blob: c3b2a7c160fc50ff0e5fd81a7e113d70e4db8da2 [file] [log] [blame]
//===--- ASTContext.cpp - ASTContext Implementation -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext class.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/Strings.h"
#include "swift/AST/ArchetypeBuilder.h"
#include "swift/AST/AST.h"
#include "swift/AST/ConcreteDeclRef.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExprHandle.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/KnownProtocols.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/RawComment.h"
#include "swift/AST/TypeCheckerDebugConsumer.h"
#include "swift/Basic/SourceManager.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/Support/Allocator.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include <algorithm>
#include <memory>
using namespace swift;
LazyResolver::~LazyResolver() = default;
void ModuleLoader::anchor() {}
void ClangModuleLoader::anchor() {}
llvm::StringRef swift::getProtocolName(KnownProtocolKind kind) {
switch (kind) {
#define PROTOCOL_WITH_NAME(Id, Name) \
case KnownProtocolKind::Id: \
return Name;
#include "swift/AST/KnownProtocols.def"
}
llvm_unreachable("bad KnownProtocolKind");
}
namespace {
typedef std::tuple<ClassDecl *, ObjCSelector, bool> ObjCMethodConflict;
/// An unsatisfied, optional @objc requirement in a protocol conformance.
typedef std::pair<DeclContext *, AbstractFunctionDecl *>
ObjCUnsatisfiedOptReq;
enum class SearchPathKind : uint8_t {
Import = 1 << 0,
Framework = 1 << 1
};
}
struct ASTContext::Implementation {
Implementation();
~Implementation();
llvm::BumpPtrAllocator Allocator; // used in later initializations
/// The set of cleanups to be called when the ASTContext is destroyed.
std::vector<std::function<void(void)>> Cleanups;
/// The last resolver.
LazyResolver *Resolver = nullptr;
llvm::StringMap<char, llvm::BumpPtrAllocator&> IdentifierTable;
/// The declaration of Swift.Bool.
NominalTypeDecl *BoolDecl = nullptr;
/// The declaration of Swift.Int.
NominalTypeDecl *IntDecl = nullptr;
/// The declaration of Swift.UInt.
NominalTypeDecl *UIntDecl = nullptr;
/// The declaration of Swift.Float.
NominalTypeDecl *FloatDecl = nullptr;
/// The declaration of Swift.Double.
NominalTypeDecl *DoubleDecl = nullptr;
/// The declaration of Swift.String.
NominalTypeDecl *StringDecl = nullptr;
/// The declaration of Swift.Array<T>.
NominalTypeDecl *ArrayDecl = nullptr;
/// The declaration of Swift.Set<T>.
NominalTypeDecl *SetDecl = nullptr;
/// The declaration of Swift.SequenceType<T>.
NominalTypeDecl *SequenceTypeDecl = nullptr;
/// The declaration of Swift.Dictionary<T>.
NominalTypeDecl *DictionaryDecl = nullptr;
/// The declaration of Swift.Optional<T>.
EnumDecl *OptionalDecl = nullptr;
/// The declaration of Swift.Optional<T>.Some.
EnumElementDecl *OptionalSomeDecl = nullptr;
/// The declaration of Swift.Optional<T>.None.
EnumElementDecl *OptionalNoneDecl = nullptr;
/// The declaration of Swift.OptionSetType.
NominalTypeDecl *OptionSetTypeDecl = nullptr;
/// The declaration of Swift.ImplicitlyUnwrappedOptional<T>.Some.
EnumElementDecl *ImplicitlyUnwrappedOptionalSomeDecl = nullptr;
/// The declaration of Swift.ImplicitlyUnwrappedOptional<T>.None.
EnumElementDecl *ImplicitlyUnwrappedOptionalNoneDecl = nullptr;
/// The declaration of Swift.UnsafeMutablePointer<T>.
NominalTypeDecl *UnsafeMutablePointerDecl = nullptr;
VarDecl *UnsafeMutablePointerMemoryDecl = nullptr;
/// The declaration of Swift.UnsafePointer<T>.
NominalTypeDecl *UnsafePointerDecl = nullptr;
VarDecl *UnsafePointerMemoryDecl = nullptr;
/// The declaration of Swift.AutoreleasingUnsafeMutablePointer<T>.
NominalTypeDecl *AutoreleasingUnsafeMutablePointerDecl = nullptr;
VarDecl *AutoreleasingUnsafeMutablePointerMemoryDecl = nullptr;
/// The declaration of Swift.Unmanaged<T>
NominalTypeDecl *UnmanagedDecl = nullptr;
/// The declaration of Swift.Void.
TypeAliasDecl *VoidDecl = nullptr;
/// The declaration of Swift.Any.
TypeAliasDecl *AnyDecl = nullptr;
/// The declaration of ObjectiveC.ObjCBool.
StructDecl *ObjCBoolDecl = nullptr;
// Declare cached declarations for each of the known declarations.
#define FUNC_DECL(Name, Id) FuncDecl *Get##Name = nullptr;
#include "swift/AST/KnownDecls.def"
/// func _doesOptionalHaveValueAsBool<T>(v: Optional<T>) -> Bool
FuncDecl *DoesOptionalHaveValueAsBoolDecls[NumOptionalTypeKinds] = {};
/// func _getOptionalValue<T>(v : Optional<T>) -> T
FuncDecl *GetOptionalValueDecls[NumOptionalTypeKinds] = {};
/// The declaration of Swift.ImplicitlyUnwrappedOptional<T>.
EnumDecl *ImplicitlyUnwrappedOptionalDecl = nullptr;
/// func _getBool(Builtin.Int1) -> Bool
FuncDecl *GetBoolDecl = nullptr;
/// func ==(Int, Int) -> Bool
FuncDecl *EqualIntDecl = nullptr;
/// func _unimplemented_initializer(className: StaticString).
FuncDecl *UnimplementedInitializerDecl = nullptr;
/// func _stdlib_isOSVersionAtLeast(Builtin.Word,Builtin.Word, Builtin.word)
// -> Builtin.Int1
FuncDecl *IsOSVersionAtLeastDecl = nullptr;
/// \brief The set of known protocols, lazily populated as needed.
ProtocolDecl *KnownProtocols[NumKnownProtocols] = { };
/// \brief The various module loaders that import external modules into this
/// ASTContext.
SmallVector<std::unique_ptr<swift::ModuleLoader>, 4> ModuleLoaders;
/// \brief The module loader used to load Clang modules.
ClangModuleLoader *TheClangModuleLoader = nullptr;
/// \brief Map from Swift declarations to raw comments.
llvm::DenseMap<const Decl *, RawComment> RawComments;
/// \brief Map from Swift declarations to brief comments.
llvm::DenseMap<const Decl *, StringRef> BriefComments;
/// \brief Map from local declarations to their discriminators.
/// Missing entries implicitly have value 0.
llvm::DenseMap<const ValueDecl *, unsigned> LocalDiscriminators;
/// \brief Map from declarations to foreign error conventions.
/// This applies to both actual imported functions and to @objc functions.
llvm::DenseMap<const AbstractFunctionDecl *,
ForeignErrorConvention> ForeignErrorConventions;
/// Map from normal protocol conformances to diagnostics that have
/// been delayed until the conformance is fully checked.
llvm::DenseMap<NormalProtocolConformance *,
std::vector<ASTContext::DelayedConformanceDiag>>
DelayedConformanceDiags;
/// Conformance loaders for declarations that have them.
llvm::DenseMap<Decl *, std::pair<LazyMemberLoader *, uint64_t>>
ConformanceLoaders;
/// \brief A cached unused pattern-binding initializer context.
PatternBindingInitializer *UnusedPatternBindingContext = nullptr;
/// \brief A cached unused default-argument initializer context.
DefaultArgumentInitializer *UnusedDefaultArgumentContext = nullptr;
/// Mapping from archetypes with lazily-resolved nested types to the
/// archetype builder and potential archetype corresponding to that
/// archetype.
llvm::DenseMap<const ArchetypeType *,
std::pair<ArchetypeBuilder *,
ArchetypeBuilder::PotentialArchetype *>>
LazyArchetypes;
/// \brief Stored archetype builders.
llvm::DenseMap<std::pair<GenericSignature *, ModuleDecl *>,
std::unique_ptr<ArchetypeBuilder>> ArchetypeBuilders;
/// \brief Structure that captures data that is segregated into different
/// arenas.
struct Arena {
llvm::FoldingSet<TupleType> TupleTypes;
llvm::DenseMap<std::pair<Type,char>, MetatypeType*> MetatypeTypes;
llvm::DenseMap<std::pair<Type,char>,
ExistentialMetatypeType*> ExistentialMetatypeTypes;
llvm::DenseMap<std::pair<Type,std::pair<Type,unsigned>>, FunctionType*>
FunctionTypes;
llvm::DenseMap<Type, ArraySliceType*> ArraySliceTypes;
llvm::DenseMap<std::pair<Type, Type>, DictionaryType *> DictionaryTypes;
llvm::DenseMap<Type, OptionalType*> OptionalTypes;
llvm::DenseMap<Type, ImplicitlyUnwrappedOptionalType*> ImplicitlyUnwrappedOptionalTypes;
llvm::DenseMap<Type, ParenType*> ParenTypes;
llvm::DenseMap<uintptr_t, ReferenceStorageType*> ReferenceStorageTypes;
llvm::DenseMap<Type, LValueType*> LValueTypes;
llvm::DenseMap<Type, InOutType*> InOutTypes;
llvm::DenseMap<std::pair<Type, Type>, SubstitutedType *> SubstitutedTypes;
llvm::DenseMap<std::pair<Type, void*>, DependentMemberType *>
DependentMemberTypes;
llvm::DenseMap<Type, DynamicSelfType *> DynamicSelfTypes;
llvm::FoldingSet<EnumType> EnumTypes;
llvm::FoldingSet<StructType> StructTypes;
llvm::FoldingSet<ClassType> ClassTypes;
llvm::FoldingSet<UnboundGenericType> UnboundGenericTypes;
llvm::FoldingSet<BoundGenericType> BoundGenericTypes;
llvm::DenseMap<std::pair<BoundGenericType *, DeclContext *>,
ArrayRef<Substitution>>
BoundGenericSubstitutions;
/// The set of normal protocol conformances.
llvm::FoldingSet<NormalProtocolConformance> NormalConformances;
/// The set of specialized protocol conformances.
llvm::FoldingSet<SpecializedProtocolConformance> SpecializedConformances;
/// The set of inherited protocol conformances.
llvm::FoldingSet<InheritedProtocolConformance> InheritedConformances;
~Arena() {
for (auto &conformance : SpecializedConformances)
conformance.~SpecializedProtocolConformance();
for (auto &conformance : InheritedConformances)
conformance.~InheritedProtocolConformance();
// Call the normal conformance destructors last since they could be
// referenced by the other conformance types.
for (auto &conformance : NormalConformances)
conformance.~NormalProtocolConformance();
}
size_t getTotalMemory() const;
};
llvm::DenseMap<Module*, ModuleType*> ModuleTypes;
llvm::DenseMap<std::pair<unsigned, unsigned>, GenericTypeParamType *>
GenericParamTypes;
llvm::FoldingSet<GenericFunctionType> GenericFunctionTypes;
llvm::FoldingSet<SILFunctionType> SILFunctionTypes;
llvm::DenseMap<CanType, SILBlockStorageType *> SILBlockStorageTypes;
llvm::DenseMap<CanType, SILBoxType *> SILBoxTypes;
llvm::DenseMap<BuiltinIntegerWidth, BuiltinIntegerType*> IntegerTypes;
llvm::FoldingSet<ProtocolCompositionType> ProtocolCompositionTypes;
llvm::FoldingSet<BuiltinVectorType> BuiltinVectorTypes;
llvm::FoldingSet<GenericSignature> GenericSignatures;
llvm::FoldingSet<DeclName::CompoundDeclName> CompoundNames;
llvm::DenseMap<UUID, ArchetypeType *> OpenedExistentialArchetypes;
/// List of Objective-C member conflicts we have found during type checking.
std::vector<ObjCMethodConflict> ObjCMethodConflicts;
/// List of optional @objc protocol requirements that have gone
/// unsatisfied, which might conflict with other Objective-C methods.
std::vector<ObjCUnsatisfiedOptReq> ObjCUnsatisfiedOptReqs;
/// List of Objective-C methods created by the type checker (and not
/// by the Clang importer or deserialized), which is used for
/// checking unintended Objective-C overrides.
std::vector<AbstractFunctionDecl *> ObjCMethods;
llvm::StringMap<OptionSet<SearchPathKind>> SearchPathsSet;
/// \brief The permanent arena.
Arena Permanent;
/// Temporary arena used for a constraint solver.
struct ConstraintSolverArena : public Arena {
/// The allocator used for all allocations within this arena.
llvm::BumpPtrAllocator &Allocator;
/// Callback used to get a type member of a type variable.
GetTypeVariableMemberCallback GetTypeMember;
ConstraintSolverArena(llvm::BumpPtrAllocator &allocator,
GetTypeVariableMemberCallback &&getTypeMember)
: Allocator(allocator), GetTypeMember(std::move(getTypeMember)) { }
ConstraintSolverArena(const ConstraintSolverArena &) = delete;
ConstraintSolverArena(ConstraintSolverArena &&) = delete;
ConstraintSolverArena &operator=(const ConstraintSolverArena &) = delete;
ConstraintSolverArena &operator=(ConstraintSolverArena &&) = delete;
};
/// \brief The current constraint solver arena, if any.
std::unique_ptr<ConstraintSolverArena> CurrentConstraintSolverArena;
Arena &getArena(AllocationArena arena) {
switch (arena) {
case AllocationArena::Permanent:
return Permanent;
case AllocationArena::ConstraintSolver:
assert(CurrentConstraintSolverArena && "No constraint solver active?");
return *CurrentConstraintSolverArena;
}
llvm_unreachable("bad AllocationArena");
}
};
ASTContext::Implementation::Implementation()
: IdentifierTable(Allocator) {}
ASTContext::Implementation::~Implementation() {
for (auto &cleanup : Cleanups)
cleanup();
}
ConstraintCheckerArenaRAII::
ConstraintCheckerArenaRAII(ASTContext &self, llvm::BumpPtrAllocator &allocator,
GetTypeVariableMemberCallback getTypeMember)
: Self(self), Data(self.Impl.CurrentConstraintSolverArena.release())
{
Self.Impl.CurrentConstraintSolverArena.reset(
new ASTContext::Implementation::ConstraintSolverArena(
allocator,
std::move(getTypeMember)));
}
ConstraintCheckerArenaRAII::~ConstraintCheckerArenaRAII() {
Self.Impl.CurrentConstraintSolverArena.reset(
(ASTContext::Implementation::ConstraintSolverArena *)Data);
}
static Module *createBuiltinModule(ASTContext &ctx) {
auto M = Module::create(ctx.getIdentifier("Builtin"), ctx);
M->addFile(*new (ctx) BuiltinUnit(*M));
return M;
}
ASTContext::ASTContext(LangOptions &langOpts, SearchPathOptions &SearchPathOpts,
SourceManager &SourceMgr, DiagnosticEngine &Diags)
: Impl(*new Implementation()),
LangOpts(langOpts),
SearchPathOpts(SearchPathOpts),
SourceMgr(SourceMgr),
Diags(Diags),
TheBuiltinModule(createBuiltinModule(*this)),
StdlibModuleName(getIdentifier(STDLIB_NAME)),
SwiftShimsModuleName(getIdentifier(SWIFT_SHIMS_NAME)),
TypeCheckerDebug(new StderrTypeCheckerDebugConsumer()),
TheErrorType(new (*this, AllocationArena::Permanent) ErrorType(*this)),
TheUnresolvedType(new (*this, AllocationArena::Permanent)
UnresolvedType(*this)),
TheEmptyTupleType(TupleType::get(ArrayRef<TupleTypeElt>(), *this)),
TheNativeObjectType(new (*this, AllocationArena::Permanent)
BuiltinNativeObjectType(*this)),
TheBridgeObjectType(new (*this, AllocationArena::Permanent)
BuiltinBridgeObjectType(*this)),
TheUnknownObjectType(new (*this, AllocationArena::Permanent)
BuiltinUnknownObjectType(*this)),
TheRawPointerType(new (*this, AllocationArena::Permanent)
BuiltinRawPointerType(*this)),
TheUnsafeValueBufferType(new (*this, AllocationArena::Permanent)
BuiltinUnsafeValueBufferType(*this)),
TheIEEE32Type(new (*this, AllocationArena::Permanent)
BuiltinFloatType(BuiltinFloatType::IEEE32,*this)),
TheIEEE64Type(new (*this, AllocationArena::Permanent)
BuiltinFloatType(BuiltinFloatType::IEEE64,*this)),
TheIEEE16Type(new (*this, AllocationArena::Permanent)
BuiltinFloatType(BuiltinFloatType::IEEE16,*this)),
TheIEEE80Type(new (*this, AllocationArena::Permanent)
BuiltinFloatType(BuiltinFloatType::IEEE80,*this)),
TheIEEE128Type(new (*this, AllocationArena::Permanent)
BuiltinFloatType(BuiltinFloatType::IEEE128, *this)),
ThePPC128Type(new (*this, AllocationArena::Permanent)
BuiltinFloatType(BuiltinFloatType::PPC128, *this)) {
// Initialize all of the known identifiers.
