blob: f75b5f9ace1e54002e42643d3f2d577d43d60d7c [file] [log] [blame]
//===-- ValueTracking.h - SIL Value Tracking Analysis ----------*- C++ -*--===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-value-tracking"
#include "swift/SILAnalysis/ValueTracking.h"
#include "swift/SILAnalysis/SimplifyInstruction.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SIL/PatternMatch.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace swift::PatternMatch;
/// Strip off casts/indexing insts/address projections from V until there is
/// nothing left to strip.
/// FIXME: Maybe put this on SILValue?
SILValue swift::getUnderlyingObject(SILValue V) {
while (true) {
SILValue V2 = V.stripCasts().stripAddressProjections().stripIndexingInsts();
if (V2 == V)
return V2;
V = V2;
}
}
/// Returns true if the ValueBase inside V is an apply whose callee is a no read
/// builtin.
static bool isNoReadBuiltinInst(SILValue V) {
auto *BI = dyn_cast<BuiltinInst>(V);
return BI && !BI->mayReadOrWriteMemory();
}
/// Is Inst an instruction which escapes if and only if one of its results
/// escape?
static bool isTransitiveEscapeInst(SILInstruction *Inst) {
switch (Inst->getKind()) {
case ValueKind::AllocBoxInst:
case ValueKind::AllocExistentialBoxInst:
case ValueKind::AllocRefInst:
case ValueKind::AllocRefDynamicInst:
case ValueKind::AllocStackInst:
case ValueKind::AllocValueBufferInst:
case ValueKind::BuiltinInst:
case ValueKind::ApplyInst:
case ValueKind::TryApplyInst:
case ValueKind::WitnessMethodInst:
case ValueKind::CopyAddrInst:
case ValueKind::RetainValueInst:
case ValueKind::DeallocBoxInst:
case ValueKind::DeallocExistentialBoxInst:
case ValueKind::DeallocRefInst:
case ValueKind::DeallocPartialRefInst:
case ValueKind::DeallocStackInst:
case ValueKind::DeallocValueBufferInst:
case ValueKind::DebugValueAddrInst:
case ValueKind::DebugValueInst:
case ValueKind::DestroyAddrInst:
case ValueKind::ReleaseValueInst:
case ValueKind::AutoreleaseValueInst:
case ValueKind::FloatLiteralInst:
case ValueKind::FunctionRefInst:
case ValueKind::IntegerLiteralInst:
case ValueKind::LoadInst:
case ValueKind::LoadWeakInst:
case ValueKind::MetatypeInst:
case ValueKind::ObjCProtocolInst:
case ValueKind::GlobalAddrInst:
case ValueKind::StoreInst:
case ValueKind::StoreWeakInst:
case ValueKind::StringLiteralInst:
case ValueKind::CopyBlockInst:
case ValueKind::StrongReleaseInst:
case ValueKind::StrongPinInst: // Pin handle is independently managed
case ValueKind::StrongRetainAutoreleasedInst:
case ValueKind::StrongRetainInst:
case ValueKind::StrongRetainUnownedInst:
case ValueKind::StrongUnpinInst:
case ValueKind::UnownedReleaseInst:
case ValueKind::UnownedRetainInst:
case ValueKind::IsUniqueInst:
case ValueKind::IsUniqueOrPinnedInst:
case ValueKind::InjectEnumAddrInst:
case ValueKind::DeinitExistentialAddrInst:
case ValueKind::UnreachableInst:
case ValueKind::IsNonnullInst:
case ValueKind::CondFailInst:
case ValueKind::DynamicMethodBranchInst:
case ValueKind::ReturnInst:
case ValueKind::AutoreleaseReturnInst:
case ValueKind::ThrowInst:
case ValueKind::FixLifetimeInst:
return false;
case ValueKind::AddressToPointerInst:
case ValueKind::ValueMetatypeInst:
case ValueKind::BranchInst:
case ValueKind::CheckedCastBranchInst:
case ValueKind::CheckedCastAddrBranchInst:
case ValueKind::ClassMethodInst:
case ValueKind::CondBranchInst:
case ValueKind::ConvertFunctionInst:
case ValueKind::DynamicMethodInst:
case ValueKind::EnumInst:
case ValueKind::IndexAddrInst:
case ValueKind::IndexRawPointerInst:
case ValueKind::InitBlockStorageHeaderInst:
case ValueKind::InitEnumDataAddrInst:
