blob: f8efc395fc7fa44e669cc35187cfc9fa05cf9abd [file] [log] [blame]
//===--- ClangImporter.cpp - Import Clang Modules -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for loading Clang modules into Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "IAMInference.h"
#include "ImporterImpl.h"
#include "ClangDiagnosticConsumer.h"
#include "swift/Subsystems.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsClangImporter.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Platform.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporterOptions.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/Parser.h"
#include "swift/Config.h"
#include "swift/Strings.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Mangle.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/Basic/VirtualFileSystem.h"
#include "clang/CodeGen/ObjectFilePCHContainerOperations.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/Utils.h"
#include "clang/Index/IndexingAction.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTWriter.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Parse/Parser.h"
#include "clang/Rewrite/Frontend/FrontendActions.h"
#include "clang/Rewrite/Frontend/Rewriters.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <memory>
#include <regex>
using namespace swift;
using namespace importer;
// Commonly-used Clang classes.
using clang::CompilerInstance;
using clang::CompilerInvocation;
#pragma mark Internal data structures
namespace {
class HeaderImportCallbacks : public clang::PPCallbacks {
ClangImporter::Implementation &Impl;
public:
HeaderImportCallbacks(ClangImporter::Implementation &impl)
: Impl(impl) {}
void handleImport(const clang::Module *imported) {
if (!imported)
return;
Impl.DeferredHeaderImports.push_back(imported);
}
void InclusionDirective(clang::SourceLocation HashLoc,
const clang::Token &IncludeTok,
StringRef FileName,
bool IsAngled,
clang::CharSourceRange FilenameRange,
const clang::FileEntry *File,
StringRef SearchPath,
StringRef RelativePath,
const clang::Module *Imported) override {
handleImport(Imported);
}
void moduleImport(clang::SourceLocation ImportLoc,
clang::ModuleIdPath Path,
const clang::Module *Imported) override {
handleImport(Imported);
}
};
class PCHDeserializationCallbacks : public clang::ASTDeserializationListener {
ClangImporter::Implementation &Impl;
public:
explicit PCHDeserializationCallbacks(ClangImporter::Implementation &impl)
: Impl(impl) {}
void ModuleImportRead(clang::serialization::SubmoduleID ID,
clang::SourceLocation ImportLoc) override {
if (Impl.IsReadingBridgingPCH) {
Impl.PCHImportedSubmodules.push_back(ID);
}
}
};
class HeaderParsingASTConsumer : public clang::ASTConsumer {
SmallVector<clang::DeclGroupRef, 4> DeclGroups;
PCHDeserializationCallbacks PCHCallbacks;
public:
explicit HeaderParsingASTConsumer(ClangImporter::Implementation &impl)
: PCHCallbacks(impl) {}
void
HandleTopLevelDeclInObjCContainer(clang::DeclGroupRef decls) override {
DeclGroups.push_back(decls);
}
ArrayRef<clang::DeclGroupRef> getAdditionalParsedDecls() {
return DeclGroups;
}
clang::ASTDeserializationListener *GetASTDeserializationListener() override {
return &PCHCallbacks;
}
void reset() {
DeclGroups.clear();
}
};
class ParsingAction : public clang::ASTFrontendAction {
ASTContext &Ctx;
ClangImporter &Importer;
ClangImporter::Implementation &Impl;
const ClangImporterOptions &ImporterOpts;
std::string SwiftPCHHash;
public:
explicit ParsingAction(ASTContext &ctx,
ClangImporter &importer,
ClangImporter::Implementation &impl,
const ClangImporterOptions &importerOpts,
std::string swiftPCHHash)
: Ctx(ctx), Importer(importer), Impl(impl), ImporterOpts(importerOpts),
SwiftPCHHash(swiftPCHHash) {}
std::unique_ptr<clang::ASTConsumer>
CreateASTConsumer(clang::CompilerInstance &CI, StringRef InFile) override {
return llvm::make_unique<HeaderParsingASTConsumer>(Impl);
}
bool BeginSourceFileAction(clang::CompilerInstance &CI) override {
// Prefer frameworks over plain headers.
// We add search paths here instead of when building the initial invocation
// so that (a) we use the same code as search paths for imported modules,
// and (b) search paths are always added after -Xcc options.
SearchPathOptions &searchPathOpts = Ctx.SearchPathOpts;
for (const auto &framepath : searchPathOpts.FrameworkSearchPaths) {
Importer.addSearchPath(framepath.Path, /*isFramework*/true,
framepath.IsSystem);
}
for (auto path : searchPathOpts.ImportSearchPaths) {
Importer.addSearchPath(path, /*isFramework*/false, /*isSystem=*/false);
}
auto PCH = Importer.getOrCreatePCH(ImporterOpts, SwiftPCHHash);
if (PCH.hasValue()) {
Impl.getClangInstance()->getPreprocessorOpts().ImplicitPCHInclude =
PCH.getValue();
Impl.IsReadingBridgingPCH = true;
Impl.setSinglePCHImport(PCH.getValue());
}
return true;
}
};
class StdStringMemBuffer : public llvm::MemoryBuffer {
const std::string storage;
const std::string name;
public:
StdStringMemBuffer(std::string &&source, StringRef name)
: storage(std::move(source)), name(name.str()) {
init(storage.data(), storage.data() + storage.size(),
/*null-terminated=*/true);
}
StringRef getBufferIdentifier() const override {
return name;
}
BufferKind getBufferKind() const override {
return MemoryBuffer_Malloc;
}
};
class ZeroFilledMemoryBuffer : public llvm::MemoryBuffer {
const std::string name;
public:
explicit ZeroFilledMemoryBuffer(size_t size, StringRef name)
: name(name.str()) {
assert(size > 0);
std::error_code error;
llvm::sys::MemoryBlock memory =
llvm::sys::Memory::allocateMappedMemory(size, nullptr,
llvm::sys::Memory::MF_READ,
error);
assert(!error && "failed to allocated read-only zero-filled memory");
init(static_cast<char *>(memory.base()),
static_cast<char *>(memory.base()) + memory.size() - 1,
/*null-terminated*/true);
}
~ZeroFilledMemoryBuffer() override {
llvm::sys::MemoryBlock memory{const_cast<char *>(getBufferStart()),
getBufferSize()};
std::error_code error = llvm::sys::Memory::releaseMappedMemory(memory);
assert(!error && "failed to deallocate read-only zero-filled memory");
(void)error;
}
ZeroFilledMemoryBuffer(const ZeroFilledMemoryBuffer &) = delete;
ZeroFilledMemoryBuffer(ZeroFilledMemoryBuffer &&) = delete;
void operator=(const ZeroFilledMemoryBuffer &) = delete;
void operator=(ZeroFilledMemoryBuffer &&) = delete;
StringRef getBufferIdentifier() const override {
return name;
}
BufferKind getBufferKind() const override {
return MemoryBuffer_MMap;
}
};
} // end anonymous namespace
namespace {
class BridgingPPTracker : public clang::PPCallbacks {
ClangImporter::Implementation &Impl;
public:
BridgingPPTracker(ClangImporter::Implementation &Impl)
: Impl(Impl) {}
private:
static unsigned getNumModuleIdentifiers(const clang::Module *Mod) {
unsigned Result = 1;
while (Mod->Parent) {
Mod = Mod->Parent;
++Result;
}
return Result;
}
void InclusionDirective(clang::SourceLocation HashLoc,
const clang::Token &IncludeTok,
StringRef FileName,
bool IsAngled,
clang::CharSourceRange FilenameRange,
const clang::FileEntry *File,
StringRef SearchPath,
StringRef RelativePath,
const clang::Module *Imported) override {
if (!Imported) {
if (File)
Impl.BridgeHeaderFiles.insert(File);
return;
}
// Synthesize identifier locations.
SmallVector<clang::SourceLocation, 4> IdLocs;
for (unsigned I = 0, E = getNumModuleIdentifiers(Imported); I != E; ++I)
IdLocs.push_back(HashLoc);
handleImport(HashLoc, IdLocs, Imported);
}
void moduleImport(clang::SourceLocation ImportLoc,
clang::ModuleIdPath Path,
const clang::Module *Imported) override {
if (!Imported)
return;
SmallVector<clang::SourceLocation, 4> IdLocs;
for (auto &P : Path)
IdLocs.push_back(P.second);
handleImport(ImportLoc, IdLocs, Imported);
}
void handleImport(clang::SourceLocation ImportLoc,
ArrayRef<clang::SourceLocation> IdLocs,
const clang::Module *Imported) {
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
clang::ImportDecl *ClangImport = clang::ImportDecl::Create(ClangCtx,
ClangCtx.getTranslationUnitDecl(),
ImportLoc,
const_cast<clang::Module*>(Imported),
IdLocs);
Impl.BridgeHeaderTopLevelImports.push_back(ClangImport);
}
void MacroDefined(const clang::Token &MacroNameTok,
const clang::MacroDirective *MD) override {
Impl.BridgeHeaderMacros.push_back(MacroNameTok.getIdentifierInfo());
}
};
class ClangImporterDependencyCollector : public clang::DependencyCollector
{
llvm::StringSet<> ExcludedPaths;
public:
ClangImporterDependencyCollector() = default;
void excludePath(StringRef filename) {
ExcludedPaths.insert(filename);
}
bool isClangImporterSpecialName(StringRef Filename) {
using ImporterImpl = ClangImporter::Implementation;
return (Filename == ImporterImpl::moduleImportBufferName
|| Filename == ImporterImpl::bridgingHeaderBufferName);
}
// Currently preserving older ClangImporter behavior of ignoring system
// dependencies, but possibly revisit?
