuple(ctor);
B.createReturn(returnLoc, selfValue);
} else {
if (selfValue)
B.createBranch(returnLoc, failureExitBB, selfValue);
else
B.createBranch(returnLoc, failureExitBB);
}
}
}
static void boxIndirectEnumPayload(SILGenFunction &gen,
ManagedValue &payload,
SILLocation loc,
EnumElementDecl *element) {
// If the payload is indirect, we'll need to box it.
if (payload && (element->isIndirect() ||
element->getParentEnum()->isIndirect())) {
auto box = gen.B.createAllocBox(loc, payload.getType());
payload.forwardInto(gen, loc, box->getAddressResult());
payload = gen.emitManagedRValueWithCleanup(box);
}
}
static void emitAddressOnlyEnumConstructor(SILGenFunction &gen,
SILType enumTy,
EnumElementDecl *element) {
RegularLocation Loc(element);
CleanupLocation CleanupLoc(element);
Loc.markAutoGenerated();
// Emit the indirect return slot.
auto &AC = gen.getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ false, SourceLoc(),
AC.getIdentifier("$return_value"),
SourceLoc(),
AC.getIdentifier("$return_value"),
enumTy.getSwiftType(),
element->getDeclContext());
SILValue resultSlot
= new (gen.F.getModule()) SILArgument(gen.F.begin(), enumTy, VD);
Scope scope(gen.Cleanups, CleanupLoc);
// Emit the exploded constructor argument.
ManagedValue argValue;
if (element->hasArgumentType()) {
RValue arg = emitImplicitValueConstructorArg
(gen, Loc, element->getArgumentType()->getCanonicalType(),
element->getDeclContext());
argValue = std::move(arg).getAsSingleValue(gen, Loc);
}
emitConstructorMetatypeArg(gen, element);
boxIndirectEnumPayload(gen, argValue, Loc, element);
// Store the data, if any.
if (argValue) {
SILValue resultData = gen.B.createInitEnumDataAddr(element, resultSlot,
element, argValue.getType().getAddressType());
argValue.forwardInto(gen, element, resultData);
}
// Apply the tag.
gen.B.createInjectEnumAddr(Loc, resultSlot, element);
scope.pop();
gen.B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(Loc),
gen.emitEmptyTuple(element));
}
static void emitLoadableEnumConstructor(SILGenFunction &gen, SILType enumTy,
EnumElementDecl *element) {
RegularLocation Loc(element);
CleanupLocation CleanupLoc(element);
Loc.markAutoGenerated();
Scope scope(gen.Cleanups, CleanupLoc);
// Emit the exploded constructor argument.
ManagedValue payload;
if (element->hasArgumentType()) {
RValue arg = emitImplicitValueConstructorArg
(gen, Loc,
element->getArgumentType()->getCanonicalType(),
element->getDeclContext());
payload = std::move(arg).getAsSingleValue(gen, Loc);
}
emitConstructorMetatypeArg(gen, element);
boxIndirectEnumPayload(gen, payload, Loc, element);
// Create and return the enum value.
SILValue argValue;
if (payload)
argValue = payload.forward(gen);
SILValue result = gen.B.createEnum(Loc, argValue, element, enumTy);
scope.pop();
gen.B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(Loc), result);
}
void SILGenFunction::emitEnumConstructor(EnumElementDecl *element) {
Type enumTy = element->getType()->getAs<AnyFunctionType>()->getResult();
if (element->hasArgumentType())
enumTy = enumTy->getAs<AnyFunctionType>()->getResult();
auto &enumTI = getTypeLowering(enumTy);
if (enumTI.isAddressOnly()) {
return emitAddressOnlyEnumConstructor(*this, enumTI.getLoweredType(),
element);
}
return emitLoadableEnumConstructor(*this, enumTI.getLoweredType(),
element);
}
bool Lowering::usesObjCAllocator(ClassDecl *theClass) {
while (true) {
// If the root class was implemented in Objective-C, use Objective-C's
// allocation methods because they may have been overridden.
if (!theClass->hasSuperclass())
return theClass->hasClangNode();
theClass = theClass->getSuperclass()->getClassOrBoundGenericClass();
}
}
void SILGenFunction::emitClassConstructorAllocator(ConstructorDecl *ctor) {
assert(!ctor->isFactoryInit() && "factories should not be emitted here");
// Emit the prolog. Since we're just going to forward our args directly
// to the initializer, don't allocate local variables for them.