case ValueKind::InitExistentialAddrInst:
case ValueKind::InitExistentialMetatypeInst:
case ValueKind::InitExistentialRefInst:
case ValueKind::ObjCExistentialMetatypeToObjectInst:
case ValueKind::ObjCMetatypeToObjectInst:
case ValueKind::ObjCToThickMetatypeInst:
case ValueKind::UncheckedRefCastInst:
case ValueKind::UncheckedRefCastAddrInst:
case ValueKind::UncheckedAddrCastInst:
case ValueKind::UncheckedTrivialBitCastInst:
case ValueKind::UncheckedBitwiseCastInst:
case ValueKind::MarkDependenceInst:
case ValueKind::OpenExistentialAddrInst:
case ValueKind::OpenExistentialMetatypeInst:
case ValueKind::OpenExistentialRefInst:
case ValueKind::OpenExistentialBoxInst:
case ValueKind::PartialApplyInst:
case ValueKind::ProjectBoxInst:
case ValueKind::ProjectValueBufferInst:
case ValueKind::PointerToAddressInst:
case ValueKind::PointerToThinFunctionInst:
case ValueKind::ProjectBlockStorageInst:
case ValueKind::ExistentialMetatypeInst:
case ValueKind::RawPointerToRefInst:
case ValueKind::RefElementAddrInst:
case ValueKind::RefToRawPointerInst:
case ValueKind::RefToUnmanagedInst:
case ValueKind::RefToUnownedInst:
case ValueKind::SelectEnumInst:
case ValueKind::SelectEnumAddrInst:
case ValueKind::SelectValueInst:
case ValueKind::StructElementAddrInst:
case ValueKind::StructExtractInst:
case ValueKind::StructInst:
case ValueKind::SuperMethodInst:
case ValueKind::SwitchEnumAddrInst:
case ValueKind::SwitchEnumInst:
case ValueKind::SwitchValueInst:
case ValueKind::UncheckedEnumDataInst:
case ValueKind::UncheckedTakeEnumDataAddrInst:
case ValueKind::ThickToObjCMetatypeInst:
case ValueKind::ThinFunctionToPointerInst:
case ValueKind::ThinToThickFunctionInst:
case ValueKind::TupleElementAddrInst:
case ValueKind::TupleExtractInst:
case ValueKind::TupleInst:
case ValueKind::UnconditionalCheckedCastInst:
case ValueKind::UnconditionalCheckedCastAddrInst:
case ValueKind::UnmanagedToRefInst:
case ValueKind::UnownedToRefInst:
case ValueKind::UpcastInst:
case ValueKind::RefToBridgeObjectInst:
case ValueKind::BridgeObjectToRefInst:
case ValueKind::BridgeObjectToWordInst:
return true;
case ValueKind::AssignInst:
case ValueKind::MarkFunctionEscapeInst:
case ValueKind::MarkUninitializedInst:
llvm_unreachable("Invalid in canonical SIL.");
case ValueKind::SILArgument:
case ValueKind::SILUndef:
llvm_unreachable("These do not use other values.");
}
}
/// Maximum amount of ValueCapture queries.
static unsigned const Threshold = 32;
namespace {
/// Are there any uses that should be ignored as capture uses.
///
/// TODO: Expand this if we ever do the store of pointer analysis mentioned in
/// Basic AA.
enum CaptureException : unsigned {
None=0,
ReturnsCannotCapture=1,
};
} // end anonymous namespace
/// Returns true if V is a value that is used in a manner such that we know its
/// captured or we don't understand whether or not it was captured. In such a
/// case to be conservative, we must assume it is captured.
/// FIXME: Maybe put this on SILValue?
static bool valueMayBeCaptured(SILValue V, CaptureException Exception) {
llvm::SmallVector<Operand *, Threshold> Worklist;
llvm::SmallPtrSet<Operand *, Threshold> Visited;
unsigned Count = 0;
DEBUG(llvm::dbgs() << " Checking for capture.\n");
// All all uses of V to the worklist.
for (auto *UI : V.getUses()) {
// If we have more uses than the threshold, be conservative and bail so we
// don't use too much compile time.
if (Count++ >= Threshold)
return true;
Visited.insert(UI);
Worklist.push_back(UI);
}
// Until the worklist is empty...
while (!Worklist.empty()) {
// Pop off an operand and grab the operand's user...