bool needSystemDependencies() override { return false; }
bool sawDependency(StringRef Filename, bool FromClangModule,
bool IsSystem, bool IsClangModuleFile,
bool IsMissing) override {
if (!clang::DependencyCollector::sawDependency(Filename, FromClangModule,
IsSystem, IsClangModuleFile,
IsMissing))
return false;
// Currently preserving older ClangImporter behavior of ignoring .pcm
// file dependencies, but possibly revisit?
if (IsClangModuleFile
|| isClangImporterSpecialName(Filename)
|| ExcludedPaths.count(Filename))
return false;
return true;
}
};
} // end anonymous namespace
std::shared_ptr<clang::DependencyCollector>
ClangImporter::createDependencyCollector()
{
return std::make_shared<ClangImporterDependencyCollector>();
}
void ClangImporter::Implementation::addBridgeHeaderTopLevelDecls(
clang::Decl *D) {
if (shouldIgnoreBridgeHeaderTopLevelDecl(D))
return;
BridgeHeaderTopLevelDecls.push_back(D);
}
bool ClangImporter::Implementation::shouldIgnoreBridgeHeaderTopLevelDecl(
clang::Decl *D) {
// Ignore forward references;
if (auto *ID = dyn_cast<clang::ObjCInterfaceDecl>(D)) {
if (!ID->isThisDeclarationADefinition())
return true;
} else if (auto PD = dyn_cast<clang::ObjCProtocolDecl>(D)) {
if (!PD->isThisDeclarationADefinition())
return true;
} else if (auto TD = dyn_cast<clang::TagDecl>(D)) {
if (!TD->isThisDeclarationADefinition())
return true;
}
return false;
}
ClangImporter::ClangImporter(ASTContext &ctx,
const ClangImporterOptions &clangImporterOpts,
DependencyTracker *tracker)
: ClangModuleLoader(tracker),
Impl(*new Implementation(ctx, clangImporterOpts))
{
}
ClangImporter::~ClangImporter() {
delete &Impl;
}
void ClangImporter::setTypeResolver(LazyResolver &resolver) {
Impl.setTypeResolver(&resolver);
}
void ClangImporter::clearTypeResolver() {
Impl.setTypeResolver(nullptr);
}
#pragma mark Module loading
#define SHIMS_INCLUDE_FLAG "-isystem"
void generateGlibcMap(StringRef glibcModuleMapPathIn,
StringRef sysroot,
const llvm::Triple &triple,
clang::vfs::InMemoryFileSystem *imf) {
auto glibcBuffer = llvm::MemoryBuffer::getFile(glibcModuleMapPathIn);
if (!glibcBuffer){
llvm::errs() << "unable to read glibc.modulemap '"
<< glibcModuleMapPathIn << "'";
return;
}
SmallString<128> includePath = sysroot;
if (triple.isOSHaiku()) {
llvm::sys::path::append(includePath,
"system", "develop", "headers", "posix");
} else if (triple.isOSFuchsia()){
llvm::sys::path::append(includePath, "include");
} else {
llvm::sys::path::append(includePath, "usr", "include");
}
// Attempt to detect if the target sysroot is storing headers in a multiarch
// fashion like Debian or Ubuntu
SmallString<128> archIncludePath = includePath;
if (triple.isOSLinux() && !triple.isAndroid()) {
// The multiarch folder *should* match the triple passed in.
SmallString<128> triplePath = includePath;
llvm::sys::path::append(triplePath, triple.getTriple());
if (llvm::sys::fs::exists(triplePath)){
llvm::sys::path::append(archIncludePath, triple.getTriple());
} else {
// Attempt to match to folder manually. Scan the lib folder looking for
// a directory that parses as triple, parses as Linux and and has a
// matching arch as our target.
std::error_code EC;
llvm::sys::fs::directory_iterator DI(includePath, EC);
llvm::sys::fs::directory_iterator DE;
for (; !EC && DI != DE; DI = DI.increment(EC)) {
StringRef path = DI->path();
if (llvm::sys::fs::is_directory(path)) {
StringRef filename = llvm::sys::path::filename(path);
if (filename.count('-') > 2) {
// This folder smells like a triple. Parse it as one.
llvm::Triple folderTriple(filename);
if (folderTriple.isOSLinux() &&
folderTriple.getArch() == triple.getArch()) {
// This folder matches both as Linux and matches our arch so it's
// a likely canidate.
llvm::sys::path::append(archIncludePath, filename);
break;
}
}
}
}
if (EC) {
llvm::errs() << "Failed to enumerate include path '" << includePath <<
"' - " << EC.message();
}
}
}
std::string contents = glibcBuffer.get()->getBuffer();
contents = std::regex_replace(contents,
std::regex("\\<system-include\\>"),
std::string(includePath.str()));
contents = std::regex_replace(contents,
std::regex("\\<system-arch-include\\>"),
std::string(archIncludePath.str()));
// Replace the original glibc.modulemap with a modified one in the VFS overlay
// using the same path.
imf->addFile(glibcModuleMapPathIn, 0,
llvm::MemoryBuffer::getMemBuffer(StringRef(contents)));
}
static StringRef
getMinVersionOptNameForDarwinTriple(const llvm::Triple &triple) {
switch(getDarwinPlatformKind(triple)) {
case DarwinPlatformKind::MacOS:
return "-mmacosx-version-min=";
case DarwinPlatformKind::IPhoneOS:
return "-mios-version-min=";
case DarwinPlatformKind::IPhoneOSSimulator:
return "-mios-simulator-version-min=";
case DarwinPlatformKind::TvOS:
return "-mtvos-version-min=";
case DarwinPlatformKind::TvOSSimulator:
return "-mtvos-simulator-version-min=";
case DarwinPlatformKind::WatchOS:
return "-mwatchos-version-min=";
case DarwinPlatformKind::WatchOSSimulator:
return "-mwatchos-simulator-version-min=";
}
llvm_unreachable("Unsupported Darwin platform");
}
static void
getNormalInvocationArguments(std::vector<std::string> &invocationArgStrs,
ASTContext &ctx,
const ClangImporterOptions &importerOpts,
clang::vfs::InMemoryFileSystem *imf) {
const auto &LangOpts = ctx.LangOpts;
const llvm::Triple &triple = LangOpts.Target;
SearchPathOptions &searchPathOpts = ctx.SearchPathOpts;
auto languageVersion = ctx.LangOpts.EffectiveLanguageVersion;
if (llvm::sys::path::extension(importerOpts.BridgingHeader)
.endswith(PCH_EXTENSION)) {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-include-pch", importerOpts.BridgingHeader
});
}
// Construct the invocation arguments for the current target.
// Add target-independent options first.
invocationArgStrs.insert(invocationArgStrs.end(), {
// Enable modules
"-fmodules",
"-Werror=non-modular-include-in-framework-module",
"-Xclang", "-fmodule-feature", "-Xclang", "swift",
// Don't emit LLVM IR.
"-fsyntax-only",
// Enable block support.
"-fblocks",
languageVersion.preprocessorDefinition("__swift__", {10000, 100, 1}),
"-fretain-comments-from-system-headers",
SHIMS_INCLUDE_FLAG, searchPathOpts.RuntimeResourcePath,
});
if (LangOpts.EnableObjCInterop) {
invocationArgStrs.insert(invocationArgStrs.end(),
{"-x", "objective-c", "-std=gnu11", "-fobjc-arc"});
// TODO: Investigate whether 7.0 is a suitable default version.
if (!triple.isOSDarwin())
invocationArgStrs.insert(invocationArgStrs.end(),
{"-fobjc-runtime=ios-7.0"});
} else {
invocationArgStrs.insert(invocationArgStrs.end(), {"-x", "c", "-std=gnu11"});
}
// Set C language options.
if (triple.isOSDarwin()) {
invocationArgStrs.insert(invocationArgStrs.end(), {
// Define macros that Swift bridging headers use.
"-DSWIFT_CLASS_EXTRA=__attribute__((annotate(\""
SWIFT_NATIVE_ANNOTATION_STRING "\")))",
"-DSWIFT_PROTOCOL_EXTRA=__attribute__((annotate(\""
SWIFT_NATIVE_ANNOTATION_STRING "\")))",
"-DSWIFT_EXTENSION_EXTRA=__attribute__((annotate(\""
SWIFT_NATIVE_ANNOTATION_STRING "\")))",
"-DSWIFT_ENUM_EXTRA=__attribute__((annotate(\""
SWIFT_NATIVE_ANNOTATION_STRING "\")))",
// Avoid including the iso646.h header because some headers from OS X
// frameworks are broken by it.
"-D_ISO646_H_", "-D__ISO646_H",
// Request new APIs from AppKit.
"-DSWIFT_SDK_OVERLAY_APPKIT_EPOCH=2",
// Request new APIs from Foundation.
"-DSWIFT_SDK_OVERLAY_FOUNDATION_EPOCH=8",
// Request new APIs from SceneKit.
"-DSWIFT_SDK_OVERLAY2_SCENEKIT_EPOCH=3",
// Request new APIs from GameplayKit.
"-DSWIFT_SDK_OVERLAY_GAMEPLAYKIT_EPOCH=1",
// Request new APIs from SpriteKit.
"-DSWIFT_SDK_OVERLAY_SPRITEKIT_EPOCH=1",
// Request new APIs from CoreImage.
"-DSWIFT_SDK_OVERLAY_COREIMAGE_EPOCH=2",
// Request new APIs from libdispatch.