#define IDENTIFIER_WITH_NAME(Name, IdStr) Id_##Name = getIdentifier(IdStr);
#include "swift/AST/KnownIdentifiers.def"
// Record the initial set of search paths.
for (StringRef path : SearchPathOpts.ImportSearchPaths)
Impl.SearchPathsSet[path] |= SearchPathKind::Import;
for (StringRef path : SearchPathOpts.FrameworkSearchPaths)
Impl.SearchPathsSet[path] |= SearchPathKind::Framework;
}
ASTContext::~ASTContext() {
delete &Impl;
}
llvm::BumpPtrAllocator &ASTContext::getAllocator(AllocationArena arena) const {
switch (arena) {
case AllocationArena::Permanent:
return Impl.Allocator;
case AllocationArena::ConstraintSolver:
assert(Impl.CurrentConstraintSolverArena.get() != nullptr);
return Impl.CurrentConstraintSolverArena->Allocator;
}
llvm_unreachable("bad AllocationArena");
}
LazyResolver *ASTContext::getLazyResolver() const {
return Impl.Resolver;
}
/// Set the lazy resolver for this context.
void ASTContext::setLazyResolver(LazyResolver *resolver) {
if (resolver) {
assert(Impl.Resolver == nullptr && "already have a resolver");
Impl.Resolver = resolver;
} else {
assert(Impl.Resolver != nullptr && "no resolver to remove");
Impl.Resolver = resolver;
}
}
/// getIdentifier - Return the uniqued and AST-Context-owned version of the
/// specified string.
Identifier ASTContext::getIdentifier(StringRef Str) const {
// Make sure null pointers stay null.
if (Str.data() == nullptr) return Identifier(0);
auto I = Impl.IdentifierTable.insert(std::make_pair(Str, char())).first;
return Identifier(I->getKeyData());
}
void ASTContext::lookupInSwiftModule(
StringRef name,
SmallVectorImpl<ValueDecl *> &results) const {
Module *M = getStdlibModule();
if (!M)
return;
// Find all of the declarations with this name in the Swift module.
auto identifier = getIdentifier(name);
M->lookupValue({ }, identifier, NLKind::UnqualifiedLookup, results);
}
/// Find the generic implementation declaration for the named syntactic-sugar
/// type.
static NominalTypeDecl *findStdlibType(const ASTContext &ctx, StringRef name,
unsigned genericParams) {
// Find all of the declarations with this name in the Swift module.
SmallVector<ValueDecl *, 1> results;
ctx.lookupInSwiftModule(name, results);
for (auto result : results) {
if (auto nominal = dyn_cast<NominalTypeDecl>(result)) {
auto params = nominal->getGenericParams();
if (genericParams == (params == nullptr ? 0 : params->size())) {
// We found it.
return nominal;
}
}
}
return nullptr;
}
NominalTypeDecl *ASTContext::getBoolDecl() const {
if (!Impl.BoolDecl)
Impl.BoolDecl = findStdlibType(*this, "Bool", 0);
return Impl.BoolDecl;
}
NominalTypeDecl *ASTContext::getIntDecl() const {
if (!Impl.IntDecl)
Impl.IntDecl = findStdlibType(*this, "Int", 0);
return Impl.IntDecl;
}
NominalTypeDecl *ASTContext::getUIntDecl() const {
if (!Impl.UIntDecl)
Impl.UIntDecl = findStdlibType(*this, "UInt", 0);
return Impl.UIntDecl;
}
NominalTypeDecl *ASTContext::getFloatDecl() const {
if (!Impl.FloatDecl)
Impl.FloatDecl = findStdlibType(*this, "Float", 0);
return Impl.FloatDecl;
}
NominalTypeDecl *ASTContext::getDoubleDecl() const {
if (!Impl.DoubleDecl)
Impl.DoubleDecl = findStdlibType(*this, "Double", 0);
return Impl.DoubleDecl;
}
NominalTypeDecl *ASTContext::getStringDecl() const {
if (!Impl.StringDecl)
Impl.StringDecl = findStdlibType(*this, "String", 0);
return Impl.StringDecl;
}
CanType ASTContext::getExceptionType() const {
if (auto exn = getExceptionTypeDecl()) {
return exn->getDeclaredType()->getCanonicalType();
} else {
// Use Builtin.NativeObject just as a stand-in.
return TheNativeObjectType;
}
}
NominalTypeDecl *ASTContext::getExceptionTypeDecl() const {
return getProtocol(KnownProtocolKind::ErrorType);
}
NominalTypeDecl *ASTContext::getArrayDecl() const {
if (!Impl.ArrayDecl)
Impl.ArrayDecl = findStdlibType(*this, "Array", 1);
return Impl.ArrayDecl;
}
NominalTypeDecl *ASTContext::getSetDecl() const {
if (!Impl.SetDecl)
Impl.SetDecl = findStdlibType(*this, "Set", 1);
return Impl.SetDecl;
}
NominalTypeDecl *ASTContext::getSequenceTypeDecl() const {
if (!Impl.SequenceTypeDecl)
Impl.SequenceTypeDecl = findStdlibType(*this, "SequenceType", 1);
return Impl.SequenceTypeDecl;
}
NominalTypeDecl *ASTContext::getDictionaryDecl() const {
if (!Impl.DictionaryDecl)
Impl.DictionaryDecl = findStdlibType(*this, "Dictionary", 2);
return Impl.DictionaryDecl;
}
EnumDecl *ASTContext::getOptionalDecl(OptionalTypeKind kind) const {
switch (kind) {
case OTK_None:
llvm_unreachable("not optional");
case OTK_ImplicitlyUnwrappedOptional:
return getImplicitlyUnwrappedOptionalDecl();
case OTK_Optional:
return getOptionalDecl();
}
}
EnumDecl *ASTContext::getOptionalDecl() const {
if (!Impl.OptionalDecl)
Impl.OptionalDecl
= dyn_cast_or_null<EnumDecl>(findStdlibType(*this, "Optional", 1));
return Impl.OptionalDecl;
}
static EnumElementDecl *findEnumElement(EnumDecl *e, StringRef name) {
if (!e) return nullptr;
auto ident = e->getASTContext().getIdentifier(name);
for (auto elt : e->getAllElements()) {
if (elt->getName() == ident)
return elt;
}
return nullptr;
}
EnumElementDecl *ASTContext::getOptionalSomeDecl(OptionalTypeKind kind) const {
switch (kind) {
case OTK_Optional:
return getOptionalSomeDecl();
case OTK_ImplicitlyUnwrappedOptional:
return getImplicitlyUnwrappedOptionalSomeDecl();
case OTK_None:
llvm_unreachable("getting Some decl for non-optional type?");
}
llvm_unreachable("bad OTK");
}
EnumElementDecl *ASTContext::getOptionalNoneDecl(OptionalTypeKind kind) const {
switch (kind) {
case OTK_Optional:
return getOptionalNoneDecl();
case OTK_ImplicitlyUnwrappedOptional:
return getImplicitlyUnwrappedOptionalNoneDecl();
case OTK_None:
llvm_unreachable("getting None decl for non-optional type?");
}
llvm_unreachable("bad OTK");
}
EnumElementDecl *ASTContext::getOptionalSomeDecl() const {
if (!Impl.OptionalSomeDecl)
Impl.OptionalSomeDecl = findEnumElement(getOptionalDecl(), "Some");
return Impl.OptionalSomeDecl;
}
EnumElementDecl *ASTContext::getOptionalNoneDecl() const {
if (!Impl.OptionalNoneDecl)
Impl.OptionalNoneDecl = findEnumElement(getOptionalDecl(), "None");
return Impl.OptionalNoneDecl;
}
EnumDecl *ASTContext::getImplicitlyUnwrappedOptionalDecl() const {
if (!Impl.ImplicitlyUnwrappedOptionalDecl)
Impl.ImplicitlyUnwrappedOptionalDecl
= dyn_cast_or_null<EnumDecl>(
findStdlibType(*this, "ImplicitlyUnwrappedOptional", 1));
return Impl.ImplicitlyUnwrappedOptionalDecl;
}
EnumElementDecl *ASTContext::getImplicitlyUnwrappedOptionalSomeDecl() const {
if (!Impl.ImplicitlyUnwrappedOptionalSomeDecl)
Impl.ImplicitlyUnwrappedOptionalSomeDecl =
findEnumElement(getImplicitlyUnwrappedOptionalDecl(), "Some");
return Impl.ImplicitlyUnwrappedOptionalSomeDecl;
}
EnumElementDecl *ASTContext::getImplicitlyUnwrappedOptionalNoneDecl() const {
if (!Impl.ImplicitlyUnwrappedOptionalNoneDecl)
Impl.ImplicitlyUnwrappedOptionalNoneDecl =
findEnumElement(getImplicitlyUnwrappedOptionalDecl(), "None");
return Impl.ImplicitlyUnwrappedOptionalNoneDecl;
}
NominalTypeDecl *ASTContext::getOptionSetTypeDecl() const {
if (!Impl.OptionSetTypeDecl)
Impl.OptionSetTypeDecl = findStdlibType(*this, "OptionSetType", 1);
return Impl.OptionSetTypeDecl;
}
NominalTypeDecl *ASTContext::getUnsafeMutablePointerDecl() const {
if (!Impl.UnsafeMutablePointerDecl)
Impl.UnsafeMutablePointerDecl = findStdlibType(
*this, "UnsafeMutablePointer", 1);
return Impl.UnsafeMutablePointerDecl;
}
NominalTypeDecl *ASTContext::getUnsafePointerDecl() const {
if (!Impl.UnsafePointerDecl)
Impl.UnsafePointerDecl
= findStdlibType(*this, "UnsafePointer", 1);
return Impl.UnsafePointerDecl;
}
NominalTypeDecl *ASTContext::getAutoreleasingUnsafeMutablePointerDecl() const {
if (!Impl.AutoreleasingUnsafeMutablePointerDecl)
Impl.AutoreleasingUnsafeMutablePointerDecl
= findStdlibType(*this, "AutoreleasingUnsafeMutablePointer", 1);
return Impl.AutoreleasingUnsafeMutablePointerDecl;
}
NominalTypeDecl *ASTContext::getUnmanagedDecl() const {
if (!Impl.UnmanagedDecl)
Impl.UnmanagedDecl = findStdlibType(*this, "Unmanaged", 1);
return Impl.UnmanagedDecl;
}
static VarDecl *getMemoryProperty(VarDecl *&cache,
NominalTypeDecl *(ASTContext::*getNominal)() const,
const ASTContext &ctx) {
if (cache) return cache;
// There must be a generic type with one argument.
NominalTypeDecl *nominal = (ctx.*getNominal)();
if (!nominal) return nullptr;
auto generics = nominal->getGenericParams();
if (!generics) return nullptr;
if (generics->size() != 1) return nullptr;
// There must be a property named "memory".
auto identifier = ctx.getIdentifier("memory");
auto results = nominal->lookupDirect(identifier);
if (results.size() != 1) return nullptr;
// The property must have type T.
VarDecl *property = dyn_cast<VarDecl>(results[0]);
if (!property) return nullptr;
if (!property->getType()->isEqual(generics->getPrimaryArchetypes()[0]))
return nullptr;
cache = property;
return property;
}
VarDecl *
ASTContext::getPointerMemoryPropertyDecl(PointerTypeKind ptrKind) const {
switch (ptrKind) {
case PTK_UnsafeMutablePointer:
return getMemoryProperty(Impl.UnsafeMutablePointerMemoryDecl,
&ASTContext::getUnsafeMutablePointerDecl,
*this);
case PTK_UnsafePointer:
return getMemoryProperty(Impl.UnsafePointerMemoryDecl,
&ASTContext::getUnsafePointerDecl,
*this);
case PTK_AutoreleasingUnsafeMutablePointer:
return getMemoryProperty(Impl.AutoreleasingUnsafeMutablePointerMemoryDecl,
&ASTContext::getAutoreleasingUnsafeMutablePointerDecl,
*this);
}
llvm_unreachable("bad pointer kind");
}
TypeAliasDecl *ASTContext::getVoidDecl() const {
if (Impl.VoidDecl) {
return Impl.VoidDecl;
}
// Go find 'Void' in the Swift module.
SmallVector<ValueDecl *, 1> results;
lookupInSwiftModule("Void", results);
for (auto result : results) {
if (auto typeAlias = dyn_cast<TypeAliasDecl>(result)) {
Impl.VoidDecl = typeAlias;
return typeAlias;
}
}
return Impl.VoidDecl;
}
TypeAliasDecl *ASTContext::getAnyDecl() const {
if (Impl.AnyDecl) {
return Impl.AnyDecl;
}
// Go find 'Any' in the Swift module.
SmallVector<ValueDecl *, 1> results;
lookupInSwiftModule("Any", results);
for (auto result : results) {
if (auto typeAlias = dyn_cast<TypeAliasDecl>(result)) {
Impl.AnyDecl = typeAlias;
break;
}
}
return Impl.AnyDecl;
}
StructDecl *ASTContext::getObjCBoolDecl() {
if (!Impl.ObjCBoolDecl) {
SmallVector<ValueDecl *, 1> results;
if (Module *M = getModuleByName(Id_ObjectiveC.str())) {
M->lookupValue({ }, getIdentifier("ObjCBool"), NLKind::UnqualifiedLookup,
results);
for (auto result : results) {
if (auto structDecl = dyn_cast<StructDecl>(result)) {
if (structDecl->getGenericParams() == nullptr) {
Impl.ObjCBoolDecl = structDecl;
break;
}
}
}
}
}
return Impl.ObjCBoolDecl;
}
ProtocolDecl *ASTContext::getProtocol(KnownProtocolKind kind) const {
// Check whether we've already looked for and cached this protocol.
unsigned index = (unsigned)kind;
assert(index < NumKnownProtocols && "Number of known protocols is wrong");
if (Impl.KnownProtocols[index])
return Impl.KnownProtocols[index];
// Find all of the declarations with this name in the appropriate module.