Operand *Op = Worklist.pop_back_val();
SILInstruction *Inst = Op->getUser();
DEBUG(llvm::dbgs() << " Visiting: " << *Inst);
// If Inst is an instruction with the transitive escape property, V escapes
// if and only if the results of Inst escape as well.
if (isTransitiveEscapeInst(Inst)) {
DEBUG(llvm::dbgs() << " Found transitive escape "
"instruction!\n");
for (auto *UI : Inst->getUses()) {
// If we have more uses than the threshold, be conservative and bail
// so we don't use too much compile time.
if (Count++ >= Threshold)
return true;
if (Visited.insert(UI).second) {
Worklist.push_back(UI);
}
}
continue;
}
// An apply of a builtin that does not read memory can not capture a value.
//
// TODO: Use analysis of the other function perhaps to see if it captures
// memory in some manner?
// TODO: Add in knowledge about how parameters work on swift to make this
// more aggressive.
if (isNoReadBuiltinInst(Inst))
continue;
// Loading from a pointer does not cause it to be captured.
if (isa<LoadInst>(Inst))
continue;
// If we have a store and are storing into the pointer, this is not a
// capture. Otherwise it is safe.
if (auto *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->getDest() == Op->get()) {
continue;
} else {
return true;
}
}
// Deallocation instructions don't capture.
if (isa<DeallocationInst>(Inst))
continue;
// Debug instructions don't capture.
if (isa<DebugValueInst>(Inst) || isa<DebugValueAddrInst>(Inst))
continue;
// RefCountOperations don't capture.
//
// The release case is true since Swift does not allow destructors to
// resurrect objects. This is enforced via a runtime failure.
if (isa<RefCountingInst>(Inst))
continue;
// If we have a return instruction and we are assuming that returns don't
// capture, we are safe.
if (Exception == CaptureException::ReturnsCannotCapture &&
(isa<ReturnInst>(Inst) || isa<AutoreleaseReturnInst>(Inst)))
continue;
// We could not prove that Inst does not capture V. Be conservative and
// return true.
DEBUG(llvm::dbgs() << " Could not prove that inst does not capture "
"V!\n");
return true;
}
// We successfully proved that V is not captured. Return false.
DEBUG(llvm::dbgs() << " V was not captured!\n");
return false;
}
static bool isNoAliasArgument(SILValue V) {
auto *Arg = dyn_cast<SILArgument>(V);
if (!Arg)
return false;
return Arg->isFunctionArg() && V.getType().isAddress();
}
/// Return true if the pointer is to a function-local object that never escapes
/// from the function.
bool swift::isNonEscapingLocalObject(SILValue V) {
// If this is a local allocation, or the result of a no read apply inst (which
// can not affect memory in the caller), check to see if the allocation
// escapes.
if (isa<AllocationInst>(*V) || isNoReadBuiltinInst(V))
return !valueMayBeCaptured(V, CaptureException::ReturnsCannotCapture);
// If this is a no alias argument then it has not escaped before entering the
// function. Check if it escapes inside the function.
if (isNoAliasArgument(V))
return !valueMayBeCaptured(V, CaptureException::ReturnsCannotCapture);
// If this is an enum value. If it or its operand does not escape, it is
// local.
if (auto *EI = dyn_cast<EnumInst>(V))
return !EI->hasOperand() ||
!valueMayBeCaptured(EI->getOperand(),
CaptureException::ReturnsCannotCapture);
// Otherwise we could not prove that V is a non escaping local object. Be
// conservative and return false.
return false;
}
/// Check if the value \p Value is known to be zero, non-zero or unknown.
IsZeroKind swift::isZeroValue(SILValue Value) {
// Inspect integer literals.
if (auto *L = dyn_cast<IntegerLiteralInst>(Value.getDef())) {
if (!L->getValue())
return IsZeroKind::Zero;
return IsZeroKind::NotZero;
}
// Inspect Structs.
switch (Value.getDef()->getKind()) {
// Bitcast of zero is zero.
case ValueKind::UncheckedTrivialBitCastInst:
// Extracting from a zero class returns a zero.
case ValueKind::StructExtractInst:
return isZeroValue(cast<SILInstruction>(Value.getDef())->getOperand(0));
default:
break;
}
// Inspect casts.