"-DSWIFT_SDK_OVERLAY_DISPATCH_EPOCH=2",
// Request new APIs from libpthread
"-DSWIFT_SDK_OVERLAY_PTHREAD_EPOCH=1",
// Request new APIs from CoreGraphics.
"-DSWIFT_SDK_OVERLAY_COREGRAPHICS_EPOCH=0",
// Request new APIs from UIKit.
"-DSWIFT_SDK_OVERLAY_UIKIT_EPOCH=2",
});
// Get the version of this compiler and pass it to C/Objective-C
// declarations.
auto V = version::Version::getCurrentCompilerVersion();
if (!V.empty()) {
invocationArgStrs.insert(invocationArgStrs.end(), {
V.preprocessorDefinition("__SWIFT_COMPILER_VERSION",
{1000000000, /*ignored*/ 0, 1000000, 1000, 1}),
});
}
} else {
// Ideally we should turn this on for all Glibc targets that are actually
// using Glibc or a libc that respects that flag. This will cause some
// source breakage however (specifically with strerror_r()) on Linux
// without a workaround.
if (triple.isOSFuchsia()) {
// Many of the modern libc features are hidden behind feature macros like
// _GNU_SOURCE or _XOPEN_SOURCE.
invocationArgStrs.insert(invocationArgStrs.end(), {
"-D_GNU_SOURCE",
});
}
// The module map used for Glibc depends on the target we're compiling for,
// and is not included in the resource directory with the other implicit
// module maps. It's at {freebsd|linux}/{arch}/glibc.modulemap.
SmallString<128> GlibcModuleMapPath;
GlibcModuleMapPath = searchPathOpts.RuntimeResourcePath;
// Running without a resource directory is not a supported configuration.
assert(!GlibcModuleMapPath.empty());
llvm::sys::path::append(
GlibcModuleMapPath,
swift::getPlatformNameForTriple(triple),
swift::getMajorArchitectureName(triple),
"glibc.modulemap");
// Only specify the module map if that file actually exists.
// It may not--for example in the case that
// `swiftc -target x86_64-unknown-linux-gnu -emit-ir` is invoked using
// a Swift compiler not built for Linux targets.
if (llvm::sys::fs::exists(GlibcModuleMapPath)) {
// Inject VFS replacement for the glibc.modulemap where the paths are
// adjusted to match the current target SDK root.
StringRef sysroot = searchPathOpts.SDKPath;
if (sysroot.empty()){
sysroot = "/";
}
generateGlibcMap(GlibcModuleMapPath, sysroot, triple, imf);
invocationArgStrs.push_back(
(Twine("-fmodule-map-file=") + GlibcModuleMapPath).str());
} else {
// FIXME: Emit a warning of some kind.
}
}
if (searchPathOpts.SDKPath.empty()) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back("-nostdsysteminc");
} else {
// On Darwin, Clang uses -isysroot to specify the include
// system root. On other targets, it seems to use --sysroot.
if (triple.isOSDarwin()) {
invocationArgStrs.push_back("-isysroot");
} else {
invocationArgStrs.push_back("--sysroot");
}
invocationArgStrs.push_back(searchPathOpts.SDKPath);
}
const std::string &moduleCachePath = importerOpts.ModuleCachePath;
if (!moduleCachePath.empty()) {
invocationArgStrs.push_back("-fmodules-cache-path=");
invocationArgStrs.back().append(moduleCachePath);
}
if (!importerOpts.DisableModulesValidateSystemHeaders) {
invocationArgStrs.push_back("-fmodules-validate-system-headers");
}
if (importerOpts.DetailedPreprocessingRecord) {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-Xclang", "-detailed-preprocessing-record",
"-Xclang", "-fmodule-format=raw",
});
} else {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-Xclang", "-fmodule-format=obj",
});
}
// Enable API notes alongside headers/in frameworks.
invocationArgStrs.push_back("-fapinotes-modules");
// Add API notes paths.
for (const auto &searchPath : searchPathOpts.ImportSearchPaths) {
invocationArgStrs.push_back("-iapinotes-modules");
invocationArgStrs.push_back(searchPath);
}
invocationArgStrs.push_back("-iapinotes-modules");
invocationArgStrs.push_back(searchPathOpts.RuntimeLibraryImportPath);
// Map the Swift major version into the API notes version for Swift. This
// has the effect of allowing API notes to effect changes only on Swift
// major versions, not minor versions.
invocationArgStrs.push_back("-fapinotes-swift-version=" +
llvm::itostr(languageVersion[0]));
}
static void
getEmbedBitcodeInvocationArguments(std::vector<std::string> &invocationArgStrs,
ASTContext &ctx,
const ClangImporterOptions &importerOpts) {
invocationArgStrs.insert(invocationArgStrs.end(), {
// Backend mode.
"-fembed-bitcode",
// ...but Clang isn't doing the emission.
"-fsyntax-only",
"-x", "ir",
});
}
static void
addCommonInvocationArguments(std::vector<std::string> &invocationArgStrs,
ASTContext &ctx,
const ClangImporterOptions &importerOpts) {
using ImporterImpl = ClangImporter::Implementation;
const llvm::Triple &triple = ctx.LangOpts.Target;
SearchPathOptions &searchPathOpts = ctx.SearchPathOpts;
invocationArgStrs.push_back("-target");
invocationArgStrs.push_back(triple.str());
if (triple.isOSDarwin()) {
std::string minVersionBuf;
llvm::raw_string_ostream minVersionOpt{minVersionBuf};
minVersionOpt << getMinVersionOptNameForDarwinTriple(triple);
unsigned major, minor, micro;
if (triple.isiOS()) {
triple.getiOSVersion(major, minor, micro);
} else if (triple.isWatchOS()) {
triple.getWatchOSVersion(major, minor, micro);
} else {
assert(triple.isMacOSX());
triple.getMacOSXVersion(major, minor, micro);
}
minVersionOpt << clang::VersionTuple(major, minor, micro);
invocationArgStrs.push_back(std::move(minVersionOpt.str()));
}
invocationArgStrs.push_back(ImporterImpl::moduleImportBufferName);
if (ctx.LangOpts.EnableAppExtensionRestrictions) {
invocationArgStrs.push_back("-fapplication-extension");
}
if (!importerOpts.TargetCPU.empty()) {
invocationArgStrs.push_back("-mcpu=" + importerOpts.TargetCPU);
} else if (triple.isOSDarwin()) {
// Special case: arm64 defaults to the "cyclone" CPU for Darwin,
// but Clang only detects this if we use -arch.
if (triple.getArch() == llvm::Triple::aarch64 ||
triple.getArch() == llvm::Triple::aarch64_be) {
invocationArgStrs.push_back("-mcpu=cyclone");
}
} else if (triple.getArch() == llvm::Triple::systemz) {
invocationArgStrs.push_back("-march=z196");
}
if (!importerOpts.Optimization.empty()) {
invocationArgStrs.push_back(importerOpts.Optimization);
}
const std::string &overrideResourceDir = importerOpts.OverrideResourceDir;
if (overrideResourceDir.empty()) {
llvm::SmallString<128> resourceDir(searchPathOpts.RuntimeResourcePath);
// Adjust the path to refer to our copy of the Clang resource directory
// under 'lib/swift/clang', which is either a real resource directory or a
// symlink to one inside of a full Clang installation.
//
// The rationale for looking under the Swift resource directory and not
// assuming that the Clang resource directory is located next to it is that
// Swift, when installed separately, should not need to install files in
// directories that are not "owned" by it.
llvm::sys::path::append(resourceDir, "clang");
// Set the Clang resource directory to the path we computed.
invocationArgStrs.push_back("-resource-dir");
invocationArgStrs.push_back(resourceDir.str());
} else {
invocationArgStrs.push_back("-resource-dir");
invocationArgStrs.push_back(overrideResourceDir);
}
if (!importerOpts.IndexStorePath.empty()) {
invocationArgStrs.push_back("-index-store-path");
invocationArgStrs.push_back(importerOpts.IndexStorePath);
}
for (auto extraArg : importerOpts.ExtraArgs) {
invocationArgStrs.push_back(extraArg);
}
}
bool ClangImporter::canReadPCH(StringRef PCHFilename) {
if (!llvm::sys::fs::exists(PCHFilename))
return false;
// FIXME: The following attempts to do an initial ReadAST invocation to verify
// the PCH, without affecting the existing CompilerInstance.
// Look into combining creating the ASTReader along with verification + update
// if necessary, so that we can create and use one ASTReader in the common case
// when there is no need for update.