SmallVector<ValueDecl *, 1> results;
// _BridgedNSError is in the Foundation module.
if (kind == KnownProtocolKind::BridgedNSError) {
Module *foundation = const_cast<ASTContext *>(this)->getModule(
{{Id_Foundation, SourceLoc()}});
if (!foundation)
return nullptr;
auto identifier = getIdentifier(getProtocolName(kind));
foundation->lookupValue({ }, identifier, NLKind::UnqualifiedLookup,
results);
} else {
lookupInSwiftModule(getProtocolName(kind), results);
}
for (auto result : results) {
if (auto protocol = dyn_cast<ProtocolDecl>(result)) {
Impl.KnownProtocols[index] = protocol;
return protocol;
}
}
return nullptr;
}
/// Find the implementation for the given "intrinsic" library function.
static FuncDecl *findLibraryIntrinsic(const ASTContext &ctx,
StringRef name,
LazyResolver *resolver) {
SmallVector<ValueDecl *, 1> results;
ctx.lookupInSwiftModule(name, results);
if (results.size() == 1) {
if (auto FD = dyn_cast<FuncDecl>(results.front())) {
if (resolver)
resolver->resolveDeclSignature(FD);
return FD;
}
}
return nullptr;
}
static CanType stripImmediateLabels(CanType type) {
while (auto tuple = dyn_cast<TupleType>(type)) {
if (tuple->getNumElements() == 1) {
type = tuple.getElementType(0);
} else {
break;
}
}
return type;
}
/// Check whether the given function is non-generic.
static bool isNonGenericIntrinsic(FuncDecl *fn, CanType &input,
CanType &output) {
auto fnType = dyn_cast<FunctionType>(fn->getType()->getCanonicalType());
if (!fnType)
return false;
input = stripImmediateLabels(fnType.getInput());
output = stripImmediateLabels(fnType.getResult());
return true;
}
/// Check whether the given type is Builtin.Int1.
static bool isBuiltinInt1Type(CanType type) {
if (auto intType = dyn_cast<BuiltinIntegerType>(type))
return intType->isFixedWidth() && intType->getFixedWidth() == 1;
return false;
}
/// Check whether the given type is Builtin.Word.
static bool isBuiltinWordType(CanType type) {
if (auto intType = dyn_cast<BuiltinIntegerType>(type))
return intType->getWidth().isPointerWidth();
return false;
}
FuncDecl *ASTContext::getGetBoolDecl(LazyResolver *resolver) const {
if (Impl.GetBoolDecl)
return Impl.GetBoolDecl;
// Look for the function.
CanType input, output;
auto decl = findLibraryIntrinsic(*this, "_getBool", resolver);
if (!decl || !isNonGenericIntrinsic(decl, input, output))
return nullptr;
// Input must be Builtin.Int1
if (!isBuiltinInt1Type(input))
return nullptr;
// Output must be a global type named Bool.
auto nominalType = dyn_cast<NominalType>(output);
if (!nominalType ||
nominalType.getParent() ||
nominalType->getDecl()->getName().str() != "Bool")
return nullptr;
Impl.GetBoolDecl = decl;
return decl;
}
FuncDecl *ASTContext::getEqualIntDecl(LazyResolver *resolver) const {
if (Impl.EqualIntDecl)
return Impl.EqualIntDecl;
CanType intType = getIntDecl()->getDeclaredType().getCanonicalTypeOrNull();
CanType boolType = getBoolDecl()->getDeclaredType().getCanonicalTypeOrNull();
SmallVector<ValueDecl *, 30> equalFuncs;
lookupInSwiftModule("==", equalFuncs);
// Find the overload for Int.
for (ValueDecl *vd : equalFuncs) {
// All "==" decls should be functions, but who knows...
FuncDecl *funcDecl = dyn_cast<FuncDecl>(vd);
if (!funcDecl)
continue;
if (resolver)
resolver->resolveDeclSignature(funcDecl);
CanType input, resultType;
if (!isNonGenericIntrinsic(funcDecl, input, resultType))
continue;
// Check for the signature: (Int, Int) -> Bool
auto tType = dyn_cast<TupleType>(input.getPointer());
assert(tType);
if (tType->getNumElements() != 2)
continue;
CanType argType1 = tType->getElementType(0).getCanonicalTypeOrNull();
CanType argType2 = tType->getElementType(1).getCanonicalTypeOrNull();
if (argType1 == intType && argType2 == intType && resultType == boolType) {
Impl.EqualIntDecl = funcDecl;
return funcDecl;
}
}
return nullptr;
}
FuncDecl *
ASTContext::getUnimplementedInitializerDecl(LazyResolver *resolver) const {
if (Impl.UnimplementedInitializerDecl)
return Impl.UnimplementedInitializerDecl;
// Look for the function.
CanType input, output;
auto decl = findLibraryIntrinsic(*this, "_unimplemented_initializer",
resolver);
if (!decl || !isNonGenericIntrinsic(decl, input, output))
return nullptr;
// FIXME: Check inputs and outputs.
Impl.UnimplementedInitializerDecl = decl;
return decl;
}
FuncDecl *ASTContext::getIsOSVersionAtLeastDecl(LazyResolver *resolver) const {
if (Impl.IsOSVersionAtLeastDecl)
return Impl.IsOSVersionAtLeastDecl;
// Look for the function.
CanType input, output;
auto decl =
findLibraryIntrinsic(*this, "_stdlib_isOSVersionAtLeast", resolver);
if (!decl || !isNonGenericIntrinsic(decl, input, output))
return nullptr;
// Input must be (Builtin.Word, Builtin.Word, Builtin.Word)
auto inputTuple = dyn_cast<TupleType>(input);
if (!inputTuple || inputTuple->getNumElements() != 3 ||
!isBuiltinWordType(
inputTuple->getElementType(0).getCanonicalTypeOrNull()) ||
!isBuiltinWordType(
inputTuple->getElementType(1).getCanonicalTypeOrNull()) ||
!isBuiltinWordType(
inputTuple->getElementType(2).getCanonicalTypeOrNull())) {
return nullptr;
}
// Output must be Builtin.Int1
if (!isBuiltinInt1Type(output))
return nullptr;
Impl.IsOSVersionAtLeastDecl = decl;
return decl;
}
/// Check whether the given function is generic over a single,
/// unconstrained archetype.
static bool isGenericIntrinsic(FuncDecl *fn, CanType &input, CanType &output,
CanType &param) {
auto fnType =
dyn_cast<GenericFunctionType>(fn->getInterfaceType()->getCanonicalType());
if (!fnType || fnType->getGenericParams().size() != 1)
return false;
bool hasRequirements = std::any_of(fnType->getRequirements().begin(),
fnType->getRequirements().end(),
[](const Requirement &req) -> bool {
return req.getKind() != RequirementKind::WitnessMarker;
});
if (hasRequirements)
return false;
param = CanGenericTypeParamType(fnType->getGenericParams().front());
input = stripImmediateLabels(fnType.getInput());
output = stripImmediateLabels(fnType.getResult());
return true;
}
// Find library intrinsic function.
static FuncDecl *findLibraryFunction(const ASTContext &ctx, FuncDecl *&cache,
StringRef name, LazyResolver *resolver) {
if (cache) return cache;
// Look for a generic function.
cache = findLibraryIntrinsic(ctx, name, resolver);
return cache;
}
#define FUNC_DECL(Name, Id) \
FuncDecl *ASTContext::get##Name(LazyResolver *resolver) const { \
return findLibraryFunction(*this, Impl.Get##Name, Id, resolver); \
}
#include "swift/AST/KnownDecls.def"
/// Check whether the given type is Optional applied to the given
/// type argument.
static bool isOptionalType(const ASTContext &ctx,
OptionalTypeKind optionalKind,
CanType type, CanType arg) {
if (auto boundType = dyn_cast<BoundGenericType>(type)) {
return (boundType->getDecl()->classifyAsOptionalType() == optionalKind &&
boundType.getGenericArgs().size() == 1 &&
boundType.getGenericArgs()[0] == arg);
}
return false;
}
/// Turn an OptionalTypeKind into an index into one of the caches.
static unsigned asIndex(OptionalTypeKind optionalKind) {
assert(optionalKind && "passed a non-optional type kind?");
return unsigned(optionalKind) - 1;
}
#define getOptionalIntrinsicName(PREFIX, KIND, SUFFIX) \
((KIND) == OTK_Optional \
? (PREFIX "Optional" SUFFIX) \
: (PREFIX "ImplicitlyUnwrappedOptional" SUFFIX))
FuncDecl *ASTContext::getDoesOptionalHaveValueAsBoolDecl(
LazyResolver *resolver, OptionalTypeKind optionalKind) const {
auto &cache = Impl.DoesOptionalHaveValueAsBoolDecls[asIndex(optionalKind)];
if (cache)
return cache;
auto name =
getOptionalIntrinsicName("_does", optionalKind, "HaveValueAsBool");
// Look for a generic function.
CanType input, output, param;
auto decl = findLibraryIntrinsic(*this, name, resolver);
if (!decl || !isGenericIntrinsic(decl, input, output, param))
return nullptr;
// Input must be Optional<T>.
if (!isOptionalType(*this, optionalKind, input, param))
return nullptr;
// Output must be a global type named Bool.
auto nominalType = dyn_cast<NominalType>(output);
if (!nominalType || nominalType.getParent() ||
nominalType->getDecl()->getName().str() != "Bool")
return nullptr;
cache = decl;
return decl;
}
FuncDecl *ASTContext::getGetOptionalValueDecl(LazyResolver *resolver,
OptionalTypeKind optionalKind) const {
auto &cache = Impl.GetOptionalValueDecls[asIndex(optionalKind)];
if (cache) return cache;
auto name = getOptionalIntrinsicName("_get", optionalKind, "Value");
// Look for the function.
CanType input, output, param;
auto decl = findLibraryIntrinsic(*this, name, resolver);
if (!decl || !isGenericIntrinsic(decl, input, output, param))
return nullptr;
// Input must be Optional<T>.
if (!isOptionalType(*this, optionalKind, input, param))
return nullptr;
// Output must be T.
if (output != param)
return nullptr;
cache = decl;
return decl;
}
static bool hasOptionalIntrinsics(const ASTContext &ctx, LazyResolver *resolver,
OptionalTypeKind optionalKind) {
return ctx.getGetOptionalValueDecl(resolver, optionalKind);
}
bool ASTContext::hasOptionalIntrinsics(LazyResolver *resolver) const {
return getOptionalDecl() &&
getOptionalSomeDecl() &&
getOptionalNoneDecl() &&
::hasOptionalIntrinsics(*this, resolver, OTK_Optional) &&
::hasOptionalIntrinsics(*this, resolver, OTK_ImplicitlyUnwrappedOptional);
}
bool ASTContext::hasPointerArgumentIntrinsics(LazyResolver *resolver) const {
return getUnsafeMutablePointerDecl()
&& getUnsafePointerDecl()
&& (!LangOpts.EnableObjCInterop || getAutoreleasingUnsafeMutablePointerDecl())
&& getConvertPointerToPointerArgument(resolver)
&& getConvertMutableArrayToPointerArgument(resolver)
&& getConvertConstArrayToPointerArgument(resolver)
&& getConvertConstStringToUTF8PointerArgument(resolver)
&& getConvertInOutToPointerArgument(resolver);
}
bool ASTContext::hasArrayLiteralIntrinsics(LazyResolver *resolver) const {
return getArrayDecl()
&& getAllocateUninitializedArray(resolver)
&& getDeallocateUninitializedArray(resolver);
}
void ASTContext::addedExternalDecl(Decl *decl) {
ExternalDefinitions.insert(decl);
}
void ASTContext::addCleanup(std::function<void(void)> cleanup) {
Impl.Cleanups.push_back(std::move(cleanup));
}
bool ASTContext::hadError() const {
return Diags.hadAnyError();
}
/// \brief Retrieve the arena from which we should allocate storage for a type.
static AllocationArena getArena(RecursiveTypeProperties properties) {
bool hasTypeVariable = properties.hasTypeVariable();
return hasTypeVariable? AllocationArena::ConstraintSolver
: AllocationArena::Permanent;
}
Optional<ArrayRef<Substitution>>
ASTContext::createTrivialSubstitutions(BoundGenericType *BGT,
DeclContext *gpContext) const {
assert(gpContext && "No generic parameter context");
assert(BGT->isCanonical() && "Requesting non-canonical substitutions");
auto Params = gpContext->getGenericParamsOfContext()->getParams();
assert(Params.size() == 1);
auto Param = Params[0];
assert(Param->getArchetype() && "Not type-checked yet");
Substitution Subst(Param->getArchetype(), BGT->getGenericArgs()[0], {});
auto Substitutions = AllocateCopy(llvm::makeArrayRef(Subst));
auto arena = getArena(BGT->getRecursiveProperties());
Impl.getArena(arena).BoundGenericSubstitutions
.insert(std::make_pair(std::make_pair(BGT, gpContext), Substitutions));
return Substitutions;
}
Optional<ArrayRef<Substitution>>
ASTContext::getSubstitutions(BoundGenericType* bound,
DeclContext *gpContext) const {
assert(gpContext && "Missing generic parameter context");
auto arena = getArena(bound->getRecursiveProperties());
assert(bound->isCanonical() && "Requesting non-canonical substitutions");
auto &boundGenericSubstitutions
= Impl.getArena(arena).BoundGenericSubstitutions;
auto known = boundGenericSubstitutions.find({bound, gpContext});
if (known != boundGenericSubstitutions.end())
return known->second;
// We can trivially create substitutions for Array and Optional.
if (bound->getDecl() == getArrayDecl() ||
bound->getDecl() == getOptionalDecl())
return createTrivialSubstitutions(bound, gpContext);
return None;
}
void ASTContext::setSubstitutions(BoundGenericType* Bound,
DeclContext *gpContext,
ArrayRef<Substitution> Subs) const {
auto arena = getArena(Bound->getRecursiveProperties());
auto &boundGenericSubstitutions
= Impl.getArena(arena).BoundGenericSubstitutions;
assert(Bound->isCanonical() && "Requesting non-canonical substitutions");
assert(boundGenericSubstitutions.count({Bound, gpContext}) == 0 &&
"Already have substitutions?");
boundGenericSubstitutions[{Bound, gpContext}] = Subs;
}
Type ASTContext::getTypeVariableMemberType(TypeVariableType *baseTypeVar,
AssociatedTypeDecl *assocType) {
auto &arena = *Impl.CurrentConstraintSolverArena;
return arena.GetTypeMember(baseTypeVar, assocType);
}
void ASTContext::addSearchPath(StringRef searchPath, bool isFramework) {
OptionSet<SearchPathKind> &loaded = Impl.SearchPathsSet[searchPath];
auto kind = isFramework ? SearchPathKind::Framework : SearchPathKind::Import;
if (loaded.contains(kind))
return;
loaded |= kind;
if (isFramework)
SearchPathOpts.FrameworkSearchPaths.push_back(searchPath);
else
SearchPathOpts.ImportSearchPaths.push_back(searchPath);
if (auto *clangLoader = getClangModuleLoader())
clangLoader->addSearchPath(searchPath, isFramework);
}
void ASTContext::addModuleLoader(std::unique_ptr<ModuleLoader> loader,
bool IsClang) {
if (IsClang) {
assert(!Impl.TheClangModuleLoader && "Already have a Clang module loader");
Impl.TheClangModuleLoader =
static_cast<ClangModuleLoader *>(loader.get());
}
Impl.ModuleLoaders.push_back(std::move(loader));
}
void ASTContext::loadExtensions(NominalTypeDecl *nominal,
unsigned previousGeneration) {
for (auto &loader : Impl.ModuleLoaders) {
loader->loadExtensions(nominal, previousGeneration);
}
}
void ASTContext::loadObjCMethods(
ClassDecl *classDecl,
ObjCSelector selector,
bool isInstanceMethod,
unsigned previousGeneration,
llvm::TinyPtrVector<AbstractFunctionDecl *> &methods) {
for (auto &loader : Impl.ModuleLoaders) {
loader->loadObjCMethods(classDecl, selector, isInstanceMethod,
previousGeneration, methods);
}
}
void ASTContext::verifyAllLoadedModules() const {
#ifndef NDEBUG
for (auto &loader : Impl.ModuleLoaders)
loader->verifyAllModules();
for (auto &topLevelModulePair : LoadedModules) {
Module *M = topLevelModulePair.second;
bool hasAnyFileUnits = std::any_of(M->getFiles().begin(),
M->getFiles().end(),
[](const FileUnit *file) {
return !isa<DerivedFileUnit>(file);
});
if (!hasAnyFileUnits)
assert(M->failedToLoad());
}
#endif
}
ClangModuleLoader *ASTContext::getClangModuleLoader() const {
return Impl.TheClangModuleLoader;
}
static void recordKnownProtocol(Module *Stdlib, StringRef Name,
KnownProtocolKind Kind) {
Identifier ID = Stdlib->getASTContext().getIdentifier(Name);
UnqualifiedLookup Lookup(ID, Stdlib, nullptr, /*NonCascading=*/true,
SourceLoc(), /*IsType=*/true);
if (auto Proto
= dyn_cast_or_null<ProtocolDecl>(Lookup.getSingleTypeResult()))
Proto->setKnownProtocolKind(Kind);
}
void ASTContext::recordKnownProtocols(Module *Stdlib) {
#define PROTOCOL_WITH_NAME(Id, Name) \
recordKnownProtocol(Stdlib, Name, KnownProtocolKind::Id);
#include "swift/AST/KnownProtocols.def"
}
Module *ASTContext::getLoadedModule(
ArrayRef<std::pair<Identifier, SourceLoc>> ModulePath) const {
assert(!ModulePath.empty());
// TODO: Swift submodules.