RegularLocation Loc(ctor);
Loc.markAutoGenerated();
// Forward the constructor arguments.
// FIXME: Handle 'self' along with the other body patterns.
SmallVector<SILValue, 8> args;
bindParametersForForwarding(ctor->getBodyParamPatterns()[1], args);
SILValue selfMetaValue = emitConstructorMetatypeArg(*this, ctor);
// Allocate the "self" value.
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
SILType selfTy = getLoweredType(selfDecl->getType());
assert(selfTy.hasReferenceSemantics() &&
"can't emit a value type ctor here");
// Use alloc_ref to allocate the object.
// TODO: allow custom allocation?
// FIXME: should have a cleanup in case of exception
auto selfTypeContext = ctor->getDeclContext()->getDeclaredTypeInContext();
auto selfClassDecl =
cast<ClassDecl>(selfTypeContext->getNominalOrBoundGenericNominal());
SILValue selfValue;
// Allocate the 'self' value.
bool useObjCAllocation = usesObjCAllocator(selfClassDecl);
if (ctor->isConvenienceInit() || ctor->hasClangNode()) {
// For a convenience initializer or an initializer synthesized
// for an Objective-C class, allocate using the metatype.
SILValue allocArg = selfMetaValue;
// When using Objective-C allocation, convert the metatype
// argument to an Objective-C metatype.
if (useObjCAllocation) {
auto metaTy = allocArg.getType().castTo<MetatypeType>();
metaTy = CanMetatypeType::get(metaTy.getInstanceType(),
MetatypeRepresentation::ObjC);
allocArg = B.createThickToObjCMetatype(Loc, allocArg,
getLoweredType(metaTy));
}
selfValue = B.createAllocRefDynamic(Loc, allocArg, selfTy,
useObjCAllocation);
} else {
// For a designated initializer, we know that the static type being
// allocated is the type of the class that defines the designated
// initializer.
selfValue = B.createAllocRef(Loc, selfTy, useObjCAllocation, false);
}
args.push_back(selfValue);
// Call the initializer. Always use the Swift entry point, which will be a
// bridging thunk if we're calling ObjC.
SILDeclRef initConstant =
SILDeclRef(ctor,
SILDeclRef::Kind::Initializer,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
/*isObjC=*/false);
ManagedValue initVal;
SILType initTy;
ArrayRef<Substitution> subs;
// Call the initializer.
ArrayRef<Substitution> forwardingSubs;
if (auto *genericParamList = ctor->getGenericParamsOfContext())
forwardingSubs =
genericParamList->getForwardingSubstitutions(getASTContext());
std::tie(initVal, initTy, subs)
= emitSiblingMethodRef(Loc, selfValue, initConstant, forwardingSubs);
SILValue initedSelfValue = emitApplyWithRethrow(Loc, initVal.forward(*this),
initTy, subs, args);
// Return the initialized 'self'.
B.createReturn(ImplicitReturnLocation::getImplicitReturnLoc(Loc),
initedSelfValue);
}
void SILGenFunction::emitClassConstructorInitializer(ConstructorDecl *ctor) {
MagicFunctionName = SILGenModule::getMagicFunctionName(ctor);
assert(ctor->getBody() && "Class constructor without a body?");
// True if this constructor delegates to a peer constructor with self.init().
bool isDelegating = false;
if (!ctor->hasStubImplementation()) {
isDelegating = ctor->getDelegatingOrChainedInitKind(nullptr) ==
ConstructorDecl::BodyInitKind::Delegating;
}
// FIXME: The (potentially partially initialized) value here would need to be
// cleaned up on a constructor failure unwinding, if we were to support
// failing before total initialization.