CompilerInstance &CI = *Impl.Instance;
auto clangDiags = CompilerInstance::createDiagnostics(
new clang::DiagnosticOptions());
clang::SourceManager clangSrcMgr(*clangDiags, CI.getFileManager());
auto FID = clangSrcMgr.createFileID(
llvm::make_unique<ZeroFilledMemoryBuffer>(1, "<main>"));
clangSrcMgr.setMainFileID(FID);
clang::Preprocessor PP(CI.getInvocation().getPreprocessorOptsPtr(),
*clangDiags,
CI.getLangOpts(),
clangSrcMgr,
CI.getPCMCache(),
CI.getPreprocessor().getHeaderSearchInfo(), CI,
/*IILookup=*/nullptr,
/*OwnsHeaderSearch=*/false);
PP.Initialize(CI.getTarget());
clang::ASTContext ctx(CI.getLangOpts(), clangSrcMgr,
PP.getIdentifierTable(), PP.getSelectorTable(),
PP.getBuiltinInfo());
std::unique_ptr<clang::ASTReader> Reader(new clang::ASTReader(
PP, &ctx, CI.getPCHContainerReader(),
CI.getFrontendOpts().ModuleFileExtensions,
CI.getHeaderSearchOpts().Sysroot,
/*DisableValidation*/ false,
/*AllowPCHWithCompilerErrors*/ false,
/*AllowConfigurationMismatch*/ false,
/*ValidateSystemInputs*/ true));
ctx.InitBuiltinTypes(CI.getTarget());
auto result = Reader->ReadAST(PCHFilename,
clang::serialization::MK_PCH,
clang::SourceLocation(),
clang::ASTReader::ARR_None);
switch (result) {
case clang::ASTReader::Success:
return true;
case clang::ASTReader::Failure:
case clang::ASTReader::Missing:
case clang::ASTReader::OutOfDate:
case clang::ASTReader::VersionMismatch:
return false;
case clang::ASTReader::ConfigurationMismatch:
case clang::ASTReader::HadErrors:
assert(0 && "unexpected ASTReader failure for PCH validation");
return false;
}
}
Optional<std::string>
ClangImporter::getPCHFilename(const ClangImporterOptions &ImporterOptions,
StringRef SwiftPCHHash, bool &isExplicit) {
if (llvm::sys::path::extension(ImporterOptions.BridgingHeader)
.endswith(PCH_EXTENSION)) {
isExplicit = true;
return ImporterOptions.BridgingHeader;
}
isExplicit = false;
const auto &BridgingHeader = ImporterOptions.BridgingHeader;
const auto &PCHOutputDir = ImporterOptions.PrecompiledHeaderOutputDir;
if (SwiftPCHHash.empty() || BridgingHeader.empty() || PCHOutputDir.empty()) {
return None;
}
SmallString<256> PCHBasename { llvm::sys::path::filename(BridgingHeader) };
llvm::sys::path::replace_extension(PCHBasename, "");
PCHBasename.append("-swift_");
PCHBasename.append(SwiftPCHHash);
PCHBasename.append("-clang_");
PCHBasename.append(getClangModuleHash());
PCHBasename.append(".pch");
SmallString<256> PCHFilename { PCHOutputDir };
llvm::sys::path::append(PCHFilename, PCHBasename);
return PCHFilename.str().str();
}
Optional<std::string>
ClangImporter::getOrCreatePCH(const ClangImporterOptions &ImporterOptions,
StringRef SwiftPCHHash) {
bool isExplicit;
auto PCHFilename = getPCHFilename(ImporterOptions, SwiftPCHHash,
isExplicit);
if (!PCHFilename.hasValue()) {
return None;
}
if (!isExplicit && !ImporterOptions.PCHDisableValidation &&
!canReadPCH(PCHFilename.getValue())) {
StringRef parentDir = llvm::sys::path::parent_path(PCHFilename.getValue());
std::error_code EC = llvm::sys::fs::create_directories(parentDir);
if (EC) {
llvm::errs() << "failed to create directory '" << parentDir << "': "
<< EC.message();
return None;
}
auto FailedToEmit = emitBridgingPCH(ImporterOptions.BridgingHeader,
PCHFilename.getValue());
if (FailedToEmit) {
return None;
}
}
return PCHFilename.getValue();
}
std::unique_ptr<ClangImporter>
ClangImporter::create(ASTContext &ctx,
const ClangImporterOptions &importerOpts,
std::string swiftPCHHash,
DependencyTracker *tracker) {
std::unique_ptr<ClangImporter> importer{
new ClangImporter(ctx, importerOpts, tracker)
};
std::vector<std::string> invocationArgStrs;
// Clang expects this to be like an actual command line. So we need to pass in
// "clang" for argv[0]
invocationArgStrs.push_back("clang");
// Create an in-memory VFS overlay so that a rewritten Glibc.modulemap with
// updated sysroot paths can be subbed in based on the target's paths.
llvm::IntrusiveRefCntPtr<clang::vfs::OverlayFileSystem>
ovs(new clang::vfs::OverlayFileSystem(clang::vfs::getRealFileSystem()));
llvm::IntrusiveRefCntPtr<clang::vfs::InMemoryFileSystem>
imf(new clang::vfs::InMemoryFileSystem);
ovs->pushOverlay(imf);
switch (importerOpts.Mode) {
case ClangImporterOptions::Modes::Normal:
getNormalInvocationArguments(invocationArgStrs, ctx, importerOpts, imf.get());
break;
case ClangImporterOptions::Modes::EmbedBitcode:
getEmbedBitcodeInvocationArguments(invocationArgStrs, ctx, importerOpts);
break;
}
addCommonInvocationArguments(invocationArgStrs, ctx, importerOpts);
if (importerOpts.DumpClangDiagnostics) {
llvm::errs() << "'";
interleave(invocationArgStrs,
[](StringRef arg) { llvm::errs() << arg; },
[] { llvm::errs() << "' '"; });
llvm::errs() << "'\n";
}
std::vector<const char *> invocationArgs;
invocationArgs.reserve(invocationArgStrs.size());
for (auto &argStr : invocationArgStrs)
invocationArgs.push_back(argStr.c_str());
if (llvm::sys::path::extension(importerOpts.BridgingHeader).endswith(
PCH_EXTENSION)) {
importer->Impl.setSinglePCHImport(importerOpts.BridgingHeader);
importer->Impl.IsReadingBridgingPCH = true;
if (tracker) {
// Currently ignoring dependency on bridging .pch files because they are
// temporaries; if and when they are no longer temporaries, this condition
// should be removed.
auto &coll = static_cast<ClangImporterDependencyCollector &>(
*tracker->getClangCollector());
coll.excludePath(importerOpts.BridgingHeader);
}
}
// FIXME: These can't be controlled from the command line.
llvm::IntrusiveRefCntPtr<clang::DiagnosticOptions> diagnosticOpts{
new clang::DiagnosticOptions
};
std::unique_ptr<ClangDiagnosticConsumer> diagClient{
new ClangDiagnosticConsumer(importer->Impl, *diagnosticOpts,
importerOpts.DumpClangDiagnostics)
};
auto clangDiags =
clang::CompilerInstance::createDiagnostics(diagnosticOpts.get(),
diagClient.release());
// Create a new Clang compiler invocation.
importer->Impl.Invocation =
clang::createInvocationFromCommandLine(invocationArgs, clangDiags, ovs);
if (!importer->Impl.Invocation)
return nullptr;
// Don't stop emitting messages if we ever can't load a module.
// FIXME: This is actually a general problem: any "fatal" error could mess up
// the CompilerInvocation when we're not in "show diagnostics after fatal
// error" mode.
clangDiags->setSeverity(clang::diag::err_module_not_found,
clang::diag::Severity::Error,
clang::SourceLocation());
clangDiags->setSeverity(clang::diag::err_module_not_built,
clang::diag::Severity::Error,
clang::SourceLocation());
clangDiags->setSuppressAfterFatalError(
!ctx.Diags.getShowDiagnosticsAfterFatalError());
// Create an almost-empty memory buffer.
auto sourceBuffer = llvm::MemoryBuffer::getMemBuffer(
"extern int __swift __attribute__((unavailable));",
Implementation::moduleImportBufferName);
clang::PreprocessorOptions &ppOpts =
importer->Impl.Invocation->getPreprocessorOpts();
ppOpts.addRemappedFile(Implementation::moduleImportBufferName,
sourceBuffer.release());
// Install a Clang module file extension to build Swift name lookup tables.
importer->Impl.Invocation->getFrontendOpts().ModuleFileExtensions.push_back(
std::make_shared<SwiftNameLookupExtension>(
importer->Impl.BridgingHeaderLookupTable,
importer->Impl.LookupTables, importer->Impl.SwiftContext,
importer->Impl.platformAvailability,
importer->Impl.InferImportAsMember));
// Create a compiler instance.
auto PCHContainerOperations =
std::make_shared<clang::PCHContainerOperations>();
PCHContainerOperations->registerWriter(
llvm::make_unique<clang::ObjectFilePCHContainerWriter>());
PCHContainerOperations->registerReader(
llvm::make_unique<clang::ObjectFilePCHContainerReader>());
importer->Impl.Instance.reset(
new clang::CompilerInstance(PCHContainerOperations));
auto &instance = *importer->Impl.Instance;
if (tracker)
instance.addDependencyCollector(tracker->getClangCollector());
instance.setDiagnostics(&*clangDiags);
instance.setInvocation(importer->Impl.Invocation);
// Create the associated action.
importer->Impl.Action.reset(new ParsingAction(ctx, *importer,
importer->Impl,
importerOpts,
swiftPCHHash));
auto *action = importer->Impl.Action.get();
// Execute the action. We effectively inline most of
// CompilerInstance::ExecuteAction here, because we need to leave the AST
// open for future module loading.
// FIXME: This has to be cleaned up on the Clang side before we can improve
// things here.