if (ModulePath.size() == 1) {
return getLoadedModule(ModulePath[0].first);
}
return nullptr;
}
Module *ASTContext::getLoadedModule(Identifier ModuleName) const {
return LoadedModules.lookup(ModuleName);
}
void ASTContext::getVisibleTopLevelClangeModules(
SmallVectorImpl<clang::Module*> &Modules) const {
getClangModuleLoader()->getClangPreprocessor().getHeaderSearchInfo().
collectAllModules(Modules);
}
ArchetypeBuilder *ASTContext::getOrCreateArchetypeBuilder(
CanGenericSignature sig,
ModuleDecl *mod) {
// Check whether we already have an archetype builder for this
// signature and module.
auto known = Impl.ArchetypeBuilders.find({sig, mod});
if (known != Impl.ArchetypeBuilders.end())
return known->second.get();
// Create a new archetype builder with the given signature.
auto builder = new ArchetypeBuilder(*mod, Diags);
builder->addGenericSignature(sig, /*adoptArchetypes=*/false,
/*treatRequirementsAsExplicit=*/true);
// Store this archetype builder.
Impl.ArchetypeBuilders[{sig, mod}]
= std::unique_ptr<ArchetypeBuilder>(builder);
return builder;
}
void ASTContext::setArchetypeBuilder(CanGenericSignature sig,
ModuleDecl *mod,
std::unique_ptr<ArchetypeBuilder> builder) {
if (Impl.ArchetypeBuilders.find({sig, mod})
== Impl.ArchetypeBuilders.end()) {
Impl.ArchetypeBuilders[{sig, mod}] = move(builder);
}
}
Module *
ASTContext::getModule(ArrayRef<std::pair<Identifier, SourceLoc>> ModulePath) {
assert(!ModulePath.empty());
if (auto *M = getLoadedModule(ModulePath))
return M;
auto moduleID = ModulePath[0];
for (auto &importer : Impl.ModuleLoaders) {
if (Module *M = importer->loadModule(moduleID.second, ModulePath)) {
if (ModulePath.size() == 1 &&
(ModulePath[0].first == StdlibModuleName ||
ModulePath[0].first == Id_Foundation))
recordKnownProtocols(M);
return M;
}
}
return nullptr;
}
Module *ASTContext::getModuleByName(StringRef ModuleName) {
SmallVector<std::pair<Identifier, SourceLoc>, 4>
AccessPath;
while (!ModuleName.empty()) {
StringRef SubModuleName;
std::tie(SubModuleName, ModuleName) = ModuleName.split('.');
AccessPath.push_back({ getIdentifier(SubModuleName), SourceLoc() });
}
return getModule(AccessPath);
}
Module *ASTContext::getStdlibModule(bool loadIfAbsent) {
if (TheStdlibModule)
return TheStdlibModule;
if (loadIfAbsent) {
auto mutableThis = const_cast<ASTContext*>(this);
TheStdlibModule =
mutableThis->getModule({ std::make_pair(StdlibModuleName, SourceLoc()) });
} else {
TheStdlibModule = getLoadedModule(StdlibModuleName);
}
return TheStdlibModule;
}
Optional<RawComment> ASTContext::getRawComment(const Decl *D) {
auto Known = Impl.RawComments.find(D);
if (Known == Impl.RawComments.end())
return None;
return Known->second;
}
void ASTContext::setRawComment(const Decl *D, RawComment RC) {
Impl.RawComments[D] = RC;
}
Optional<StringRef> ASTContext::getBriefComment(const Decl *D) {
auto Known = Impl.BriefComments.find(D);
if (Known == Impl.BriefComments.end())
return None;
return Known->second;
}
void ASTContext::setBriefComment(const Decl *D, StringRef Comment) {
Impl.BriefComments[D] = Comment;
}
unsigned ValueDecl::getLocalDiscriminator() const {
assert(getDeclContext()->isLocalContext());
auto &discriminators = getASTContext().Impl.LocalDiscriminators;
auto it = discriminators.find(this);
if (it == discriminators.end())
return 0;
return it->second;
}
void ValueDecl::setLocalDiscriminator(unsigned index) {
assert(getDeclContext()->isLocalContext());
if (!index) {
assert(!getASTContext().Impl.LocalDiscriminators.count(this));
return;
}
getASTContext().Impl.LocalDiscriminators.insert({this, index});
}
PatternBindingInitializer *
ASTContext::createPatternBindingContext(DeclContext *parent) {
// Check for an existing context we can re-use.
if (auto existing = Impl.UnusedPatternBindingContext) {
Impl.UnusedPatternBindingContext = nullptr;
existing->reset(parent);
return existing;
}
return new (*this) PatternBindingInitializer(parent);
}
void ASTContext::destroyPatternBindingContext(PatternBindingInitializer *DC) {
// There isn't much value in caching more than one of these.
Impl.UnusedPatternBindingContext = DC;
}
DefaultArgumentInitializer *
ASTContext::createDefaultArgumentContext(DeclContext *fn, unsigned index) {
// Check for an existing context we can re-use.
if (auto existing = Impl.UnusedDefaultArgumentContext) {
Impl.UnusedDefaultArgumentContext = nullptr;
existing->reset(fn, index);
return existing;
}
return new (*this) DefaultArgumentInitializer(fn, index);
}
void ASTContext::destroyDefaultArgumentContext(DefaultArgumentInitializer *DC) {
// There isn't much value in caching more than one of these.
Impl.UnusedDefaultArgumentContext = DC;
}
NormalProtocolConformance *
ASTContext::getConformance(Type conformingType,
ProtocolDecl *protocol,
SourceLoc loc,
DeclContext *dc,
ProtocolConformanceState state) {
llvm::FoldingSetNodeID id;
NormalProtocolConformance::Profile(id, protocol, dc);
// Did we already record the normal conformance?
void *insertPos;
auto &normalConformances =
Impl.getArena(AllocationArena::Permanent).NormalConformances;
if (auto result = normalConformances.FindNodeOrInsertPos(id, insertPos))
return result;
// Build a new normal protocol conformance.
auto result
= new (*this, AllocationArena::Permanent)
NormalProtocolConformance(conformingType, protocol, loc, dc, state);
normalConformances.InsertNode(result, insertPos);
return result;
}
SpecializedProtocolConformance *
ASTContext::getSpecializedConformance(Type type,
ProtocolConformance *generic,
ArrayRef<Substitution> substitutions) {
llvm::FoldingSetNodeID id;
SpecializedProtocolConformance::Profile(id, type, generic);
// Figure out which arena this conformance should go into.
AllocationArena arena = getArena(type->getRecursiveProperties());
// Did we already record the specialized conformance?
void *insertPos;
auto &specializedConformances = Impl.getArena(arena).SpecializedConformances;
if (auto result = specializedConformances.FindNodeOrInsertPos(id, insertPos))
return result;
// Build a new specialized conformance.
substitutions = AllocateCopy(substitutions, arena);
auto result
= new (*this, arena) SpecializedProtocolConformance(type, generic,
substitutions);
specializedConformances.InsertNode(result, insertPos);
return result;
}
InheritedProtocolConformance *
ASTContext::getInheritedConformance(Type type, ProtocolConformance *inherited) {
llvm::FoldingSetNodeID id;
InheritedProtocolConformance::Profile(id, type, inherited);
// Figure out which arena this conformance should go into.
AllocationArena arena = getArena(type->getRecursiveProperties());
// Did we already record the normal protocol conformance?
void *insertPos;
auto &inheritedConformances = Impl.getArena(arena).InheritedConformances;
if (auto result
= inheritedConformances.FindNodeOrInsertPos(id, insertPos))
return result;
// Build a new normal protocol conformance.
auto result = new (*this, arena) InheritedProtocolConformance(type, inherited);
inheritedConformances.InsertNode(result, insertPos);
return result;
}
void ASTContext::recordConformanceLoader(Decl *decl, LazyMemberLoader *resolver,
uint64_t contextData) {
assert(Impl.ConformanceLoaders.count(decl) == 0 &&
"already recorded conformance loader");
Impl.ConformanceLoaders[decl] = { resolver, contextData };
}
std::pair<LazyMemberLoader *, uint64_t> ASTContext::takeConformanceLoader(
Decl *decl) {
auto known = Impl.ConformanceLoaders.find(decl);
auto result = known->second;
Impl.ConformanceLoaders.erase(known);
return result;
}
void ASTContext::addDelayedConformanceDiag(
NormalProtocolConformance *conformance,
DelayedConformanceDiag fn) {
Impl.DelayedConformanceDiags[conformance].push_back(std::move(fn));
}
std::vector<ASTContext::DelayedConformanceDiag>
ASTContext::takeDelayedConformanceDiags(NormalProtocolConformance *conformance){
std::vector<ASTContext::DelayedConformanceDiag> result;
auto known = Impl.DelayedConformanceDiags.find(conformance);
if (known != Impl.DelayedConformanceDiags.end()) {
result = std::move(known->second);
Impl.DelayedConformanceDiags.erase(known);
}
return result;
}
size_t ASTContext::getTotalMemory() const {
size_t Size = sizeof(*this) +
//LoadedModules ?
// ExternalDefinitions ?
llvm::capacity_in_bytes(CanonicalGenericTypeParamTypeNames) +
// RemappedTypes ?
sizeof(Impl) +
Impl.Allocator.getTotalMemory() +
Impl.Cleanups.capacity() +
llvm::capacity_in_bytes(Impl.ModuleLoaders) +
llvm::capacity_in_bytes(Impl.RawComments) +
llvm::capacity_in_bytes(Impl.BriefComments) +
llvm::capacity_in_bytes(Impl.LocalDiscriminators) +
llvm::capacity_in_bytes(Impl.ModuleTypes) +
llvm::capacity_in_bytes(Impl.GenericParamTypes) +
// Impl.GenericFunctionTypes ?
// Impl.SILFunctionTypes ?
llvm::capacity_in_bytes(Impl.SILBlockStorageTypes) +
llvm::capacity_in_bytes(Impl.SILBoxTypes) +
llvm::capacity_in_bytes(Impl.IntegerTypes) +
// Impl.ProtocolCompositionTypes ?
// Impl.BuiltinVectorTypes ?
// Impl.GenericSignatures ?
// Impl.CompoundNames ?
Impl.OpenedExistentialArchetypes.getMemorySize() +
Impl.Permanent.getTotalMemory();
Size += getSolverMemory();
return Size;
}
size_t ASTContext::getSolverMemory() const {
size_t Size = 0;
if (Impl.CurrentConstraintSolverArena) {
Size += Impl.CurrentConstraintSolverArena->getTotalMemory();
}
return Size;
}
size_t ASTContext::Implementation::Arena::getTotalMemory() const {
return sizeof(*this) +
// TupleTypes ?
llvm::capacity_in_bytes(MetatypeTypes) +
llvm::capacity_in_bytes(ExistentialMetatypeTypes) +
llvm::capacity_in_bytes(FunctionTypes) +
llvm::capacity_in_bytes(ArraySliceTypes) +
llvm::capacity_in_bytes(DictionaryTypes) +
llvm::capacity_in_bytes(OptionalTypes) +
llvm::capacity_in_bytes(ImplicitlyUnwrappedOptionalTypes) +
llvm::capacity_in_bytes(ParenTypes) +
llvm::capacity_in_bytes(ReferenceStorageTypes) +
llvm::capacity_in_bytes(LValueTypes) +
llvm::capacity_in_bytes(InOutTypes) +
llvm::capacity_in_bytes(SubstitutedTypes) +
llvm::capacity_in_bytes(DependentMemberTypes) +
llvm::capacity_in_bytes(DynamicSelfTypes) +
// EnumTypes ?
// StructTypes ?
// ClassTypes ?
// UnboundGenericTypes ?
// BoundGenericTypes ?
llvm::capacity_in_bytes(BoundGenericSubstitutions);
// NormalConformances ?
// SpecializedConformances ?
// InheritedConformances ?
}
namespace {
/// Produce a deterministic ordering of the given declarations.
class OrderDeclarations {
SourceManager &SrcMgr;
public:
OrderDeclarations(SourceManager &srcMgr) : SrcMgr(srcMgr) { }
bool operator()(ValueDecl *lhs, ValueDecl *rhs) const {
// If the declarations come from different modules, order based on the
// module.
Module *lhsModule = lhs->getDeclContext()->getParentModule();
Module *rhsModule = rhs->getDeclContext()->getParentModule();
if (lhsModule != rhsModule) {
return lhsModule->getName().str() < rhsModule->getName().str();
}
// If the two declarations are in the same source file, order based on
// location within that source file.
SourceFile *lhsSF = lhs->getDeclContext()->getParentSourceFile();
SourceFile *rhsSF = rhs->getDeclContext()->getParentSourceFile();
if (lhsSF == rhsSF) {
// If only one location is valid, the valid location comes first.
if (lhs->getLoc().isValid() != rhs->getLoc().isValid()) {
return lhs->getLoc().isValid();
}
// Prefer the declaration that comes first in the source file.
return SrcMgr.isBeforeInBuffer(lhs->getLoc(), rhs->getLoc());
}
// The declarations are in different source files (or unknown source
// files) of the same module. Order based on name.
// FIXME: This isn't a total ordering.
return lhs->getFullName() < rhs->getFullName();
}
};
/// Produce a deterministic ordering of the given declarations with
/// a bias that favors declarations in the given source file and
/// members of a class.
class OrderDeclarationsWithSourceFileAndClassBias {
SourceManager &SrcMgr;
SourceFile &SF;
public:
OrderDeclarationsWithSourceFileAndClassBias(SourceManager &srcMgr,
SourceFile &sf)
: SrcMgr(srcMgr), SF(sf) { }
bool operator()(ValueDecl *lhs, ValueDecl *rhs) const {
// Check whether the declarations are in a class.
bool lhsInClass = isa<ClassDecl>(lhs->getDeclContext());
bool rhsInClass = isa<ClassDecl>(rhs->getDeclContext());
if (lhsInClass != rhsInClass)
return lhsInClass;
// If the two declarations are in different source files, and one of those
// source files is the source file we're biasing toward, prefer that
// declaration.