// Set up the 'self' argument. If this class has a superclass, we set up
// self as a box. This allows "self reassignment" to happen in super init
// method chains, which is important for interoperating with Objective-C
// classes. We also use a box for delegating constructors, since the
// delegated-to initializer may also replace self.
//
// TODO: If we could require Objective-C classes to have an attribute to get
// this behavior, we could avoid runtime overhead here.
VarDecl *selfDecl = ctor->getImplicitSelfDecl();
auto selfTypeContext = ctor->getDeclContext()->getDeclaredTypeInContext();
auto selfClassDecl =
cast<ClassDecl>(selfTypeContext->getNominalOrBoundGenericNominal());
bool NeedsBoxForSelf = isDelegating ||
(selfClassDecl->hasSuperclass() && !ctor->hasStubImplementation());
bool usesObjCAllocator = Lowering::usesObjCAllocator(selfClassDecl);
// If needed, mark 'self' as uninitialized so that DI knows to
// enforce its DI properties on stored properties.
MarkUninitializedInst::Kind MUKind;
if (isDelegating)
MUKind = MarkUninitializedInst::DelegatingSelf;
else if (selfClassDecl->requiresStoredPropertyInits() &&
usesObjCAllocator) {
// Stored properties will be initialized in a separate
// .cxx_construct method called by the Objective-C runtime.
assert(selfClassDecl->hasSuperclass() &&
"Cannot use ObjC allocation without a superclass");
MUKind = MarkUninitializedInst::DerivedSelfOnly;
} else if (selfClassDecl->hasSuperclass())
MUKind = MarkUninitializedInst::DerivedSelf;
else
MUKind = MarkUninitializedInst::RootSelf;
if (NeedsBoxForSelf) {
// Allocate the local variable for 'self'.
emitLocalVariableWithCleanup(selfDecl, false)->finishInitialization(*this);
auto &SelfVarLoc = VarLocs[selfDecl];
SelfVarLoc.value = B.createMarkUninitialized(selfDecl,
SelfVarLoc.value, MUKind);
}
// Emit the prolog for the non-self arguments.
// FIXME: Handle self along with the other body patterns.
emitProlog(ctor->getBodyParamPatterns()[1],
TupleType::getEmpty(F.getASTContext()), ctor);
SILType selfTy = getLoweredLoadableType(selfDecl->getType());
SILValue selfArg = new (SGM.M) SILArgument(F.begin(), selfTy, selfDecl);
if (!NeedsBoxForSelf) {
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
B.createDebugValue(PrologueLoc, selfArg);
}
if (!ctor->hasStubImplementation()) {
assert(selfTy.hasReferenceSemantics() &&
"can't emit a value type ctor here");
if (NeedsBoxForSelf) {
SILLocation prologueLoc = RegularLocation(ctor);
prologueLoc.markAsPrologue();
B.createStore(prologueLoc, selfArg, VarLocs[selfDecl].value);
} else {
selfArg = B.createMarkUninitialized(selfDecl, selfArg, MUKind);
VarLocs[selfDecl] = VarLoc::get(selfArg);
enterDestroyCleanup(VarLocs[selfDecl].value);
}
}
// Prepare the end of initializer location.
SILLocation endOfInitLoc = RegularLocation(ctor);
endOfInitLoc.pointToEnd();
// Create a basic block to jump to for the implicit 'self' return.
// We won't emit the block until after we've emitted the body.
prepareEpilog(Type(), ctor->isBodyThrowing(),
CleanupLocation::get(endOfInitLoc));
// If the constructor can fail, set up an alternative epilog for constructor
// failure.