// Create the target instance.
instance.setTarget(
clang::TargetInfo::CreateTargetInfo(*clangDiags,
instance.getInvocation().TargetOpts));
if (!instance.hasTarget())
return nullptr;
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
instance.getTarget().adjust(instance.getLangOpts());
if (importerOpts.Mode == ClangImporterOptions::Modes::EmbedBitcode)
return importer;
bool canBegin = action->BeginSourceFile(instance,
instance.getFrontendOpts().Inputs[0]);
if (!canBegin)
return nullptr; // there was an error related to the compiler arguments.
clang::Preprocessor &clangPP = instance.getPreprocessor();
clangPP.enableIncrementalProcessing();
// Setup Preprocessor callbacks before initialing the parser to make sure
// we catch implicit includes.
auto ppTracker = llvm::make_unique<BridgingPPTracker>(importer->Impl);
clangPP.addPPCallbacks(std::move(ppTracker));
instance.createModuleManager();
// Manually run the action, so that the TU stays open for additional parsing.
instance.createSema(action->getTranslationUnitKind(), nullptr);
importer->Impl.Parser.reset(new clang::Parser(clangPP, instance.getSema(),
/*SkipFunctionBodies=*/false));
clangPP.EnterMainSourceFile();
importer->Impl.Parser->Initialize();
importer->Impl.nameImporter.reset(new NameImporter(
importer->Impl.SwiftContext, importer->Impl.platformAvailability,
importer->Impl.getClangSema(), importer->Impl.InferImportAsMember));
// FIXME: These decls are not being parsed correctly since (a) some of the
// callbacks are still being added, and (b) the logic to parse them has
// changed.
clang::Parser::DeclGroupPtrTy parsed;
while (!importer->Impl.Parser->ParseTopLevelDecl(parsed)) {
for (auto *D : parsed.get()) {
importer->Impl.addBridgeHeaderTopLevelDecls(D);
if (auto named = dyn_cast<clang::NamedDecl>(D)) {
addEntryToLookupTable(*importer->Impl.BridgingHeaderLookupTable, named,
*importer->Impl.nameImporter);
}
}
}
// FIXME: This is missing implicit includes.
auto *CB = new HeaderImportCallbacks(importer->Impl);
clangPP.addPPCallbacks(std::unique_ptr<clang::PPCallbacks>(CB));
// Create the selectors we'll be looking for.
auto &clangContext = importer->Impl.Instance->getASTContext();
importer->Impl.objectAtIndexedSubscript
= clangContext.Selectors.getUnarySelector(
&clangContext.Idents.get("objectAtIndexedSubscript"));
clang::IdentifierInfo *setObjectAtIndexedSubscriptIdents[2] = {
&clangContext.Idents.get("setObject"),
&clangContext.Idents.get("atIndexedSubscript")
};
importer->Impl.setObjectAtIndexedSubscript
= clangContext.Selectors.getSelector(2, setObjectAtIndexedSubscriptIdents);
importer->Impl.objectForKeyedSubscript
= clangContext.Selectors.getUnarySelector(
&clangContext.Idents.get("objectForKeyedSubscript"));
clang::IdentifierInfo *setObjectForKeyedSubscriptIdents[2] = {
&clangContext.Idents.get("setObject"),
&clangContext.Idents.get("forKeyedSubscript")
};
importer->Impl.setObjectForKeyedSubscript
= clangContext.Selectors.getSelector(2, setObjectForKeyedSubscriptIdents);
// Set up the imported header module.
auto *importedHeaderModule = ModuleDecl::create(ctx.getIdentifier("__ObjC"), ctx);
importer->Impl.ImportedHeaderUnit =
new (ctx) ClangModuleUnit(*importedHeaderModule, importer->Impl, nullptr);
importedHeaderModule->addFile(*importer->Impl.ImportedHeaderUnit);
importer->Impl.IsReadingBridgingPCH = false;
return importer;
}
bool ClangImporter::addSearchPath(StringRef newSearchPath, bool isFramework,
bool isSystem) {
clang::FileManager &fileMgr = Impl.Instance->getFileManager();
const clang::DirectoryEntry *entry = fileMgr.getDirectory(newSearchPath);
if (!entry)
return true;
auto &headerSearchInfo = Impl.getClangPreprocessor().getHeaderSearchInfo();
auto exists = std::any_of(headerSearchInfo.search_dir_begin(),
headerSearchInfo.search_dir_end(),
[&](const clang::DirectoryLookup &lookup) -> bool {
if (isFramework)
return lookup.getFrameworkDir() == entry;
return lookup.getDir() == entry;
});
if (exists) {
// Don't bother adding a search path that's already there. Clang would have
// removed it via deduplication at the time the search path info gets built.
return false;
}
auto kind = isSystem ? clang::SrcMgr::C_System : clang::SrcMgr::C_User;
headerSearchInfo.AddSearchPath({entry, kind, isFramework},
/*isAngled=*/true);
// In addition to changing the current preprocessor directly, we still need
// to change the options structure for future module-building.
Impl.Instance->getHeaderSearchOpts().AddPath(newSearchPath,
isSystem ? clang::frontend::System : clang::frontend::Angled,
isFramework,
/*IgnoreSysRoot=*/true);
return false;
}
bool ClangImporter::Implementation::importHeader(
ModuleDecl *adapter, StringRef headerName, SourceLoc diagLoc,
bool trackParsedSymbols,
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer,
bool implicitImport) {
// Don't even try to load the bridging header if the Clang AST is in a bad
// state. It could cause a crash.
auto &clangDiags = getClangASTContext().getDiagnostics();
if (clangDiags.hasUnrecoverableErrorOccurred())
return true;
assert(adapter);
ImportedHeaderOwners.push_back(adapter);
bool hadError = clangDiags.hasErrorOccurred();
clang::ASTContext &ClangCtx = getClangASTContext();
clang::Preprocessor &pp = getClangPreprocessor();
clang::SourceManager &sourceMgr = ClangCtx.getSourceManager();
clang::SourceLocation includeLoc =
sourceMgr.getLocForStartOfFile(sourceMgr.getMainFileID());
clang::FileID bufferID = sourceMgr.createFileID(std::move(sourceBuffer),
clang::SrcMgr::C_User,
/*LoadedID=*/0,
/*LoadedOffset=*/0,
includeLoc);
auto &consumer =
static_cast<HeaderParsingASTConsumer &>(Instance->getASTConsumer());
consumer.reset();
pp.EnterSourceFile(bufferID, /*Dir=*/nullptr, /*Loc=*/{});
// Force the import to occur.
pp.LookAhead(0);
SmallVector<clang::DeclGroupRef, 16> allParsedDecls;
auto handleParsed = [&](clang::DeclGroupRef parsed) {
if (trackParsedSymbols) {
for (auto *D : parsed) {
addBridgeHeaderTopLevelDecls(D);
}
}
allParsedDecls.push_back(parsed);
};
clang::Parser::DeclGroupPtrTy parsed;
while (!Parser->ParseTopLevelDecl(parsed)) {
if (parsed)
handleParsed(parsed.get());
for (auto additionalParsedGroup : consumer.getAdditionalParsedDecls())
handleParsed(additionalParsedGroup);
consumer.reset();
}
// We're trying to discourage (and eventually deprecate) the use of implicit
// bridging-header imports triggered by IMPORTED_HEADER blocks in
// modules. There are two sub-cases to consider:
//
// #1 The implicit import actually occurred.
//
// #2 The user explicitly -import-objc-header'ed some header or PCH that
// makes the implicit import redundant.
//
// It's not obvious how to exactly differentiate these cases given the
// interface clang gives us, but we only want to warn on case #1, and the
// non-emptiness of allParsedDecls is a _definite_ sign that we're in case
// #1. So we treat that as an approximation of the condition we're after, and
// accept that we might fail to warn in the odd case where "the import
// occurred" but didn't introduce any new decls.
//
// We also want to limit (for now) the warning in case #1 to invocations that
// requested an explicit bridging header, because otherwise the warning will
// complain in a very common scenario (unit test w/o bridging header imports
// application w/ bridging header) that we don't yet have Xcode automation
// to correct. The fix would be explicitly importing on the command line.
if (implicitImport && !allParsedDecls.empty() &&
BridgingHeaderExplicitlyRequested) {
SwiftContext.Diags.diagnose(
diagLoc, diag::implicit_bridging_header_imported_from_module,
llvm::sys::path::filename(headerName), adapter->getName());
}
// We can't do this as we're parsing because we may want to resolve naming
// conflicts between the things we've parsed.
for (auto group : allParsedDecls)
for (auto *D : group)
if (auto named = dyn_cast<clang::NamedDecl>(D))
addEntryToLookupTable(*BridgingHeaderLookupTable, named,
getNameImporter());
pp.EndSourceFile();
bumpGeneration();
// Add any defined macros to the bridging header lookup table.
addMacrosToLookupTable(*BridgingHeaderLookupTable, getNameImporter());
// Finish loading any extra modules that were (transitively) imported.
handleDeferredImports();
// Wrap all Clang imports under a Swift import decl.
for (auto &Import : BridgeHeaderTopLevelImports) {
if (auto *ClangImport = Import.dyn_cast<clang::ImportDecl*>()) {
Import = createImportDecl(SwiftContext, adapter, ClangImport, {});
}
}
// Finalize the lookup table, which may fail.
finalizeLookupTable(*BridgingHeaderLookupTable, getNameImporter());
// FIXME: What do we do if there was already an error?
if (!hadError && clangDiags.hasErrorOccurred()) {
SwiftContext.Diags.diagnose(diagLoc, diag::bridging_header_error,
headerName);
return true;
}
return false;
}
bool ClangImporter::importHeader(StringRef header, ModuleDecl *adapter,
off_t expectedSize, time_t expectedModTime,
StringRef cachedContents, SourceLoc diagLoc) {
clang::FileManager &fileManager = Impl.Instance->getFileManager();
const clang::FileEntry *headerFile = fileManager.getFile(header,
/*OpenFile=*/true);
if (headerFile && headerFile->getSize() == expectedSize &&
headerFile->getModificationTime() == expectedModTime) {
return importBridgingHeader(header, adapter, diagLoc, false, true);
}
// If we've made it to here, this is some header other than the bridging
// header, which means we can no longer rely on one file's modification time
// to invalid code completion caches. :-(
Impl.setSinglePCHImport(None);
if (!cachedContents.empty() && cachedContents.back() == '\0')
cachedContents = cachedContents.drop_back();
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer{
llvm::MemoryBuffer::getMemBuffer(cachedContents, header)
};
return Impl.importHeader(adapter, header, diagLoc, /*trackParsedSymbols=*/false,
std::move(sourceBuffer), true);
}
bool ClangImporter::importBridgingHeader(StringRef header, ModuleDecl *adapter,
SourceLoc diagLoc,
bool trackParsedSymbols,
bool implicitImport) {
if (llvm::sys::path::extension(header).endswith(PCH_EXTENSION)) {
Impl.ImportedHeaderOwners.push_back(adapter);
// We already imported this with -include-pch above, so we should have
// collected a bunch of PCH-encoded module imports that we just need to
// replay in handleDeferredImports.