SourceFile *lhsSF = lhs->getDeclContext()->getParentSourceFile();
SourceFile *rhsSF = rhs->getDeclContext()->getParentSourceFile();
if (lhsSF != rhsSF) {
if (lhsSF == &SF) return true;
if (rhsSF == &SF) return false;
}
// Fall back to the normal deterministic ordering.
return OrderDeclarations(SrcMgr)(lhs, rhs);
}
};
}
/// Compute the information used to describe an Objective-C redeclaration.
std::pair<unsigned, DeclName> swift::getObjCMethodDiagInfo(
AbstractFunctionDecl *member) {
if (isa<ConstructorDecl>(member))
return { 0 + member->isImplicit(), member->getFullName() };
if (isa<DestructorDecl>(member))
return { 2 + member->isImplicit(), member->getFullName() };
auto func = cast<FuncDecl>(member);
switch (func->getAccessorKind()) {
case AccessorKind::IsAddressor:
case AccessorKind::IsDidSet:
case AccessorKind::IsMaterializeForSet:
case AccessorKind::IsMutableAddressor:
case AccessorKind::IsWillSet:
llvm_unreachable("Not an Objective-C entry point");
case AccessorKind::IsGetter:
if (auto var = dyn_cast<VarDecl>(func->getAccessorStorageDecl()))
return { 5, var->getFullName() };
return { 6, Identifier() };
case AccessorKind::IsSetter:
if (auto var = dyn_cast<VarDecl>(func->getAccessorStorageDecl()))
return { 7, var->getFullName() };
return { 8, Identifier() };
case AccessorKind::NotAccessor:
// Normal method.
return { 4, func->getFullName() };
}
}
void ASTContext::diagnoseAttrsRequiringFoundation(SourceFile &SF) {
bool ImportsFoundationModule = false;
if (SF.Kind == SourceFileKind::SIL ||
!LangOpts.EnableObjCAttrRequiresFoundation)
return;
SF.forAllVisibleModules([&](Module::ImportedModule import) {
if (import.second->getName() == Id_Foundation)
ImportsFoundationModule = true;
});
if (ImportsFoundationModule)
return;
for (auto &Attr : SF.AttrsRequiringFoundation) {
// If we've already diagnosed this attribute, keep going.
if (!Attr.second)
continue;
Diags.diagnose(Attr.second->getLocation(),
diag::attr_used_without_required_module,
Attr.second, Id_Foundation)
.highlight(Attr.second->getRangeWithAt());
// Don't diagnose this again.
Attr.second = nullptr;
}
}
void ASTContext::recordObjCMethod(AbstractFunctionDecl *func) {
// If this method comes from Objective-C, ignore it.
if (func->hasClangNode())
return;
Impl.ObjCMethods.push_back(func);
}
/// Lookup for an Objective-C method with the given selector in the
/// given class type or any of its superclasses.
static AbstractFunctionDecl *lookupObjCMethodInType(
Type classType,
ObjCSelector selector,
bool isInstanceMethod,
bool isInitializer,
SourceManager &srcMgr,
bool inheritingInits = true) {
// Dig out the declaration of the class.
auto classDecl = classType->getClassOrBoundGenericClass();
if (!classDecl)
return nullptr;
// Look for an Objective-C method in this class.
auto methods = classDecl->lookupDirect(selector, isInstanceMethod);
if (!methods.empty()) {
// If we aren't inheriting initializers, remove any initializers from the
// list.
if (!inheritingInits &&
std::find_if(methods.begin(), methods.end(),
[](AbstractFunctionDecl *func) {
return isa<ConstructorDecl>(func);
}) != methods.end()) {
SmallVector<AbstractFunctionDecl *, 4> nonInitMethods;
std::copy_if(methods.begin(), methods.end(),
std::back_inserter(nonInitMethods),
[&](AbstractFunctionDecl *func) {
return !isa<ConstructorDecl>(func);
});
if (nonInitMethods.empty())
return nullptr;
return *std::min_element(nonInitMethods.begin(), nonInitMethods.end(),
OrderDeclarations(srcMgr));
}
return *std::min_element(methods.begin(), methods.end(),
OrderDeclarations(srcMgr));
}
// Recurse into the superclass.
if (!classDecl->hasSuperclass())
return nullptr;
// Determine whether we are (still) inheriting initializers.
inheritingInits = inheritingInits &&
classDecl->inheritsSuperclassInitializers(nullptr);
if (isInitializer && !inheritingInits)
return nullptr;
return lookupObjCMethodInType(classDecl->getSuperclass(), selector,
isInstanceMethod, isInitializer, srcMgr,
inheritingInits);
}
void AbstractFunctionDecl::setForeignErrorConvention(
const ForeignErrorConvention &conv) {
assert(isBodyThrowing() && "setting error convention on non-throwing decl");
auto &conventionsMap = getASTContext().Impl.ForeignErrorConventions;
assert(!conventionsMap.count(this) && "error convention already set");
conventionsMap.insert({this, conv});
}
Optional<ForeignErrorConvention>
AbstractFunctionDecl::getForeignErrorConvention() const {
if (!isObjC() || !isBodyThrowing()) return None;
auto &conventionsMap = getASTContext().Impl.ForeignErrorConventions;
auto it = conventionsMap.find(this);
if (it == conventionsMap.end()) return None;
return it->second;
}
bool ASTContext::diagnoseUnintendedObjCMethodOverrides(SourceFile &sf) {
// Capture the methods in this source file.
llvm::SmallVector<AbstractFunctionDecl *, 4> methods;
auto captureMethodInSourceFile = [&](AbstractFunctionDecl *method) -> bool {
if (method->getDeclContext()->getParentSourceFile() == &sf) {
methods.push_back(method);
return true;
}
return false;
};
Impl.ObjCMethods.erase(std::remove_if(Impl.ObjCMethods.begin(),
Impl.ObjCMethods.end(),
captureMethodInSourceFile),
Impl.ObjCMethods.end());
// If no Objective-C methods were defined in this file, we're done.
if (methods.empty())
return false;
// Sort the methods by declaration order.
std::sort(methods.begin(), methods.end(), OrderDeclarations(SourceMgr));
// For each Objective-C method declared in this file, check whether
// it overrides something in one of its superclasses. We
// intentionally don't respect access control here, since everything
// is visible to the Objective-C runtime.
bool diagnosedAny = false;
for (auto method : methods) {
// If the method has an @objc override, we don't need to do any
// more checking.
if (auto overridden = method->getOverriddenDecl()) {
if (overridden->isObjC())
continue;
}
// Skip deinitializers.
if (isa<DestructorDecl>(method))
continue;
// Skip invalid declarations.
if (method->isInvalid())
continue;
// Skip declarations with an invalid 'override' attribute on them.
if (auto attr = method->getAttrs().getAttribute<OverrideAttr>(true)) {
if (attr->isInvalid())
continue;
}
auto classDecl = method->getDeclContext()->isClassOrClassExtensionContext();
if (!classDecl)
continue; // error-recovery path, only
if (!classDecl->hasSuperclass())
continue;
// Look for a method that we have overridden in one of our
// superclasses.
// Note: This should be treated as a lookup for intra-module dependency
// purposes, but a subclass already depends on its superclasses and any
// extensions for many other reasons.
auto selector = method->getObjCSelector(nullptr);
AbstractFunctionDecl *overriddenMethod
= lookupObjCMethodInType(classDecl->getSuperclass(),
selector,
method->isObjCInstanceMethod(),
isa<ConstructorDecl>(method),
SourceMgr);
if (!overriddenMethod)
continue;
// Ignore stub implementations.
if (auto overriddenCtor = dyn_cast<ConstructorDecl>(overriddenMethod)) {
if (overriddenCtor->hasStubImplementation())
continue;
}
// Diagnose the override.
auto methodDiagInfo = getObjCMethodDiagInfo(method);
auto overriddenDiagInfo = getObjCMethodDiagInfo(overriddenMethod);
Diags.diagnose(method, diag::objc_override_other,
methodDiagInfo.first,
methodDiagInfo.second,
overriddenDiagInfo.first,
overriddenDiagInfo.second,
selector,
overriddenMethod->getDeclContext()
->getDeclaredInterfaceType());
const ValueDecl *overriddenDecl = overriddenMethod;
if (overriddenMethod->isImplicit())
if (auto func = dyn_cast<FuncDecl>(overriddenMethod))
if (auto storage = func->getAccessorStorageDecl())
overriddenDecl = storage;
Diags.diagnose(overriddenDecl, diag::objc_declared_here,
overriddenDiagInfo.first, overriddenDiagInfo.second);
diagnosedAny = true;
}
return diagnosedAny;
}
void ASTContext::recordObjCMethodConflict(ClassDecl *classDecl,
ObjCSelector selector,
bool isInstance) {
Impl.ObjCMethodConflicts.push_back(std::make_tuple(classDecl, selector,
isInstance));
}
/// Retrieve the source file for the given Objective-C member conflict.
static MutableArrayRef<AbstractFunctionDecl *>
getObjCMethodConflictDecls(const ObjCMethodConflict &conflict) {
ClassDecl *classDecl = std::get<0>(conflict);
ObjCSelector selector = std::get<1>(conflict);
bool isInstanceMethod = std::get<2>(conflict);
return classDecl->lookupDirect(selector, isInstanceMethod);
}
/// Given a set of conflicting Objective-C methods, remove any methods
/// that are legitimately overridden in Objective-C, i.e., because
/// they occur in different modules, one is defined in the class, and
/// the other is defined in an extension (category) thereof.
static void removeValidObjCConflictingMethods(
MutableArrayRef<AbstractFunctionDecl *> &methods) {
// Erase any invalid or stub declarations. We don't want to complain about
// them, because we might already have complained about
// redeclarations based on Swift matching.
auto newEnd = std::remove_if(methods.begin(), methods.end(),
[&](AbstractFunctionDecl *method) {
if (method->isInvalid())
return true;
if (auto func = dyn_cast<FuncDecl>(method)) {
if (func->isAccessor()) {
return func->getAccessorStorageDecl()
->isInvalid();
}
return false;
}
if (auto ctor
= dyn_cast<ConstructorDecl>(method)) {
if (ctor->hasStubImplementation())
return true;
return false;
}
return false;
});
methods = methods.slice(0, newEnd - methods.begin());
}
/// Determine whether the should associate a conflict among the given
/// set of methods with the specified source file.
static bool shouldAssociateConflictWithSourceFile(
SourceFile &sf,
ArrayRef<AbstractFunctionDecl *> methods) {
bool anyInSourceFile = false;
bool anyInOtherSourceFile = false;
bool anyClassMethodsInSourceFile = false;
for (auto method : methods) {
// Skip methods in the class itself; we want to only diagnose
// those if there is a conflict within that file.
if (isa<ClassDecl>(method->getDeclContext())) {
if (method->getParentSourceFile() == &sf)
anyClassMethodsInSourceFile = true;
continue;
}
if (method->getParentSourceFile() == &sf)
anyInSourceFile = true;
else
anyInOtherSourceFile = true;
}
return anyInSourceFile ||
(!anyInOtherSourceFile && anyClassMethodsInSourceFile);
}
bool ASTContext::diagnoseObjCMethodConflicts(SourceFile &sf) {
// If there were no conflicts, we're done.
if (Impl.ObjCMethodConflicts.empty())
return false;
// Partition the set of conflicts to put the conflicts that involve
// this source file at the end.
auto firstLocalConflict
= std::partition(Impl.ObjCMethodConflicts.begin(),
Impl.ObjCMethodConflicts.end(),
[&](const ObjCMethodConflict &conflict) -> bool {
auto decls = getObjCMethodConflictDecls(conflict);
if (shouldAssociateConflictWithSourceFile(sf, decls)) {
// It's in this source file. Sort the conflict
// declarations. We'll use this later.
std::sort(
decls.begin(), decls.end(),
OrderDeclarationsWithSourceFileAndClassBias(
SourceMgr, sf));
return false;
}
return true;
});
// If there were no local conflicts, we're done.
unsigned numLocalConflicts
= Impl.ObjCMethodConflicts.end() - firstLocalConflict;
if (numLocalConflicts == 0)
return false;
// Sort the set of conflicts so we get a deterministic order for
// diagnostics. We use the first conflicting declaration in each set to
// perform the sort.
MutableArrayRef<ObjCMethodConflict> localConflicts(&*firstLocalConflict,
numLocalConflicts);
std::sort(localConflicts.begin(), localConflicts.end(),
[&](const ObjCMethodConflict &lhs, const ObjCMethodConflict &rhs) {
OrderDeclarations ordering(SourceMgr);
return ordering(getObjCMethodConflictDecls(lhs)[1],
getObjCMethodConflictDecls(rhs)[1]);
});
// Diagnose each conflict.
bool anyConflicts = false;
for (const ObjCMethodConflict &conflict : localConflicts) {
ObjCSelector selector = std::get<1>(conflict);
auto methods = getObjCMethodConflictDecls(conflict);
// Prune out cases where it is acceptable to have a conflict.
removeValidObjCConflictingMethods(methods);
if (methods.size() < 2)
continue;
// Diagnose the conflict.
anyConflicts = true;
// If the first method has a valid source location but the first conflicting
// declaration does not, swap them so the primary diagnostic has a useful
// source location.
if (methods[1]->getLoc().isInvalid() && methods[0]->getLoc().isValid()) {
std::swap(methods[0], methods[1]);
}
auto originalMethod = methods.front();
auto conflictingMethods = methods.slice(1);
auto origDiagInfo = getObjCMethodDiagInfo(originalMethod);
for (auto conflictingDecl : conflictingMethods) {
auto diagInfo = getObjCMethodDiagInfo(conflictingDecl);
const ValueDecl *originalDecl = originalMethod;
if (originalMethod->isImplicit())
if (auto func = dyn_cast<FuncDecl>(originalMethod))
if (auto storage = func->getAccessorStorageDecl())
originalDecl = storage;
if (diagInfo == origDiagInfo) {
Diags.diagnose(conflictingDecl, diag::objc_redecl_same,
diagInfo.first, diagInfo.second, selector);
Diags.diagnose(originalDecl, diag::invalid_redecl_prev,
originalDecl->getName());
} else {
Diags.diagnose(conflictingDecl, diag::objc_redecl,
diagInfo.first,
diagInfo.second,
origDiagInfo.first,
origDiagInfo.second,
selector);
Diags.diagnose(originalDecl, diag::objc_declared_here,
origDiagInfo.first, origDiagInfo.second);
}
}
}
// Erase the local conflicts from the list of conflicts.
Impl.ObjCMethodConflicts.erase(firstLocalConflict,
Impl.ObjCMethodConflicts.end());
return anyConflicts;
}
void ASTContext::recordObjCUnsatisfiedOptReq(DeclContext *dc,
AbstractFunctionDecl *req) {
Impl.ObjCUnsatisfiedOptReqs.push_back(ObjCUnsatisfiedOptReq(dc, req));
}
/// Retrieve the source location associated with this declaration
/// context.
static SourceLoc getDeclContextLoc(DeclContext *dc) {
if (auto ext = dyn_cast<ExtensionDecl>(dc))
return ext->getLoc();
return cast<NominalTypeDecl>(dc)->getLoc();
}
bool ASTContext::diagnoseObjCUnsatisfiedOptReqConflicts(SourceFile &sf) {
// If there are no unsatisfied, optional @objc requirements, we're done.
if (Impl.ObjCUnsatisfiedOptReqs.empty())
return false;
// Partition the set of unsatisfied requirements to put the
// conflicts that involve this source file at the end.
auto firstLocalReq
= std::partition(Impl.ObjCUnsatisfiedOptReqs.begin(),
Impl.ObjCUnsatisfiedOptReqs.end(),
[&](const ObjCUnsatisfiedOptReq &unsatisfied) -> bool {
return &sf != unsatisfied.first->getParentSourceFile();
});
// If there were no local unsatisfied requirements, we're done.
unsigned numLocalReqs
= Impl.ObjCUnsatisfiedOptReqs.end() - firstLocalReq;
if (numLocalReqs == 0)
return false;
// Sort the set of local unsatisfied requirements, so we get a
// deterministic order for diagnostics.