SILBasicBlock *failureExitBB = nullptr;
SILArgument *failureExitArg = nullptr;
auto &resultLowering = getTypeLowering(ctor->getResultType());
if (ctor->getFailability() != OTK_None) {
SILBasicBlock *failureBB = createBasicBlock(FunctionSection::Postmatter);
RegularLocation loc(ctor);
loc.markAutoGenerated();
// On failure, we'll clean up everything and return nil instead.
SavedInsertionPoint savedIP(*this, failureBB, FunctionSection::Postmatter);
failureExitBB = createBasicBlock();
failureExitArg = new (F.getModule())
SILArgument(failureExitBB, resultLowering.getLoweredType());
Cleanups.emitCleanupsForReturn(ctor);
SILValue nilResult = B.createEnum(loc, {},
getASTContext().getOptionalNoneDecl(ctor->getFailability()),
resultLowering.getLoweredType());
B.createBranch(loc, failureExitBB, nilResult);
B.setInsertionPoint(failureExitBB);
B.createReturn(loc, failureExitArg)->setDebugScope(F.getDebugScope());
FailDest = JumpDest(failureBB, Cleanups.getCleanupsDepth(), ctor);
}
// Handle member initializers.
if (isDelegating) {
// A delegating initializer does not initialize instance
// variables.
} else if (ctor->hasStubImplementation()) {
// Nor does a stub implementation.
} else if (selfClassDecl->requiresStoredPropertyInits() &&
usesObjCAllocator) {
// When the class requires all stored properties to have initial
// values and we're using Objective-C's allocation, stored
// properties are initialized via the .cxx_construct method, which
// will be called by the runtime.
// Note that 'self' has been fully initialized at this point.
} else {
// Emit the member initializers.
emitMemberInitializers(selfDecl, selfClassDecl);
}
emitProfilerIncrement(ctor->getBody());
// Emit the constructor body.
emitStmt(ctor->getBody());
// Build a custom epilog block, since the AST representation of the
// constructor decl (which has no self in the return type) doesn't match the
// SIL representation.
{
SavedInsertionPoint savedIP(*this, ReturnDest.getBlock());
assert(B.getInsertionBB()->empty() && "Epilog already set up?");
auto cleanupLoc = CleanupLocation(ctor);
// If we're using a box for self, reload the value at the end of the init
// method.
if (NeedsBoxForSelf) {
// Emit the call to super.init() right before exiting from the initializer.
if (Expr *SI = ctor->getSuperInitCall())
emitRValue(SI);
selfArg = B.createLoad(cleanupLoc, VarLocs[selfDecl].value);
}
// We have to do a retain because we are returning the pointer +1.
B.emitRetainValueOperation(cleanupLoc, selfArg);
// Inject the self value into an optional if the constructor is failable.
if (ctor->getFailability() != OTK_None) {
RegularLocation loc(ctor);
loc.markAutoGenerated();
selfArg = B.createEnum(loc, selfArg,
getASTContext().getOptionalSomeDecl(ctor->getFailability()),
getLoweredLoadableType(ctor->getResultType()));
}
}
// Emit the epilog and post-matter.
auto returnLoc = emitEpilog(ctor, /*UsesCustomEpilog*/true);
// Finish off the epilog by returning. If this is a failable ctor, then we
// actually jump to the failure epilog to keep the invariant that there is
// only one SIL return instruction per SIL function.
if (B.hasValidInsertionPoint()) {
if (failureExitBB)
B.createBranch(returnLoc, failureExitBB, selfArg);
else
B.createReturn(returnLoc, selfArg)->setDebugScope(F.getDebugScope());
}
}
/// Emit a member initialization for the members described in the
/// given pattern from the given source value.
static void emitMemberInit(SILGenFunction &SGF, VarDecl *selfDecl,
Pattern *pattern, RValue &&src) {
switch (pattern->getKind()) {
case PatternKind::Paren:
return emitMemberInit(SGF, selfDecl,
cast<ParenPattern>(pattern)->getSubPattern(),
std::move(src));
case PatternKind::Tuple: {
auto tuple = cast<TuplePattern>(pattern);
auto fields = tuple->getElements();
SmallVector<RValue, 4> elements;
std::move(src).extractElements(elements);
for (unsigned i = 0, n = fields.size(); i != n; ++i) {
emitMemberInit(SGF, selfDecl, fields[i].getPattern(),
std::move(elements[i]));
}
break;
}
case PatternKind::Named: {
auto named = cast<NamedPattern>(pattern);
// Form the lvalue referencing this member.