Impl.handleDeferredImports();
return false;
}
clang::FileManager &fileManager = Impl.Instance->getFileManager();
const clang::FileEntry *headerFile = fileManager.getFile(header,
/*OpenFile=*/true);
if (!headerFile) {
Impl.SwiftContext.Diags.diagnose(diagLoc, diag::bridging_header_missing,
header);
return true;
}
llvm::SmallString<128> importLine{"#import \""};
importLine += header;
importLine += "\"\n";
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer{
llvm::MemoryBuffer::getMemBufferCopy(
importLine, Implementation::bridgingHeaderBufferName)
};
return Impl.importHeader(adapter, header, diagLoc, trackParsedSymbols,
std::move(sourceBuffer), implicitImport);
}
std::string ClangImporter::getBridgingHeaderContents(StringRef headerPath,
off_t &fileSize,
time_t &fileModTime) {
auto invocation =
std::make_shared<clang::CompilerInvocation>(*Impl.Invocation);
invocation->getFrontendOpts().DisableFree = false;
invocation->getFrontendOpts().Inputs.clear();
invocation->getFrontendOpts().Inputs.push_back(
clang::FrontendInputFile(headerPath, clang::InputKind::ObjC));
invocation->getPreprocessorOpts().resetNonModularOptions();
clang::CompilerInstance rewriteInstance(
Impl.Instance->getPCHContainerOperations());
rewriteInstance.setInvocation(invocation);
rewriteInstance.createDiagnostics(new clang::IgnoringDiagConsumer);
clang::FileManager &fileManager = Impl.Instance->getFileManager();
rewriteInstance.setFileManager(&fileManager);
rewriteInstance.createSourceManager(fileManager);
rewriteInstance.setTarget(&Impl.Instance->getTarget());
std::string result;
bool success = llvm::CrashRecoveryContext().RunSafelyOnThread([&] {
// A much simpler version of clang::RewriteIncludesAction that lets us
// write to an in-memory buffer.
class RewriteIncludesAction : public clang::PreprocessorFrontendAction {
raw_ostream &OS;
void ExecuteAction() override {
clang::CompilerInstance &compiler = getCompilerInstance();
clang::RewriteIncludesInInput(compiler.getPreprocessor(), &OS,
compiler.getPreprocessorOutputOpts());
}
public:
explicit RewriteIncludesAction(raw_ostream &os) : OS(os) {}
};
llvm::raw_string_ostream os(result);
RewriteIncludesAction action(os);
rewriteInstance.ExecuteAction(action);
});
success |= !rewriteInstance.getDiagnostics().hasErrorOccurred();
if (!success) {
Impl.SwiftContext.Diags.diagnose({},
diag::could_not_rewrite_bridging_header);
return "";
}
const clang::FileEntry *fileInfo = fileManager.getFile(headerPath);
fileSize = fileInfo->getSize();
fileModTime = fileInfo->getModificationTime();
return result;
}
bool
ClangImporter::emitBridgingPCH(StringRef headerPath,
StringRef outputPCHPath) {
auto invocation = std::make_shared<clang::CompilerInvocation>
(clang::CompilerInvocation(*Impl.Invocation));
invocation->getFrontendOpts().DisableFree = false;
invocation->getFrontendOpts().Inputs.clear();
invocation->getFrontendOpts().Inputs.push_back(
clang::FrontendInputFile(headerPath, clang::InputKind::ObjC));
invocation->getFrontendOpts().OutputFile = outputPCHPath;
invocation->getFrontendOpts().ProgramAction = clang::frontend::GeneratePCH;
invocation->getPreprocessorOpts().resetNonModularOptions();
clang::CompilerInstance emitInstance(
Impl.Instance->getPCHContainerOperations());
emitInstance.setInvocation(std::move(invocation));
emitInstance.createDiagnostics(&Impl.Instance->getDiagnosticClient(),
/*ShouldOwnClient=*/false);
clang::FileManager &fileManager = Impl.Instance->getFileManager();
emitInstance.setFileManager(&fileManager);
emitInstance.createSourceManager(fileManager);
emitInstance.setTarget(&Impl.Instance->getTarget());
std::unique_ptr<clang::FrontendAction> action;
action.reset(new clang::GeneratePCHAction());
if (!emitInstance.getFrontendOpts().IndexStorePath.empty()) {
action = clang::index::
createIndexDataRecordingAction(emitInstance.getFrontendOpts(),
std::move(action));
}
emitInstance.ExecuteAction(*action);
if (emitInstance.getDiagnostics().hasErrorOccurred()) {
Impl.SwiftContext.Diags.diagnose({},
diag::bridging_header_pch_error,
outputPCHPath, headerPath);
return true;
}
return false;
}
void ClangImporter::collectSubModuleNames(
ArrayRef<std::pair<Identifier, SourceLoc>> path,
std::vector<std::string> &names) {
auto &clangHeaderSearch = Impl.getClangPreprocessor().getHeaderSearchInfo();
// Look up the top-level module first.
clang::Module *clangModule =
clangHeaderSearch.lookupModule(path.front().first.str());
if (!clangModule)
return;
clang::Module *submodule = clangModule;
for (auto component : path.slice(1)) {
submodule = submodule->findSubmodule(component.first.str());
if (!submodule)
return;
}
auto submoduleNameLength = submodule->getFullModuleName().length();
for (auto sub : submodule->submodules()) {
std::string full = sub->getFullModuleName();
full.erase(0, submoduleNameLength + 1);
names.push_back(std::move(full));
}
}
bool ClangImporter::isModuleImported(const clang::Module *M) {
return M->NameVisibility == clang::Module::NameVisibilityKind::AllVisible;
}
bool ClangImporter::canImportModule(std::pair<Identifier, SourceLoc> moduleID) {
// Look up the top-level module to see if it exists.
// FIXME: This only works with top-level modules.
auto &clangHeaderSearch = Impl.getClangPreprocessor().getHeaderSearchInfo();
clang::Module *clangModule =
clangHeaderSearch.lookupModule(moduleID.first.str());
if (!clangModule) {
return false;
}
clang::Module::Requirement r;
clang::Module::UnresolvedHeaderDirective mh;
clang::Module *m;
auto &ctx = Impl.getClangASTContext();
return clangModule->isAvailable(ctx.getLangOpts(), getTargetInfo(), r, mh, m);
}
ModuleDecl *ClangImporter::loadModule(
SourceLoc importLoc,
ArrayRef<std::pair<Identifier, SourceLoc>> path) {
auto &clangContext = Impl.getClangASTContext();
auto &clangHeaderSearch = Impl.getClangPreprocessor().getHeaderSearchInfo();
// Look up the top-level module first, to see if it exists at all.
clang::Module *clangModule =
clangHeaderSearch.lookupModule(path.front().first.str());
if (!clangModule)
return nullptr;
// Convert the Swift import path over to a Clang import path.
SmallVector<std::pair<clang::IdentifierInfo *, clang::SourceLocation>, 4>
clangPath;
for (auto component : path) {
clangPath.push_back({ &clangContext.Idents.get(component.first.str()),
Impl.exportSourceLoc(component.second) } );
}
auto &srcMgr = clangContext.getSourceManager();
auto &rawDiagClient = Impl.Instance->getDiagnosticClient();
auto &diagClient = static_cast<ClangDiagnosticConsumer &>(rawDiagClient);
auto loadModule = [&](clang::ModuleIdPath path,
bool makeVisible) -> clang::ModuleLoadResult {
clang::Module::NameVisibilityKind visibility =
makeVisible ? clang::Module::AllVisible : clang::Module::Hidden;
auto importRAII = diagClient.handleImport(clangPath.front().first,
importLoc);
std::string preservedIndexStorePathOption;
auto &clangFEOpts = Impl.Instance->getFrontendOpts();
if (!clangFEOpts.IndexStorePath.empty()) {
StringRef moduleName = path[0].first->getName();
// Ignore the SwiftShims module for the index data.
if (moduleName == Impl.SwiftContext.SwiftShimsModuleName.str()) {
preservedIndexStorePathOption = clangFEOpts.IndexStorePath;
clangFEOpts.IndexStorePath.clear();
}
}
// FIXME: The source location here is completely bogus. It can't be
// invalid, it can't be the same thing twice in a row, and it has to come
// from an actual buffer, so we make a fake buffer and just use a counter.
if (!Impl.DummyImportBuffer.isValid()) {
Impl.DummyImportBuffer = srcMgr.createFileID(
llvm::make_unique<ZeroFilledMemoryBuffer>(
256*1024, StringRef(Implementation::moduleImportBufferName)),
clang::SrcMgr::C_User,
/*LoadedID*/0, /*LoadedOffset*/0,
srcMgr.getLocForStartOfFile(srcMgr.getMainFileID()));
}
clang::SourceLocation clangImportLoc
= srcMgr.getLocForStartOfFile(Impl.DummyImportBuffer)
.getLocWithOffset(Impl.ImportCounter++);
assert(srcMgr.isInFileID(clangImportLoc, Impl.DummyImportBuffer) &&
"confused Clang's source manager with our fake locations");
clang::ModuleLoadResult result =
Impl.Instance->loadModule(clangImportLoc, path, visibility,
/*IsInclusionDirective=*/false);
if (!preservedIndexStorePathOption.empty()) {
// Restore the -index-store-path option.