MutableArrayRef<ObjCUnsatisfiedOptReq> localReqs(&*firstLocalReq,
numLocalReqs);
std::sort(localReqs.begin(), localReqs.end(),
[&](const ObjCUnsatisfiedOptReq &lhs,
const ObjCUnsatisfiedOptReq &rhs) -> bool {
return SourceMgr.isBeforeInBuffer(getDeclContextLoc(lhs.first),
getDeclContextLoc(rhs.first));
});
// Check each of the unsatisfied optional requirements.
bool anyDiagnosed = false;
for (const auto &unsatisfied : localReqs) {
// Check whether there is a conflict here.
ClassDecl *classDecl = unsatisfied.first->isClassOrClassExtensionContext();
auto req = unsatisfied.second;
auto selector = req->getObjCSelector();
bool isInstanceMethod = req->isInstanceMember();
// FIXME: Also look in superclasses?
auto conflicts = classDecl->lookupDirect(selector, isInstanceMethod);
if (conflicts.empty())
continue;
// Diagnose the conflict.
auto reqDiagInfo = getObjCMethodDiagInfo(unsatisfied.second);
auto conflictDiagInfo = getObjCMethodDiagInfo(conflicts[0]);
auto protocolName
= cast<ProtocolDecl>(req->getDeclContext())->getFullName();
Diags.diagnose(conflicts[0],
diag::objc_optional_requirement_conflict,
conflictDiagInfo.first,
conflictDiagInfo.second,
reqDiagInfo.first,
reqDiagInfo.second,
selector,
protocolName);
Diags.diagnose(getDeclContextLoc(unsatisfied.first),
diag::protocol_conformance_here,
true,
classDecl->getFullName(),
protocolName);
Diags.diagnose(req, diag::protocol_requirement_here,
reqDiagInfo.second);
anyDiagnosed = true;
}
// Erase the local unsatisfied requirements from the list.
Impl.ObjCUnsatisfiedOptReqs.erase(firstLocalReq,
Impl.ObjCUnsatisfiedOptReqs.end());
return anyDiagnosed;
}
void ASTContext::dumpArchetypeContext(ArchetypeType *archetype,
unsigned indent) const {
dumpArchetypeContext(archetype, llvm::errs(), indent);
}
void ASTContext::dumpArchetypeContext(ArchetypeType *archetype,
llvm::raw_ostream &os,
unsigned indent) const {
auto knownDC = ArchetypeContexts.find(archetype);
if (knownDC != ArchetypeContexts.end())
knownDC->second->printContext(os, indent);
}
//===----------------------------------------------------------------------===//
// Type manipulation routines.
//===----------------------------------------------------------------------===//
// Simple accessors.
Type ErrorType::get(const ASTContext &C) { return C.TheErrorType; }
BuiltinIntegerType *BuiltinIntegerType::get(BuiltinIntegerWidth BitWidth,
const ASTContext &C) {
BuiltinIntegerType *&Result = C.Impl.IntegerTypes[BitWidth];
if (Result == 0)
Result = new (C, AllocationArena::Permanent) BuiltinIntegerType(BitWidth,C);
return Result;
}
BuiltinVectorType *BuiltinVectorType::get(const ASTContext &context,
Type elementType,
unsigned numElements) {
llvm::FoldingSetNodeID id;
BuiltinVectorType::Profile(id, elementType, numElements);
void *insertPos;
if (BuiltinVectorType *vecType
= context.Impl.BuiltinVectorTypes.FindNodeOrInsertPos(id, insertPos))
return vecType;
assert(elementType->isCanonical() && "Non-canonical builtin vector?");
BuiltinVectorType *vecTy
= new (context, AllocationArena::Permanent)
BuiltinVectorType(context, elementType, numElements);
context.Impl.BuiltinVectorTypes.InsertNode(vecTy, insertPos);
return vecTy;
}
ParenType *ParenType::get(const ASTContext &C, Type underlying) {
auto properties = underlying->getRecursiveProperties();
auto arena = getArena(properties);
ParenType *&Result = C.Impl.getArena(arena).ParenTypes[underlying];
if (Result == 0) {
Result = new (C, arena) ParenType(underlying, properties);
}
return Result;
}
CanTupleType TupleType::getEmpty(const ASTContext &C) {
return cast<TupleType>(CanType(C.TheEmptyTupleType));
}
void TupleType::Profile(llvm::FoldingSetNodeID &ID,
ArrayRef<TupleTypeElt> Fields) {
ID.AddInteger(Fields.size());
for (const TupleTypeElt &Elt : Fields) {
ID.AddPointer(Elt.NameAndVariadic.getOpaqueValue());
ID.AddPointer(Elt.TyAndDefaultArg.getOpaqueValue());
}
}
/// getTupleType - Return the uniqued tuple type with the specified elements.
Type TupleType::get(ArrayRef<TupleTypeElt> Fields, const ASTContext &C) {
if (Fields.size() == 1 && !Fields[0].isVararg() && !Fields[0].hasName()
&& Fields[0].getDefaultArgKind() == DefaultArgumentKind::None)
return ParenType::get(C, Fields[0].getType());
RecursiveTypeProperties properties;
for (const TupleTypeElt &Elt : Fields) {
if (Elt.getType())
properties |= Elt.getType()->getRecursiveProperties();
if (Elt.getDefaultArgKind() != DefaultArgumentKind::None)
properties |= RecursiveTypeProperties::HasDefaultParameter;
}
auto arena = getArena(properties);
void *InsertPos = 0;
// Check to see if we've already seen this tuple before.
llvm::FoldingSetNodeID ID;
TupleType::Profile(ID, Fields);
if (TupleType *TT
= C.Impl.getArena(arena).TupleTypes.FindNodeOrInsertPos(ID,InsertPos))
return TT;
// Make a copy of the fields list into ASTContext owned memory.
TupleTypeElt *FieldsCopy =
C.AllocateCopy<TupleTypeElt>(Fields.begin(), Fields.end(), arena);
bool IsCanonical = true; // All canonical elts means this is canonical.
for (const TupleTypeElt &Elt : Fields) {
if (Elt.getType().isNull() || !Elt.getType()->isCanonical()) {
IsCanonical = false;
break;
}
}
Fields = ArrayRef<TupleTypeElt>(FieldsCopy, Fields.size());
TupleType *New = new (C, arena) TupleType(Fields, IsCanonical ? &C : 0,
properties);
C.Impl.getArena(arena).TupleTypes.InsertNode(New, InsertPos);
return New;
}
void UnboundGenericType::Profile(llvm::FoldingSetNodeID &ID,
NominalTypeDecl *TheDecl, Type Parent) {
ID.AddPointer(TheDecl);
ID.AddPointer(Parent.getPointer());
}
UnboundGenericType* UnboundGenericType::get(NominalTypeDecl *TheDecl,
Type Parent,
const ASTContext &C) {
llvm::FoldingSetNodeID ID;
UnboundGenericType::Profile(ID, TheDecl, Parent);
void *InsertPos = 0;
RecursiveTypeProperties properties;
if (Parent) properties |= Parent->getRecursiveProperties();
auto arena = getArena(properties);
if (auto unbound = C.Impl.getArena(arena).UnboundGenericTypes
.FindNodeOrInsertPos(ID, InsertPos))
return unbound;
auto result = new (C, arena) UnboundGenericType(TheDecl, Parent, C,
properties);
C.Impl.getArena(arena).UnboundGenericTypes.InsertNode(result, InsertPos);
return result;
}
void BoundGenericType::Profile(llvm::FoldingSetNodeID &ID,
NominalTypeDecl *TheDecl, Type Parent,
ArrayRef<Type> GenericArgs,
RecursiveTypeProperties &properties) {
ID.AddPointer(TheDecl);
ID.AddPointer(Parent.getPointer());
if (Parent) properties |= Parent->getRecursiveProperties();
ID.AddInteger(GenericArgs.size());
for (Type Arg : GenericArgs) {
ID.AddPointer(Arg.getPointer());
properties |= Arg->getRecursiveProperties();
}
}
BoundGenericType::BoundGenericType(TypeKind theKind,
NominalTypeDecl *theDecl,
Type parent,
ArrayRef<Type> genericArgs,
const ASTContext *context,
RecursiveTypeProperties properties)
: TypeBase(theKind, context, properties),
TheDecl(theDecl), Parent(parent), GenericArgs(genericArgs)
{
}
BoundGenericType *BoundGenericType::get(NominalTypeDecl *TheDecl,
Type Parent,
ArrayRef<Type> GenericArgs) {
ASTContext &C = TheDecl->getDeclContext()->getASTContext();
llvm::FoldingSetNodeID ID;
RecursiveTypeProperties properties;
BoundGenericType::Profile(ID, TheDecl, Parent, GenericArgs, properties);
auto arena = getArena(properties);
void *InsertPos = 0;
if (BoundGenericType *BGT =
C.Impl.getArena(arena).BoundGenericTypes.FindNodeOrInsertPos(ID,
InsertPos))
return BGT;
ArrayRef<Type> ArgsCopy = C.AllocateCopy(GenericArgs, arena);
bool IsCanonical = !Parent || Parent->isCanonical();
if (IsCanonical) {
for (Type Arg : GenericArgs) {
if (!Arg->isCanonical()) {
IsCanonical = false;
break;
}
}
}
BoundGenericType *newType;
if (auto theClass = dyn_cast<ClassDecl>(TheDecl)) {
newType = new (C, arena) BoundGenericClassType(theClass, Parent, ArgsCopy,
IsCanonical ? &C : 0,
properties);
} else if (auto theStruct = dyn_cast<StructDecl>(TheDecl)) {
newType = new (C, arena) BoundGenericStructType(theStruct, Parent, ArgsCopy,
IsCanonical ? &C : 0,
properties);
} else {
auto theEnum = cast<EnumDecl>(TheDecl);
newType = new (C, arena) BoundGenericEnumType(theEnum, Parent, ArgsCopy,
IsCanonical ? &C : 0,
properties);
}
C.Impl.getArena(arena).BoundGenericTypes.InsertNode(newType, InsertPos);
return newType;
}
NominalType *NominalType::get(NominalTypeDecl *D, Type Parent, const ASTContext &C) {
switch (D->getKind()) {
case DeclKind::Enum:
return EnumType::get(cast<EnumDecl>(D), Parent, C);
case DeclKind::Struct:
return StructType::get(cast<StructDecl>(D), Parent, C);
case DeclKind::Class:
return ClassType::get(cast<ClassDecl>(D), Parent, C);
case DeclKind::Protocol: {
return ProtocolType::get(cast<ProtocolDecl>(D), C);
}
default:
llvm_unreachable("Not a nominal declaration!");
}
}
EnumType::EnumType(EnumDecl *TheDecl, Type Parent, const ASTContext &C,
RecursiveTypeProperties properties)
: NominalType(TypeKind::Enum, &C, TheDecl, Parent, properties) { }
EnumType *EnumType::get(EnumDecl *D, Type Parent, const ASTContext &C) {
llvm::FoldingSetNodeID id;
EnumType::Profile(id, D, Parent);
RecursiveTypeProperties properties;
if (Parent) properties |= Parent->getRecursiveProperties();
auto arena = getArena(properties);
void *insertPos = 0;
if (auto enumTy
= C.Impl.getArena(arena).EnumTypes.FindNodeOrInsertPos(id, insertPos))
return enumTy;
auto enumTy = new (C, arena) EnumType(D, Parent, C, properties);
C.Impl.getArena(arena).EnumTypes.InsertNode(enumTy, insertPos);
return enumTy;
}
void EnumType::Profile(llvm::FoldingSetNodeID &ID, EnumDecl *D, Type Parent) {
ID.AddPointer(D);
ID.AddPointer(Parent.getPointer());
}
StructType::StructType(StructDecl *TheDecl, Type Parent, const ASTContext &C,
RecursiveTypeProperties properties)
: NominalType(TypeKind::Struct, &C, TheDecl, Parent, properties) { }
StructType *StructType::get(StructDecl *D, Type Parent, const ASTContext &C) {
llvm::FoldingSetNodeID id;
StructType::Profile(id, D, Parent);
RecursiveTypeProperties properties;
if (Parent) properties |= Parent->getRecursiveProperties();
auto arena = getArena(properties);
void *insertPos = 0;
if (auto structTy
= C.Impl.getArena(arena).StructTypes.FindNodeOrInsertPos(id, insertPos))
return structTy;
auto structTy = new (C, arena) StructType(D, Parent, C, properties);
C.Impl.getArena(arena).StructTypes.InsertNode(structTy, insertPos);
return structTy;
}
void StructType::Profile(llvm::FoldingSetNodeID &ID, StructDecl *D, Type Parent) {
ID.AddPointer(D);
ID.AddPointer(Parent.getPointer());
}
ClassType::ClassType(ClassDecl *TheDecl, Type Parent, const ASTContext &C,
RecursiveTypeProperties properties)
: NominalType(TypeKind::Class, &C, TheDecl, Parent, properties) { }
ClassType *ClassType::get(ClassDecl *D, Type Parent, const ASTContext &C) {
llvm::FoldingSetNodeID id;
ClassType::Profile(id, D, Parent);
RecursiveTypeProperties properties;
if (Parent) properties |= Parent->getRecursiveProperties();
auto arena = getArena(properties);
void *insertPos = 0;
if (auto classTy
= C.Impl.getArena(arena).ClassTypes.FindNodeOrInsertPos(id, insertPos))
return classTy;
auto classTy = new (C, arena) ClassType(D, Parent, C, properties);
C.Impl.getArena(arena).ClassTypes.InsertNode(classTy, insertPos);
return classTy;
}
void ClassType::Profile(llvm::FoldingSetNodeID &ID, ClassDecl *D, Type Parent) {
ID.AddPointer(D);
ID.AddPointer(Parent.getPointer());
}
ProtocolCompositionType *
ProtocolCompositionType::build(const ASTContext &C, ArrayRef<Type> Protocols) {
// Check to see if we've already seen this protocol composition before.
void *InsertPos = 0;
llvm::FoldingSetNodeID ID;
ProtocolCompositionType::Profile(ID, Protocols);
if (ProtocolCompositionType *Result
= C.Impl.ProtocolCompositionTypes.FindNodeOrInsertPos(ID, InsertPos))
return Result;
bool isCanonical = true;
for (Type t : Protocols) {
if (!t->isCanonical())
isCanonical = false;
}
// Create a new protocol composition type.