if (auto *BI = dyn_cast<BuiltinInst>(Value.getDef())) {
switch (BI->getBuiltinInfo().ID) {
case BuiltinValueKind::IntToPtr:
case BuiltinValueKind::PtrToInt:
case BuiltinValueKind::ZExt:
return isZeroValue(BI->getArguments()[0]);
case BuiltinValueKind::UDiv:
case BuiltinValueKind::SDiv: {
if (IsZeroKind::Zero == isZeroValue(BI->getArguments()[0]))
return IsZeroKind::Zero;
return IsZeroKind::Unknown;
}
case BuiltinValueKind::Mul:
case BuiltinValueKind::SMulOver:
case BuiltinValueKind::UMulOver: {
IsZeroKind LHS = isZeroValue(BI->getArguments()[0]);
IsZeroKind RHS = isZeroValue(BI->getArguments()[1]);
if (LHS == IsZeroKind::Zero || RHS == IsZeroKind::Zero)
return IsZeroKind::Zero;
return IsZeroKind::Unknown;
}
default:
return IsZeroKind::Unknown;
}
}
// Handle results of XXX_with_overflow arithmetic.
if (auto *T = dyn_cast<TupleExtractInst>(Value.getDef())) {
// Make sure we are extracting the number value and not
// the overflow flag.
if (T->getFieldNo() != 0)
return IsZeroKind::Unknown;
BuiltinInst *BI = dyn_cast<BuiltinInst>(T->getOperand());
if (!BI)
return IsZeroKind::Unknown;
return isZeroValue(BI);
}
//Inspect allocations and pointer literals.
if (isa<StringLiteralInst>(Value.getDef()) ||
isa<AllocationInst>(Value.getDef()) ||
isa<GlobalAddrInst>(Value.getDef()))
return IsZeroKind::NotZero;
return IsZeroKind::Unknown;
}
/// Check if the sign bit of the value \p V is known to be:
/// set (true), not set (false) or unknown (None).
Optional<bool> swift::computeSignBit(SILValue V) {
SILValue Value = V;
while (true) {
auto *Def = Value.getDef();
// Inspect integer literals.
if (auto *L = dyn_cast<IntegerLiteralInst>(Def)) {
if (L->getValue().isNonNegative())
return false;
return true;
}
switch (Def->getKind()) {
// Bitcast of non-negative is non-negative
case ValueKind::UncheckedTrivialBitCastInst:
Value = cast<SILInstruction>(Def)->getOperand(0);
continue;
default:
break;
}
if (auto *BI = dyn_cast<BuiltinInst>(Def)) {
switch (BI->getBuiltinInfo().ID) {
// Sizeof always returns non-negative results.
case BuiltinValueKind::Sizeof:
return false;
// Strideof always returns non-negative results.
case BuiltinValueKind::Strideof:
return false;
// StrideofNonZero always returns positive results.
case BuiltinValueKind::StrideofNonZero:
return false;
// Alignof always returns non-negative results.
case BuiltinValueKind::Alignof:
return false;
// Both operands to AND must have the top bit set for V to.
case BuiltinValueKind::And: {
// Compute the sign bit of the LHS and RHS.
auto Left = computeSignBit(BI->getArguments()[0]);
auto Right = computeSignBit(BI->getArguments()[1]);
// We don't know either's sign bit so we can't
// say anything about the result.
if (!Left && !Right) {
return None;
}
// Now we know that we were able to determine the sign bit
// for at least one of Left/Right. Canonicalize the determined
// sign bit on the left.
if (Right) {
std::swap(Left, Right);
}
// We know we must have at least one result and it must be on
// the Left. If Right is still not None, then get both values
// and AND them together.
if (Right) {
return Left.getValue() && Right.getValue();
}
// Now we know that Right is None and Left has a value. If
// Left's value is true, then we return None as the final
// sign bit depends on the unknown Right value.
if (Left.getValue()) {
return None;
}
// Otherwise, Left must be false and false AND'd with anything
// else yields false.
return false;
}
// At least one operand to OR must have the top bit set.
case BuiltinValueKind::Or: {
// Compute the sign bit of the LHS and RHS.
auto Left = computeSignBit(BI->getArguments()[0]);
auto Right = computeSignBit(BI->getArguments()[1]);
// We don't know either's sign bit so we can't
// say anything about the result.
if (!Left && !Right) {
return None;
}
// Now we know that we were able to determine the sign bit
// for at least one of Left/Right. Canonicalize the determined
// sign bit on the left.
if (Right) {
std::swap(Left, Right);
}
// We know we must have at least one result and it must be on
// the Left. If Right is still not None, then get both values
// and OR them together.
if (Right) {
return Left.getValue() || Right.getValue();
}
// Now we know that Right is None and Left has a value. If
// Left's value is false, then we return None as the final
// sign bit depends on the unknown Right value.
if (!Left.getValue()) {
return None;
}
// Otherwise, Left must be true and true OR'd with anything
// else yields true.
return true;
}
// Only one of the operands to XOR must have the top bit set.
case BuiltinValueKind::Xor: {
// Compute the sign bit of the LHS and RHS.
auto Left = computeSignBit(BI->getArguments()[0]);
auto Right = computeSignBit(BI->getArguments()[1]);
// If either Left or Right is unknown then we can't say
// anything about the sign of the final result since
// XOR does not short-circuit.
if (!Left || !Right) {
return None;
}
// Now we know that both Left and Right must have a value.