clangFEOpts.IndexStorePath = preservedIndexStorePathOption;
}
if (result && makeVisible)
Impl.getClangPreprocessor().makeModuleVisible(result, clangImportLoc);
return result;
};
// Now load the top-level module, so that we can check if the submodule
// exists without triggering a fatal error.
clangModule = loadModule(clangPath.front(), false);
if (!clangModule)
return nullptr;
// Verify that the submodule exists.
clang::Module *submodule = clangModule;
for (auto component : path.slice(1)) {
submodule = submodule->findSubmodule(component.first.str());
// FIXME: Specialize the error for a missing submodule?
if (!submodule)
return nullptr;
}
// Finally, load the submodule and make it visible.
clangModule = loadModule(clangPath, true);
if (!clangModule)
return nullptr;
return Impl.finishLoadingClangModule(clangModule,
/*preferAdapter=*/false);
}
ModuleDecl *ClangImporter::Implementation::finishLoadingClangModule(
const clang::Module *clangModule,
bool findAdapter) {
assert(clangModule);
// Bump the generation count.
bumpGeneration();
auto &cacheEntry = ModuleWrappers[clangModule];
ModuleDecl *result;
ClangModuleUnit *wrapperUnit;
if ((wrapperUnit = cacheEntry.getPointer())) {
result = wrapperUnit->getParentModule();
if (!cacheEntry.getInt()) {
// Force load adapter modules for all imported modules.
// FIXME: This forces the creation of wrapper modules for all imports as
// well, and may do unnecessary work.
cacheEntry.setInt(true);
result->forAllVisibleModules({}, [&](ModuleDecl::ImportedModule import) {});
}
} else {
// Build the representation of the Clang module in Swift.
// FIXME: The name of this module could end up as a key in the ASTContext,
// but that's not correct for submodules.
Identifier name = SwiftContext.getIdentifier((*clangModule).Name);
result = ModuleDecl::create(name, SwiftContext);
// Silence error messages about testably importing a Clang module.
result->setTestingEnabled();
wrapperUnit =
new (SwiftContext) ClangModuleUnit(*result, *this, clangModule);
result->addFile(*wrapperUnit);
cacheEntry.setPointerAndInt(wrapperUnit, true);
// Force load adapter modules for all imported modules.
// FIXME: This forces the creation of wrapper modules for all imports as
// well, and may do unnecessary work.
result->forAllVisibleModules({}, [](ModuleDecl::ImportedModule import) {});
}
if (clangModule->isSubModule()) {
finishLoadingClangModule(clangModule->getTopLevelModule(), true);
} else {
ModuleDecl *&loaded = SwiftContext.LoadedModules[result->getName()];
if (!loaded)
loaded = result;
}
if (findAdapter)
if (ModuleDecl *adapter = wrapperUnit->getAdapterModule())
result = adapter;
return result;
}
// Run through the set of deferred imports -- either those referenced by
// submodule ID from a bridging PCH, or those already loaded as clang::Modules
// in response to an import directive in a bridging header -- and call
// finishLoadingClangModule on each.
void ClangImporter::Implementation::handleDeferredImports()
{
clang::ASTReader &R = *Instance->getModuleManager();
for (clang::serialization::SubmoduleID ID : PCHImportedSubmodules) {
DeferredHeaderImports.push_back(R.getSubmodule(ID));
}
PCHImportedSubmodules.clear();
for (const clang::Module *M : DeferredHeaderImports) {
ModuleDecl *nativeImported =
finishLoadingClangModule(M, /*preferAdapter=*/true);
ImportedHeaderExports.push_back({ /*filter=*/{}, nativeImported });
}
DeferredHeaderImports.clear();
}
ModuleDecl *ClangImporter::getImportedHeaderModule() const {
return Impl.ImportedHeaderUnit->getParentModule();
}
PlatformAvailability::PlatformAvailability(LangOptions &langOpts) {
// Add filters to determine if a Clang availability attribute
// applies in Swift, and if so, what is the cutoff for deprecated
// declarations that are now considered unavailable in Swift.
if (langOpts.Target.isiOS() && !langOpts.Target.isTvOS()) {
if (!langOpts.EnableAppExtensionRestrictions) {
filter = [](StringRef Platform) { return Platform == "ios"; };
} else {
filter = [](StringRef Platform) {
return Platform == "ios" || Platform == "ios_app_extension";
};
}
// Anything deprecated in iOS 7.x and earlier is unavailable in Swift.
deprecatedAsUnavailableFilter = [](
unsigned major, llvm::Optional<unsigned> minor) { return major <= 7; };
deprecatedAsUnavailableMessage =
"APIs deprecated as of iOS 7 and earlier are unavailable in Swift";
} else if (langOpts.Target.isTvOS()) {
if (!langOpts.EnableAppExtensionRestrictions) {
filter = [](StringRef Platform) { return Platform == "tvos"; };
} else {
filter = [](StringRef Platform) {
return Platform == "tvos" || Platform == "tvos_app_extension";
};
}
// Anything deprecated in iOS 7.x and earlier is unavailable in Swift.
deprecatedAsUnavailableFilter = [](
unsigned major, llvm::Optional<unsigned> minor) { return major <= 7; };
deprecatedAsUnavailableMessage =
"APIs deprecated as of iOS 7 and earlier are unavailable in Swift";
} else if (langOpts.Target.isWatchOS()) {
if (!langOpts.EnableAppExtensionRestrictions) {
filter = [](StringRef Platform) { return Platform == "watchos"; };
} else {
filter = [](StringRef Platform) {
return Platform == "watchos" || Platform == "watchos_app_extension";
};
}
// No deprecation filter on watchOS
deprecatedAsUnavailableFilter = [](
unsigned major, llvm::Optional<unsigned> minor) { return false; };
deprecatedAsUnavailableMessage = "";
} else if (langOpts.Target.isMacOSX()) {
if (!langOpts.EnableAppExtensionRestrictions) {
filter = [](StringRef Platform) { return Platform == "macos"; };
} else {
filter = [](StringRef Platform) {
return Platform == "macos" || Platform == "macos_app_extension";
};
}
// Anything deprecated in OSX 10.9.x and earlier is unavailable in Swift.
deprecatedAsUnavailableFilter = [](unsigned major,
llvm::Optional<unsigned> minor) {
return major < 10 ||
(major == 10 && (!minor.hasValue() || minor.getValue() <= 9));
};
deprecatedAsUnavailableMessage =
"APIs deprecated as of OS X 10.9 and earlier are unavailable in Swift";
}
}
ClangImporter::Implementation::Implementation(ASTContext &ctx,
const ClangImporterOptions &opts)
: SwiftContext(ctx),
ImportForwardDeclarations(opts.ImportForwardDeclarations),
InferImportAsMember(opts.InferImportAsMember),
DisableSwiftBridgeAttr(opts.DisableSwiftBridgeAttr),
BridgingHeaderExplicitlyRequested(!opts.BridgingHeader.empty()),
DisableAdapterModules(opts.DisableAdapterModules),
IsReadingBridgingPCH(false),
CurrentVersion(ImportNameVersion::fromOptions(ctx.LangOpts)),
BridgingHeaderLookupTable(new SwiftLookupTable(nullptr)),
platformAvailability(ctx.LangOpts),
nameImporter() {}
ClangImporter::Implementation::~Implementation() {
assert(NumCurrentImportingEntities == 0);
#ifndef NDEBUG
SwiftContext.SourceMgr.verifyAllBuffers();
#endif
}
ClangModuleUnit *ClangImporter::Implementation::getWrapperForModule(
const clang::Module *underlying) {
auto &cacheEntry = ModuleWrappers[underlying];
if (ClangModuleUnit *cached = cacheEntry.getPointer())
return cached;
// FIXME: Handle hierarchical names better.