WritebackScope scope(SGF);
SILLocation loc = pattern;
ManagedValue self;
CanType selfFormalType = selfDecl->getType()
->getInOutObjectType()->getCanonicalType();
if (selfFormalType->hasReferenceSemantics())
self = SGF.emitRValueForDecl(loc, selfDecl, selfDecl->getType(),
AccessSemantics::DirectToStorage,
SGFContext::AllowImmediatePlusZero);
else
self = SGF.emitLValueForDecl(loc, selfDecl, src.getType(),
AccessKind::Write,
AccessSemantics::DirectToStorage);
LValue memberRef =
SGF.emitPropertyLValue(loc, self, selfFormalType, named->getDecl(),
AccessKind::Write,
AccessSemantics::DirectToStorage);
// Assign to it.
SGF.emitAssignToLValue(loc, std::move(src), std::move(memberRef));
return;
}
case PatternKind::Any:
return;
case PatternKind::Typed:
return emitMemberInit(SGF, selfDecl,
cast<TypedPattern>(pattern)->getSubPattern(),
std::move(src));
case PatternKind::Var:
return emitMemberInit(SGF, selfDecl,
cast<VarPattern>(pattern)->getSubPattern(),
std::move(src));
#define PATTERN(Name, Parent)
#define REFUTABLE_PATTERN(Name, Parent) case PatternKind::Name:
#include "swift/AST/PatternNodes.def"
llvm_unreachable("Refutable pattern in pattern binding");
}
}
void SILGenFunction::emitMemberInitializers(VarDecl *selfDecl,
NominalTypeDecl *nominal) {
for (auto member : nominal->getMembers()) {
// Find pattern binding declarations that have initializers.
auto pbd = dyn_cast<PatternBindingDecl>(member);
if (!pbd || pbd->isStatic()) continue;
for (auto entry : pbd->getPatternList()) {
auto init = entry.getInit();
if (!init) continue;
// Cleanup after this initialization.
FullExpr scope(Cleanups, entry.getPattern());
emitMemberInit(*this, selfDecl, entry.getPattern(), emitRValue(init));
}
}
}
void SILGenFunction::emitIVarInitializer(SILDeclRef ivarInitializer) {
auto cd = cast<ClassDecl>(ivarInitializer.getDecl());
RegularLocation loc(cd);
loc.markAutoGenerated();
// Emit 'self', then mark it uninitialized.
auto selfDecl = cd->getDestructor()->getImplicitSelfDecl();
SILType selfTy = getLoweredLoadableType(selfDecl->getType());
SILValue selfArg = new (SGM.M) SILArgument(F.begin(), selfTy, selfDecl);
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
B.createDebugValue(PrologueLoc, selfArg);
selfArg = B.createMarkUninitialized(selfDecl, selfArg,
MarkUninitializedInst::RootSelf);
assert(selfTy.hasReferenceSemantics() && "can't emit a value type ctor here");
VarLocs[selfDecl] = VarLoc::get(selfArg);
auto cleanupLoc = CleanupLocation::get(loc);
prepareEpilog(TupleType::getEmpty(getASTContext()), false, cleanupLoc);
// Emit the initializers.
emitMemberInitializers(cd->getDestructor()->getImplicitSelfDecl(), cd);
// Return 'self'.
B.createReturn(loc, selfArg);
emitEpilog(loc);
}