// For the sign of the final result to be set, only one
// of Left or Right should be true.
return Left.getValue() != Right.getValue();
}
case BuiltinValueKind::LShr: {
// If count is provably >= 1, then top bit is not set.
auto *ILShiftCount = dyn_cast<IntegerLiteralInst>(BI->getArguments()[1]);
if (ILShiftCount) {
if (ILShiftCount->getValue().isStrictlyPositive()) {
return false;
}
}
// May be top bit is not set in the value being shifted.
Value = BI->getArguments()[0];
continue;
}
// Source and target type sizes are the same.
// S->U conversion can only succeed if
// the sign bit of its operand is 0, i.e. it is >= 0.
// The sign bit of a result is 0 only if the sign
// bit of a source operand is 0.
case BuiltinValueKind::SUCheckedConversion:
Value = BI->getArguments()[0];
continue;
// Source and target type sizes are the same.
// U->S conversion can only succeed if
// the top bit of its operand is 0, i.e.
// it is representable as a signed integer >=0.
// The sign bit of a result is 0 only if the sign
// bit of a source operand is 0.
case BuiltinValueKind::USCheckedConversion:
Value = BI->getArguments()[0];
continue;
// Sign bit of the operand is promoted.
case BuiltinValueKind::SExt:
Value = BI->getArguments()[0];
continue;
// Source type is always smaller than the target type.
// Therefore the sign bit of a result is always 0.
case BuiltinValueKind::ZExt:
return false;
// Sign bit of the operand is promoted.
case BuiltinValueKind::SExtOrBitCast:
Value = BI->getArguments()[0];
continue;
// TODO: If source type size is smaller than the target type
// the result will be always false.
case BuiltinValueKind::ZExtOrBitCast:
Value = BI->getArguments()[0];
continue;
// Inspect casts.
case BuiltinValueKind::IntToPtr:
case BuiltinValueKind::PtrToInt:
Value = BI->getArguments()[0];
continue;
default:
return None;
}
}
return None;
}
}
/// Check if a checked trunc instruction can overflow.
/// Returns false if it can be proven that no overflow can happen.
/// Otherwise returns true.
static bool checkTruncOverflow(BuiltinInst *BI) {
SILValue Left, Right;
if (match(BI, m_CheckedTrunc(m_And(m_SILValue(Left),
m_SILValue(Right))))) {
// [US]ToSCheckedTrunc(And(x, mask)) cannot overflow
// if mask has the following properties:
// Only the first (N-1) bits are allowed to be set, where N is the width
// of the trunc result type.
//
// [US]ToUCheckedTrunc(And(x, mask)) cannot overflow
// if mask has the following properties:
// Only the first N bits are allowed to be set, where N is the width
// of the trunc result type.
if (auto BITy = BI->getType().
getTupleElementType(0).
getAs<BuiltinIntegerType>()) {
unsigned Width = BITy->getFixedWidth();
switch (BI->getBuiltinInfo().ID) {
case BuiltinValueKind::SToSCheckedTrunc:
case BuiltinValueKind::UToSCheckedTrunc:
// If it is a trunc to a signed value
// then sign bit should not be set to avoid overflows.
--Width;
break;
default:
break;
}
if (auto *ILLeft = dyn_cast<IntegerLiteralInst>(Left)) {
APInt Value = ILLeft->getValue();
if (Value.isIntN(Width)) {
return false;
}
}
if (auto *ILRight = dyn_cast<IntegerLiteralInst>(Right)) {
APInt Value = ILRight->getValue();
if (Value.isIntN(Width)) {
return false;
}
}
}
}
return true;
}
/// Check if execution of a given Apply instruction can result in overflows.
/// Returns true if an overflow can happen. Otherwise returns false.
bool swift::canOverflow(BuiltinInst *BI) {
if (simplifyOverflowBuiltinInstruction(BI) != SILValue())
return false;
if (!checkTruncOverflow(BI))
return false;
// Conservatively assume that an overflow can happen
return true;
}