ProtocolCompositionType *New
= new (C, AllocationArena::Permanent)
ProtocolCompositionType(isCanonical ? &C : nullptr,
C.AllocateCopy(Protocols));
C.Impl.ProtocolCompositionTypes.InsertNode(New, InsertPos);
return New;
}
ReferenceStorageType *ReferenceStorageType::get(Type T, Ownership ownership,
const ASTContext &C) {
assert(ownership != Ownership::Strong &&
"ReferenceStorageType is unnecessary for strong ownership");
assert(!T->hasTypeVariable()); // not meaningful in type-checker
auto properties = T->getRecursiveProperties();
auto arena = getArena(properties);
auto key = uintptr_t(T.getPointer()) | unsigned(ownership);
auto &entry = C.Impl.getArena(arena).ReferenceStorageTypes[key];
if (entry) return entry;
switch (ownership) {
case Ownership::Strong: llvm_unreachable("not possible");
case Ownership::Unowned:
return entry =
new (C, arena) UnownedStorageType(T, T->isCanonical() ? &C : 0,
properties);
case Ownership::Weak:
return entry =
new (C, arena) WeakStorageType(T, T->isCanonical() ? &C : 0,
properties);
case Ownership::Unmanaged:
return entry =
new (C, arena) UnmanagedStorageType(T, T->isCanonical() ? &C : 0,
properties);
}
llvm_unreachable("bad ownership");
}
AnyMetatypeType::AnyMetatypeType(TypeKind kind, const ASTContext *C,
RecursiveTypeProperties properties,
Type instanceType,
Optional<MetatypeRepresentation> repr)
: TypeBase(kind, C, properties), InstanceType(instanceType) {
if (repr) {
AnyMetatypeTypeBits.Representation = static_cast<char>(*repr) + 1;
} else {
AnyMetatypeTypeBits.Representation = 0;
}
}
MetatypeType *MetatypeType::get(Type T, Optional<MetatypeRepresentation> Repr,
const ASTContext &Ctx) {
auto properties = T->getRecursiveProperties();
auto arena = getArena(properties);
char reprKey;
if (Repr.hasValue())
reprKey = static_cast<char>(*Repr) + 1;
else
reprKey = 0;
MetatypeType *&Entry = Ctx.Impl.getArena(arena).MetatypeTypes[{T, reprKey}];
if (Entry) return Entry;
return Entry = new (Ctx, arena) MetatypeType(T,
T->isCanonical() ? &Ctx : 0,
properties, Repr);
}
MetatypeType::MetatypeType(Type T, const ASTContext *C,
RecursiveTypeProperties properties,
Optional<MetatypeRepresentation> repr)
: AnyMetatypeType(TypeKind::Metatype, C, properties, T, repr) {
}
ExistentialMetatypeType *
ExistentialMetatypeType::get(Type T, Optional<MetatypeRepresentation> repr,
const ASTContext &ctx) {
auto properties = T->getRecursiveProperties();
auto arena = getArena(properties);
char reprKey;
if (repr.hasValue())
reprKey = static_cast<char>(*repr) + 1;
else
reprKey = 0;
auto &entry = ctx.Impl.getArena(arena).ExistentialMetatypeTypes[{T, reprKey}];
if (entry) return entry;
return entry = new (ctx, arena) ExistentialMetatypeType(T,
T->isCanonical() ? &ctx : 0,
properties, repr);
}
ExistentialMetatypeType::ExistentialMetatypeType(Type T,
const ASTContext *C,
RecursiveTypeProperties properties,
Optional<MetatypeRepresentation> repr)
: AnyMetatypeType(TypeKind::ExistentialMetatype, C, properties, T, repr) {
if (repr) {
assert(*repr != MetatypeRepresentation::Thin &&
"creating a thin existential metatype?");
assert(getASTContext().LangOpts.EnableObjCInterop ||
*repr != MetatypeRepresentation::ObjC);
}
}
ModuleType *ModuleType::get(Module *M) {
ASTContext &C = M->getASTContext();
ModuleType *&Entry = C.Impl.ModuleTypes[M];
if (Entry) return Entry;
return Entry = new (C, AllocationArena::Permanent) ModuleType(M, C);
}
DynamicSelfType *DynamicSelfType::get(Type selfType, const ASTContext &ctx) {
auto properties = selfType->getRecursiveProperties();
assert(properties.isMaterializable() && "non-materializable dynamic self?");
auto arena = getArena(properties);
auto &dynamicSelfTypes = ctx.Impl.getArena(arena).DynamicSelfTypes;
auto known = dynamicSelfTypes.find(selfType);
if (known != dynamicSelfTypes.end())
return known->second;
auto result = new (ctx, arena) DynamicSelfType(selfType, ctx, properties);
dynamicSelfTypes.insert({selfType, result});
return result;
}
static void checkFunctionRecursiveProperties(Type Input,
Type Result) {
// TODO: Would be nice to be able to assert these, but they trip during
// constraint solving:
//assert(!Input->getRecursiveProperties().isLValue()
// && "function should not take lvalues directly as parameters");
//assert(Result->getRecursiveProperties().isMaterializable()
// && "function return should be materializable");
}
static RecursiveTypeProperties getFunctionRecursiveProperties(Type Input,
Type Result) {
checkFunctionRecursiveProperties(Input, Result);
auto properties = Input->getRecursiveProperties()
| Result->getRecursiveProperties();
properties &= ~RecursiveTypeProperties::IsNotMaterializable;
return properties;
}
// For now, generic function types cannot be dependent (in fact,
// they erase dependence) or contain type variables, and they're
// always materializable.
static RecursiveTypeProperties
getGenericFunctionRecursiveProperties(Type Input, Type Result) {
checkFunctionRecursiveProperties(Input, Result);
static_assert(RecursiveTypeProperties::BitWidth == 10,
"revisit this if you add new recursive type properties");
RecursiveTypeProperties properties;
if (Result->getRecursiveProperties().hasDynamicSelf())
properties |= RecursiveTypeProperties::HasDynamicSelf;
return properties;
}
AnyFunctionType *AnyFunctionType::withExtInfo(ExtInfo info) const {
if (isa<FunctionType>(this))
return FunctionType::get(getInput(), getResult(), info);
if (auto *polyFnTy = dyn_cast<PolymorphicFunctionType>(this))
return PolymorphicFunctionType::get(getInput(), getResult(),
&polyFnTy->getGenericParams(), info);
if (auto *genFnTy = dyn_cast<GenericFunctionType>(this))
return GenericFunctionType::get(genFnTy->getGenericSignature(),
getInput(), getResult(), info);
static_assert(3 - 1 ==
static_cast<int>(TypeKind::Last_AnyFunctionType) -
static_cast<int>(TypeKind::First_AnyFunctionType),
"unhandled function type");
llvm_unreachable("unhandled function type");
}
FunctionType *FunctionType::get(Type Input, Type Result,
const ExtInfo &Info) {
auto properties = getFunctionRecursiveProperties(Input, Result);
auto arena = getArena(properties);
uint16_t attrKey = Info.getFuncAttrKey();
const ASTContext &C = Input->getASTContext();
FunctionType *&Entry
= C.Impl.getArena(arena).FunctionTypes[{Input, {Result, attrKey} }];
if (Entry) return Entry;
return Entry = new (C, arena) FunctionType(Input, Result,
properties,
Info);
}
// If the input and result types are canonical, then so is the result.
FunctionType::FunctionType(Type input, Type output,
RecursiveTypeProperties properties,
const ExtInfo &Info)
: AnyFunctionType(TypeKind::Function,
(input->isCanonical() && output->isCanonical()) ?
&input->getASTContext() : 0,
input, output,
properties,
Info)
{ }
/// FunctionType::get - Return a uniqued function type with the specified
/// input and result.
PolymorphicFunctionType *PolymorphicFunctionType::get(Type input, Type output,
GenericParamList *params,
const ExtInfo &Info) {
auto properties = getFunctionRecursiveProperties(input, output);
auto arena = getArena(properties);
const ASTContext &C = input->getASTContext();
return new (C, arena) PolymorphicFunctionType(input, output, params,
Info, C, properties);
}
PolymorphicFunctionType::PolymorphicFunctionType(Type input, Type output,
GenericParamList *params,
const ExtInfo &Info,
const ASTContext &C,
RecursiveTypeProperties properties)
: AnyFunctionType(TypeKind::PolymorphicFunction,
(input->isCanonical() && output->isCanonical()) ?&C : 0,
input, output, properties,
Info),
Params(params)
{
assert(!input->hasTypeVariable() && !output->hasTypeVariable());
}
void GenericFunctionType::Profile(llvm::FoldingSetNodeID &ID,
GenericSignature *sig,
Type input,
Type result,
const ExtInfo &info) {
ID.AddPointer(sig);
ID.AddPointer(input.getPointer());
ID.AddPointer(result.getPointer());
ID.AddInteger(info.getFuncAttrKey());
}
GenericFunctionType *
GenericFunctionType::get(GenericSignature *sig,
Type input,
Type output,
const ExtInfo &info) {
assert(sig && "no generic signature for generic function type?!");
assert(!input->hasTypeVariable() && !output->hasTypeVariable());
llvm::FoldingSetNodeID id;
GenericFunctionType::Profile(id, sig, input, output, info);
const ASTContext &ctx = input->getASTContext();
// Do we already have this generic function type?
void *insertPos;
if (auto result
= ctx.Impl.GenericFunctionTypes.FindNodeOrInsertPos(id, insertPos))
return result;
// We have to construct this generic function type. Determine whether
// it's canonical.
bool isCanonical = sig->isCanonical()
&& input->isCanonical()
&& output->isCanonical();
// Allocate storage for the object.
void *mem = ctx.Allocate(sizeof(GenericFunctionType),
alignof(GenericFunctionType));
auto properties = getGenericFunctionRecursiveProperties(input, output);
auto result = new (mem) GenericFunctionType(sig, input, output, info,
isCanonical ? &ctx : nullptr,
properties);
ctx.Impl.GenericFunctionTypes.InsertNode(result, insertPos);
return result;
}
GenericFunctionType::GenericFunctionType(
GenericSignature *sig,
Type input,
Type result,
const ExtInfo &info,
const ASTContext *ctx,
RecursiveTypeProperties properties)
: AnyFunctionType(TypeKind::GenericFunction, ctx, input, result,
properties, info),
Signature(sig)
{}
GenericTypeParamType *GenericTypeParamType::get(unsigned depth, unsigned index,
const ASTContext &ctx) {
auto known = ctx.Impl.GenericParamTypes.find({ depth, index });
if (known != ctx.Impl.GenericParamTypes.end())
return known->second;
auto result = new (ctx, AllocationArena::Permanent)
GenericTypeParamType(depth, index, ctx);
ctx.Impl.GenericParamTypes[{depth, index}] = result;
return result;
}
ArrayRef<GenericTypeParamType *> GenericFunctionType::getGenericParams() const{
return Signature->getGenericParams();
}
/// Retrieve the requirements of this polymorphic function type.
ArrayRef<Requirement> GenericFunctionType::getRequirements() const {
return Signature->getRequirements();
}
void SILFunctionType::Profile(llvm::FoldingSetNodeID &id,
GenericSignature *genericParams,
ExtInfo info,
ParameterConvention calleeConvention,
ArrayRef<SILParameterInfo> params,
SILResultInfo result,
Optional<SILResultInfo> errorResult) {
id.AddPointer(genericParams);
id.AddInteger(info.getFuncAttrKey());
id.AddInteger(unsigned(calleeConvention));
id.AddInteger(params.size());
for (auto param : params)
param.profile(id);
result.profile(id);
// Just allow the profile length to implicitly distinguish the
// presence of an error result.
if (errorResult) errorResult->profile(id);
}
SILFunctionType::SILFunctionType(GenericSignature *genericSig,
ExtInfo ext,
ParameterConvention calleeConvention,
ArrayRef<SILParameterInfo> interfaceParams,
SILResultInfo interfaceResult,
Optional<SILResultInfo> interfaceErrorResult,
const ASTContext &ctx,
RecursiveTypeProperties properties)
: TypeBase(TypeKind::SILFunction, &ctx, properties),
GenericSig(genericSig),
InterfaceResult(interfaceResult) {
SILFunctionTypeBits.HasErrorResult = interfaceErrorResult.hasValue();
SILFunctionTypeBits.ExtInfo = ext.Bits;
NumParameters = interfaceParams.size();
assert(!isIndirectParameter(calleeConvention));
SILFunctionTypeBits.CalleeConvention = unsigned(calleeConvention);
memcpy(getMutableParameters().data(), interfaceParams.data(),
interfaceParams.size() * sizeof(SILParameterInfo));
if (interfaceErrorResult)
getMutableErrorResult() = *interfaceErrorResult;
// Make sure the interface types are sane.
#ifndef NDEBUG
if (genericSig) {
for (auto gparam : genericSig->getGenericParams()) {
(void)gparam;
assert(gparam->isCanonical() && "generic signature is not canonicalized");
}
for (auto param : getParameters()) {
(void)param;
assert(!param.getType().findIf([](Type t) {
return t->is<ArchetypeType>()
&& !t->castTo<ArchetypeType>()->getSelfProtocol();
}) && "interface type of generic type should not contain context archetypes");
}
assert(!getResult().getType().findIf([](Type t) {
return t->is<ArchetypeType>();
}) && "interface type of generic type should not contain context archetypes");
if (hasErrorResult()) {
assert(!getErrorResult().getType().findIf([](Type t) {
return t->is<ArchetypeType>();
}) && "interface type of generic type should not contain context archetypes");
}
}
#endif
}
CanSILBlockStorageType SILBlockStorageType::get(CanType captureType) {
ASTContext &ctx = captureType->getASTContext();
auto found = ctx.Impl.SILBlockStorageTypes.find(captureType);
if (found != ctx.Impl.SILBlockStorageTypes.end())
return CanSILBlockStorageType(found->second);
void *mem = ctx.Allocate(sizeof(SILBlockStorageType),
alignof(SILBlockStorageType));
SILBlockStorageType *storageTy = new (mem) SILBlockStorageType(captureType);
ctx.Impl.SILBlockStorageTypes.insert({captureType, storageTy});
return CanSILBlockStorageType(storageTy);
}
CanSILBoxType SILBoxType::get(CanType boxType) {
ASTContext &ctx = boxType->getASTContext();
auto found = ctx.Impl.SILBoxTypes.find(boxType);
if (found != ctx.Impl.SILBoxTypes.end())
return CanSILBoxType(found->second);
void *mem = ctx.Allocate(sizeof(SILBlockStorageType),
alignof(SILBlockStorageType));
auto storageTy = new (mem) SILBoxType(boxType);
ctx.Impl.SILBoxTypes.insert({boxType, storageTy});
return CanSILBoxType(storageTy);
}
CanSILFunctionType SILFunctionType::get(GenericSignature *genericSig,
ExtInfo ext, ParameterConvention callee,
ArrayRef<SILParameterInfo> interfaceParams,
SILResultInfo interfaceResult,
Optional<SILResultInfo> interfaceErrorResult,
const ASTContext &ctx) {
llvm::FoldingSetNodeID id;
SILFunctionType::Profile(id, genericSig, ext, callee,
interfaceParams, interfaceResult,
interfaceErrorResult);
// Do we already have this generic function type?
void *insertPos;
if (auto result
= ctx.Impl.SILFunctionTypes.FindNodeOrInsertPos(id, insertPos))
return CanSILFunctionType(result);
// All SILFunctionTypes are canonical.
// Allocate storage for the object.
size_t bytes = sizeof(SILFunctionType)
+ sizeof(SILParameterInfo) * interfaceParams.size()
+ (interfaceErrorResult ? sizeof(SILResultInfo) : 0);
void *mem = ctx.Allocate(bytes, alignof(SILFunctionType));
// Right now, generic SIL function types cannot be dependent or contain type
// variables, and they're always materializable.
// FIXME: If we ever have first-class polymorphic values, we'll need to
// revisit this.
RecursiveTypeProperties properties;
static_assert(RecursiveTypeProperties::BitWidth == 10,
"revisit this if you add new recursive type properties");
if (genericSig) {
// See getGenericFunctionRecursiveProperties.
if (interfaceResult.getType()->getRecursiveProperties().hasDynamicSelf())
properties |= RecursiveTypeProperties::HasDynamicSelf;
}
else {
// Nongeneric SIL functions are dependent if they have dependent argument
// or return types. They still never contain type variables and are always
// materializable.
properties |= interfaceResult.getType()->getRecursiveProperties();
if (interfaceErrorResult)
properties |= interfaceErrorResult->getType()->getRecursiveProperties();
for (auto &param : interfaceParams) {
properties |= param.getType()->getRecursiveProperties();
}
}
auto fnType =
new (mem) SILFunctionType(genericSig, ext, callee,
interfaceParams, interfaceResult,
interfaceErrorResult,
ctx, properties);
ctx.Impl.SILFunctionTypes.InsertNode(fnType, insertPos);
return CanSILFunctionType(fnType);
}
ArraySliceType *ArraySliceType::get(Type base) {
auto properties = base->getRecursiveProperties();
auto arena = getArena(properties);
const ASTContext &C = base->getASTContext();
ArraySliceType *&entry = C.Impl.getArena(arena).ArraySliceTypes[base];
if (entry) return entry;
return entry = new (C, arena) ArraySliceType(C, base, properties);
}
DictionaryType *DictionaryType::get(Type keyType, Type valueType) {
auto properties = keyType->getRecursiveProperties()
| valueType->getRecursiveProperties();
auto arena = getArena(properties);
const ASTContext &C = keyType->getASTContext();
DictionaryType *&entry
= C.Impl.getArena(arena).DictionaryTypes[{keyType, valueType}];
if (entry) return entry;
return entry = new (C, arena) DictionaryType(C, keyType, valueType,
properties);
}
Type OptionalType::get(OptionalTypeKind which, Type valueType) {
switch (which) {
// It wouldn't be unreasonable for this method to just ignore
// OTK_None if we made code more convenient to write.
case OTK_None: llvm_unreachable("building a non-optional type!");
case OTK_Optional: return OptionalType::get(valueType);
case OTK_ImplicitlyUnwrappedOptional: return ImplicitlyUnwrappedOptionalType::get(valueType);
}
llvm_unreachable("bad optional type kind");
}
OptionalType *OptionalType::get(Type base) {
auto properties = base->getRecursiveProperties();
auto arena = getArena(properties);
const ASTContext &C = base->getASTContext();
OptionalType *&entry = C.Impl.getArena(arena).OptionalTypes[base];
if (entry) return entry;
return entry = new (C, arena) OptionalType(C, base, properties);
}
ImplicitlyUnwrappedOptionalType *ImplicitlyUnwrappedOptionalType::get(Type base) {
auto properties = base->getRecursiveProperties();
auto arena = getArena(properties);
const ASTContext &C = base->getASTContext();
auto *&entry = C.Impl.getArena(arena).ImplicitlyUnwrappedOptionalTypes[base];
if (entry) return entry;
return entry = new (C, arena) ImplicitlyUnwrappedOptionalType(C, base, properties);
}
ProtocolType *ProtocolType::get(ProtocolDecl *D, const ASTContext &C) {
if (auto declaredTy = D->getDeclaredType())
return declaredTy->castTo<ProtocolType>();
auto protoTy = new (C, AllocationArena::Permanent) ProtocolType(D, C);
D->setDeclaredType(protoTy);
return protoTy;
}
ProtocolType::ProtocolType(ProtocolDecl *TheDecl, const ASTContext &Ctx)
: NominalType(TypeKind::Protocol, &Ctx, TheDecl, /*Parent=*/Type(),
RecursiveTypeProperties()) { }
LValueType *LValueType::get(Type objectTy) {
assert(!objectTy->is<ErrorType>() &&
"can not have ErrorType wrapped inside LValueType");
assert(!objectTy->is<LValueType>() && !objectTy->is<InOutType>() &&
"can not have 'inout' or @lvalue wrapped inside an @lvalue");
auto properties = objectTy->getRecursiveProperties()
| RecursiveTypeProperties::IsLValue;
auto arena = getArena(properties);
auto &C = objectTy->getASTContext();
auto &entry = C.Impl.getArena(arena).LValueTypes[objectTy];
if (entry)
return entry;
const ASTContext *canonicalContext = objectTy->isCanonical() ? &C : nullptr;
return entry = new (C, arena) LValueType(objectTy, canonicalContext,
properties);
}
InOutType *InOutType::get(Type objectTy) {
assert(!objectTy->is<ErrorType>() &&
"can not have ErrorType wrapped inside InOutType");
assert(!objectTy->is<LValueType>() && !objectTy->is<InOutType>() &&
"can not have 'inout' or @lvalue wrapped inside an 'inout'");
auto properties = objectTy->getRecursiveProperties() |
RecursiveTypeProperties::HasInOut;
properties &= ~RecursiveTypeProperties::IsLValue;
auto arena = getArena(properties);
auto &C = objectTy->getASTContext();
auto &entry = C.Impl.getArena(arena).InOutTypes[objectTy];
if (entry)
return entry;
const ASTContext *canonicalContext = objectTy->isCanonical() ? &C : nullptr;
return entry = new (C, arena) InOutType(objectTy, canonicalContext,
properties);
}
/// Return a uniqued substituted type.
SubstitutedType *SubstitutedType::get(Type Original, Type Replacement,
const ASTContext &C) {
auto properties = Replacement->getRecursiveProperties();
auto arena = getArena(properties);
SubstitutedType *&Known
= C.Impl.getArena(arena).SubstitutedTypes[{Original, Replacement}];
if (!Known) {
Known = new (C, arena) SubstitutedType(Original, Replacement,
properties);
}
return Known;
}
DependentMemberType *DependentMemberType::get(Type base, Identifier name,
const ASTContext &ctx) {
auto properties = base->getRecursiveProperties();
properties |= RecursiveTypeProperties::HasTypeParameter;
auto arena = getArena(properties);
llvm::PointerUnion<Identifier, AssociatedTypeDecl *> stored(name);
auto *&known = ctx.Impl.getArena(arena).DependentMemberTypes[
{base, stored.getOpaqueValue()}];
if (!known) {
const ASTContext *canonicalCtx = base->isCanonical() ? &ctx : nullptr;
known = new (ctx, arena) DependentMemberType(base, name, canonicalCtx,
properties);
}
return known;
}
DependentMemberType *DependentMemberType::get(Type base,
AssociatedTypeDecl *assocType,
const ASTContext &ctx) {
auto properties = base->getRecursiveProperties();
properties |= RecursiveTypeProperties::HasTypeParameter;
auto arena = getArena(properties);
llvm::PointerUnion<Identifier, AssociatedTypeDecl *> stored(assocType);
auto *&known = ctx.Impl.getArena(arena).DependentMemberTypes[
{base, stored.getOpaqueValue()}];
if (!known) {
const ASTContext *canonicalCtx = base->isCanonical() ? &ctx : nullptr;
known = new (ctx, arena) DependentMemberType(base, assocType, canonicalCtx,
properties);
}
return known;
}
CanArchetypeType ArchetypeType::getOpened(Type existential,
Optional<UUID> knownID) {
auto &ctx = existential->getASTContext();
auto &openedExistentialArchetypes = ctx.Impl.OpenedExistentialArchetypes;
// If we know the ID already...
if (knownID) {
// ... and we already have an archetype for that ID, return it.
auto found = openedExistentialArchetypes.find(*knownID);
if (found != openedExistentialArchetypes.end()) {
auto result = found->second;
assert(result->getOpenedExistentialType()->isEqual(existential) &&
"Retrieved the wrong opened existential type?");
return CanArchetypeType(result);
}
} else {
// Create a new ID.
knownID = UUID::fromTime();
}
auto arena = AllocationArena::Permanent;
llvm::SmallVector<ProtocolDecl *, 4> conformsTo;
assert(existential->isExistentialType());
existential->getAnyExistentialTypeProtocols(conformsTo);
// Tail-allocate space for the UUID.
void *archetypeBuf = ctx.Allocate(sizeof(ArchetypeType) + sizeof(UUID),
alignof(ArchetypeType), arena);
auto result = ::new (archetypeBuf) ArchetypeType(ctx, existential,
ctx.AllocateCopy(conformsTo),
existential->getSuperclass(nullptr));
result->setOpenedExistentialID(*knownID);
openedExistentialArchetypes[*knownID] = result;
return CanArchetypeType(result);
}
CanType ArchetypeType::getAnyOpened(Type existential) {
if (auto metatypeTy = existential->getAs<ExistentialMetatypeType>()) {
auto instanceTy = metatypeTy->getInstanceType();
return CanMetatypeType::get(ArchetypeType::getAnyOpened(instanceTy));
}
assert(existential->isExistentialType());
return ArchetypeType::getOpened(existential);
}
void *ExprHandle::operator new(size_t Bytes, ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
ExprHandle *ExprHandle::get(ASTContext &Context, Expr *E) {
return new (Context) ExprHandle(E);
}
void TypeLoc::setInvalidType(ASTContext &C) {
TAndValidBit.setPointerAndInt(ErrorType::get(C), true);
}
namespace {
class raw_capturing_ostream : public raw_ostream {
std::string Message;
uint64_t Pos;
CapturingTypeCheckerDebugConsumer &Listener;
public:
raw_capturing_ostream(CapturingTypeCheckerDebugConsumer &Listener)
: Listener(Listener) {}
~raw_capturing_ostream() {
flush();
}
void write_impl(const char *Ptr, size_t Size) override {
Message.append(Ptr, Size);
Pos += Size;
// Check if we have at least one complete line.
size_t LastNewline = StringRef(Message).rfind('\n');
if (LastNewline == StringRef::npos)
return;
Listener.handleMessage(StringRef(Message.data(), LastNewline + 1));
Message.erase(0, LastNewline + 1);
}
uint64_t current_pos() const override {
return Pos;
}
};
} // unnamed namespace
TypeCheckerDebugConsumer::~TypeCheckerDebugConsumer() { }
CapturingTypeCheckerDebugConsumer::CapturingTypeCheckerDebugConsumer()
: Log(new raw_capturing_ostream(*this)) {
Log->SetUnbuffered();
}
CapturingTypeCheckerDebugConsumer::~CapturingTypeCheckerDebugConsumer() {
delete Log;
}
void GenericSignature::Profile(llvm::FoldingSetNodeID &ID,
ArrayRef<GenericTypeParamType *> genericParams,
ArrayRef<Requirement> requirements) {
for (auto p : genericParams)
ID.AddPointer(p);
for (auto &reqt : requirements) {
ID.AddPointer(reqt.getFirstType().getPointer());
if (reqt.getKind() != RequirementKind::WitnessMarker)
ID.AddPointer(reqt.getSecondType().getPointer());
ID.AddInteger(unsigned(reqt.getKind()));
}
}
GenericSignature *GenericSignature::get(ArrayRef<GenericTypeParamType *> params,
ArrayRef<Requirement> requirements,
bool isKnownCanonical) {
if (params.empty() && requirements.empty())
return nullptr;
// Check for an existing generic signature.
llvm::FoldingSetNodeID ID;
GenericSignature::Profile(ID, params, requirements);
auto &ctx = getASTContext(params, requirements);
void *insertPos;
if (auto *sig = ctx.Impl.GenericSignatures.FindNodeOrInsertPos(ID,
insertPos)) {
if (isKnownCanonical)
sig->CanonicalSignatureOrASTContext = &ctx;
return sig;
}
// Allocate and construct the new signature.
size_t bytes = sizeof(GenericSignature)
+ sizeof(GenericTypeParamType *) * params.size()
+ sizeof(Requirement) * requirements.size();
void *mem = ctx.Allocate(bytes, alignof(GenericSignature));
auto newSig = new (mem) GenericSignature(params, requirements,
isKnownCanonical);
ctx.Impl.GenericSignatures.InsertNode(newSig, insertPos);
return newSig;
}
void DeclName::CompoundDeclName::Profile(llvm::FoldingSetNodeID &id,
Identifier baseName,
ArrayRef<Identifier> argumentNames) {
id.AddPointer(baseName.get());
id.AddInteger(argumentNames.size());
for (auto arg : argumentNames)
id.AddPointer(arg.get());
}
DeclName::DeclName(ASTContext &C, Identifier baseName,
ArrayRef<Identifier> argumentNames) {
if (argumentNames.size() == 0) {
SimpleOrCompound = IdentifierAndCompound(baseName, true);
return;
}
llvm::FoldingSetNodeID id;
CompoundDeclName::Profile(id, baseName, argumentNames);
void *insert = nullptr;
if (CompoundDeclName *compoundName
= C.Impl.CompoundNames.FindNodeOrInsertPos(id, insert)) {
SimpleOrCompound = compoundName;
return;
}
auto buf = C.Allocate(sizeof(CompoundDeclName)
+ argumentNames.size() * sizeof(Identifier),
alignof(CompoundDeclName));
auto compoundName = new (buf) CompoundDeclName(baseName,argumentNames.size());
std::uninitialized_copy(argumentNames.begin(), argumentNames.end(),
compoundName->getArgumentNames().begin());
SimpleOrCompound = compoundName;
C.Impl.CompoundNames.InsertNode(compoundName, insert);
}
Optional<Type>
ASTContext::getBridgedToObjC(const DeclContext *dc, Type type,
LazyResolver *resolver) const {
if (type->isBridgeableObjectType())
return type;
// Whitelist certain types even if Foundation is not imported, to ensure
// that casts from AnyObject to one of these types are not optimized away.
bool knownBridgedToObjC = false;
if (auto ntd = type->getAnyNominal()) {
knownBridgedToObjC = (ntd == getBoolDecl() ||
ntd == getIntDecl() ||
ntd == getUIntDecl() ||
ntd == getFloatDecl() ||
ntd == getDoubleDecl() ||
ntd == getArrayDecl() ||
ntd == getDictionaryDecl() ||
ntd == getSetDecl() ||
ntd == getStringDecl());
}
// If the type is generic, check whether its generic arguments are also
// bridged to Objective-C.
if (auto bgt = type->getAs<BoundGenericType>()) {
for (auto arg : bgt->getGenericArgs()) {
if (arg->hasTypeVariable())
continue;
if (!getBridgedToObjC(dc, arg, resolver))
return None;
}
}
if (auto metaTy = type->getAs<MetatypeType>())
if (metaTy->getInstanceType()->mayHaveSuperclass())
return type;
if (auto existentialMetaTy = type->getAs<ExistentialMetatypeType>())
if (existentialMetaTy->getInstanceType()->isObjCExistentialType())
return type;
// Retrieve the _BridgedToObjectiveC protocol.
auto bridgedProto = getProtocol(KnownProtocolKind::ObjectiveCBridgeable);
if (!bridgedProto)
return None;
// Check whether the type conforms to _BridgedToObjectiveC.
auto conformance
= dc->getParentModule()->lookupConformance(type, bridgedProto, resolver);
switch (conformance.getInt()) {
case ConformanceKind::Conforms:
// The type conforms, and we know the conformance, so we can look up the
// bridged type below.
break;
case ConformanceKind::UncheckedConforms:
// The type conforms, but we don't have a conformance yet. Return
// Optional(nullptr) to signal this.
return Type();
case ConformanceKind::DoesNotConform:
// If we haven't imported Foundation but this is a whitelisted type,
// behave as above.
if (knownBridgedToObjC)
return Type();
return None;
}
// Find the type we bridge to.
return ProtocolConformance::getTypeWitnessByName(type,
conformance.getPointer(),
getIdentifier("_ObjectiveCType"),
resolver);
}
std::pair<ArchetypeBuilder *, ArchetypeBuilder::PotentialArchetype *>
ASTContext::getLazyArchetype(const ArchetypeType *archetype) {
auto known = Impl.LazyArchetypes.find(archetype);
assert(known != Impl.LazyArchetypes.end());
return known->second;
}
void ASTContext::registerLazyArchetype(
const ArchetypeType *archetype,
ArchetypeBuilder &builder,
ArchetypeBuilder::PotentialArchetype *potentialArchetype) {
assert(Impl.LazyArchetypes.count(archetype) == 0);
Impl.LazyArchetypes[archetype] = { &builder, potentialArchetype };
}
void ASTContext::unregisterLazyArchetype(const ArchetypeType *archetype) {
auto known = Impl.LazyArchetypes.find(archetype);
assert(known != Impl.LazyArchetypes.end());
Impl.LazyArchetypes.erase(known);
}