Identifier name = SwiftContext.getIdentifier(underlying->Name);
auto wrapper = ModuleDecl::create(name, SwiftContext);
// Silence error messages about testably importing a Clang module.
wrapper->setTestingEnabled();
auto file = new (SwiftContext) ClangModuleUnit(*wrapper, *this,
underlying);
wrapper->addFile(*file);
cacheEntry.setPointer(file);
return file;
}
ClangModuleUnit *ClangImporter::Implementation::getClangModuleForDecl(
const clang::Decl *D,
bool allowForwardDeclaration) {
auto maybeModule = getClangSubmoduleForDecl(D, allowForwardDeclaration);
if (!maybeModule)
return nullptr;
if (!maybeModule.getValue())
return ImportedHeaderUnit;
// Get the parent module because currently we don't represent submodules with
// ClangModuleUnit.
auto *M = maybeModule.getValue()->getTopLevelModule();
return getWrapperForModule(M);
}
#pragma mark Source locations
clang::SourceLocation
ClangImporter::Implementation::exportSourceLoc(SourceLoc loc) {
// FIXME: Implement!
return clang::SourceLocation();
}
SourceLoc
ClangImporter::Implementation::importSourceLoc(clang::SourceLocation loc) {
// FIXME: Implement!
return SourceLoc();
}
SourceRange
ClangImporter::Implementation::importSourceRange(clang::SourceRange loc) {
// FIXME: Implement!
return SourceRange();
}
#pragma mark Importing names
clang::DeclarationName
ClangImporter::Implementation::exportName(Identifier name) {
// FIXME: When we start dealing with C++, we can map over some operator
// names.
if (name.empty() || name.isOperator())
return clang::DeclarationName();
// Map the identifier. If it's some kind of keyword, it can't be mapped.
auto ident = &Instance->getASTContext().Idents.get(name.str());
if (ident->getTokenID() != clang::tok::identifier)
return clang::DeclarationName();
return ident;
}
Identifier
ClangImporter::Implementation::importIdentifier(
const clang::IdentifierInfo *identifier,
StringRef removePrefix)
{
if (!identifier) return Identifier();
StringRef name = identifier->getName();
// Remove the prefix, if any.
if (!removePrefix.empty()) {
if (name.startswith(removePrefix)) {
name = name.slice(removePrefix.size(), name.size());
}
}
// Get the Swift identifier.
return SwiftContext.getIdentifier(name);
}
ObjCSelector ClangImporter::Implementation::importSelector(
clang::Selector selector) {
auto &ctx = SwiftContext;
// Handle zero-argument selectors directly.
if (selector.isUnarySelector()) {
Identifier name;
if (auto id = selector.getIdentifierInfoForSlot(0))
name = ctx.getIdentifier(id->getName());
return ObjCSelector(ctx, 0, name);
}
SmallVector<Identifier, 2> pieces;
for (auto i = 0u, n = selector.getNumArgs(); i != n; ++i) {
Identifier piece;
if (auto id = selector.getIdentifierInfoForSlot(i))
piece = ctx.getIdentifier(id->getName());
pieces.push_back(piece);
}
return ObjCSelector(ctx, pieces.size(), pieces);
}
clang::Selector
ClangImporter::Implementation::exportSelector(DeclName name,
bool allowSimpleName) {
if (!allowSimpleName && name.isSimpleName())
return {};
clang::ASTContext &ctx = getClangASTContext();
SmallVector<clang::IdentifierInfo *, 8> pieces;
pieces.push_back(exportName(name.getBaseIdentifier()).getAsIdentifierInfo());
auto argNames = name.getArgumentNames();
if (argNames.empty())
return ctx.Selectors.getNullarySelector(pieces.front());
if (!argNames.front().empty())
return {};
argNames = argNames.slice(1);
for (Identifier argName : argNames)
pieces.push_back(exportName(argName).getAsIdentifierInfo());
return ctx.Selectors.getSelector(pieces.size(), pieces.data());
}
clang::Selector
ClangImporter::Implementation::exportSelector(ObjCSelector selector) {
SmallVector<clang::IdentifierInfo *, 4> pieces;
for (auto piece : selector.getSelectorPieces())
pieces.push_back(exportName(piece).getAsIdentifierInfo());
return getClangASTContext().Selectors.getSelector(selector.getNumArgs(),
pieces.data());
}
/// Determine whether the given method potentially conflicts with the
/// setter for a property in the given protocol.
static bool
isPotentiallyConflictingSetter(const clang::ObjCProtocolDecl *proto,
const clang::ObjCMethodDecl *method) {
auto sel = method->getSelector();
if (sel.getNumArgs() != 1)
return false;
clang::IdentifierInfo *setterID = sel.getIdentifierInfoForSlot(0);
if (!setterID || !setterID->getName().startswith("set"))
return false;
for (auto *prop : proto->properties()) {
if (prop->getSetterName() == sel)
return true;
}
return false;
}
bool importer::shouldSuppressDeclImport(const clang::Decl *decl) {
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(decl)) {
// First check if we're actually in a Swift class.
auto dc = decl->getDeclContext();
if (hasNativeSwiftDecl(cast<clang::ObjCContainerDecl>(dc)))
return true;
// If this member is a method that is a getter or setter for a
// property, don't add it into the table. property names and
// getter names (by choosing to only have a property).
//
// Note that this is suppressed for certain accessibility declarations,
// which are imported as getter/setter pairs and not properties.
if (objcMethod->isPropertyAccessor()) {
// Suppress the import of this method when the corresponding
// property is not suppressed.
return !shouldSuppressDeclImport(
objcMethod->findPropertyDecl(/*CheckOverrides=*/false));
}
// If the method was declared within a protocol, check that it
// does not conflict with the setter of a property.
if (auto proto = dyn_cast<clang::ObjCProtocolDecl>(dc))
return isPotentiallyConflictingSetter(proto, objcMethod);
return false;
}
if (auto objcProperty = dyn_cast<clang::ObjCPropertyDecl>(decl)) {
// First check if we're actually in a Swift class.
auto dc = objcProperty->getDeclContext();
if (hasNativeSwiftDecl(cast<clang::ObjCContainerDecl>(dc)))
return true;
// Suppress certain properties; import them as getter/setter pairs instead.
if (shouldImportPropertyAsAccessors(objcProperty))
return true;
// Check whether there is a superclass method for the getter that
// is *not* suppressed, in which case we will need to suppress
// this property.
auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(dc);
if (!objcClass) {
if (auto objcCategory = dyn_cast<clang::ObjCCategoryDecl>(dc)) {
// If the enclosing category is invalid, suppress this declaration.
if (objcCategory->isInvalidDecl()) return true;
objcClass = objcCategory->getClassInterface();
}
}
if (objcClass) {
if (auto objcSuperclass = objcClass->getSuperClass()) {
auto getterMethod =
objcSuperclass->lookupMethod(objcProperty->getGetterName(),
objcProperty->isInstanceProperty());
if (getterMethod && !shouldSuppressDeclImport(getterMethod))
return true;
}
}
return false;
}
return false;
}
#pragma mark Name lookup
const clang::TypedefNameDecl *
ClangImporter::Implementation::lookupTypedef(clang::DeclarationName name) {
clang::Sema &sema = Instance->getSema();
clang::LookupResult lookupResult(sema, name,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (sema.LookupName(lookupResult, /*scope=*/nullptr)) {
for (auto decl : lookupResult) {
if (auto typedefDecl =
dyn_cast<clang::TypedefNameDecl>(decl->getUnderlyingDecl()))
return typedefDecl;
}
}
return nullptr;
}
static bool isDeclaredInModule(const ClangModuleUnit *ModuleFilter,
const Decl *VD) {
auto ContainingUnit = VD->getDeclContext()->getModuleScopeContext();
return ModuleFilter == ContainingUnit;
}
static const clang::Module *
getClangOwningModule(ClangNode Node, const clang::ASTContext &ClangCtx) {
assert(!Node.getAsModule() && "not implemented for modules");
if (const clang::Decl *D = Node.getAsDecl()) {
auto ExtSource = ClangCtx.getExternalSource();
assert(ExtSource);
return ExtSource->getModule(D->getOwningModuleID());
}
if (const clang::ModuleMacro *M = Node.getAsModuleMacro())
return M->getOwningModule();
// A locally-defined MacroInfo does not have an owning module.
assert(Node.getAsMacroInfo());
return nullptr;
}
static bool isVisibleFromModule(const ClangModuleUnit *ModuleFilter,
const ValueDecl *VD) {
// Include a value from module X if:
// * no particular module was requested, or
// * module X was specifically requested.
if (!ModuleFilter)
return true;
auto ContainingUnit = VD->getDeclContext()->getModuleScopeContext();
if (ModuleFilter == ContainingUnit)
return true;
auto Wrapper = dyn_cast<ClangModuleUnit>(ContainingUnit);
if (!Wrapper)
return false;
auto ClangNode = VD->getClangNode();
assert(ClangNode);
auto &ClangASTContext = ModuleFilter->getClangASTContext();
auto OwningClangModule = getClangOwningModule(ClangNode, ClangASTContext);
// We don't handle Clang submodules; pop everything up to the top-level
// module.
if (OwningClangModule)
OwningClangModule = OwningClangModule->getTopLevelModule();
if (OwningClangModule == ModuleFilter->getClangModule())
return true;
if (auto D = ClangNode.getAsDecl()) {
// Handle redeclared decls.
if (isa<clang::FunctionDecl>(D) || isa<clang::VarDecl>(D) ||
isa<clang::TypedefNameDecl>(D)) {
for (auto Redeclaration : D->redecls()) {
if (Redeclaration == D)
continue;
auto OwningClangModule = getClangOwningModule(Redeclaration,
ClangASTContext);
if (OwningClangModule)
OwningClangModule = OwningClangModule->getTopLevelModule();
if (OwningClangModule == ModuleFilter->getClangModule())
return true;
}
} else if (isa<clang::TagDecl>(D)) {
for (auto Redeclaration : D->redecls()) {
if (Redeclaration == D)
continue;
if (!cast<clang::TagDecl>(Redeclaration)->isCompleteDefinition())
continue;
auto OwningClangModule = getClangOwningModule(Redeclaration,
ClangASTContext);
if (OwningClangModule)
OwningClangModule = OwningClangModule->getTopLevelModule();
if (OwningClangModule == ModuleFilter->getClangModule())
return true;
}
}
}
// Macros can be "redeclared" too, by putting an equivalent definition in two
// different modules.
if (ClangNode.getAsMacro())
return true;
return false;
}
namespace {
class ClangVectorDeclConsumer : public clang::VisibleDeclConsumer {
std::vector<clang::NamedDecl *> results;
public:
ClangVectorDeclConsumer() = default;
void FoundDecl(clang::NamedDecl *ND, clang::NamedDecl *Hiding,
clang::DeclContext *Ctx, bool InBaseClass) override {
if (!ND->getIdentifier())
return;
if (ND->isModulePrivate())
return;
results.push_back(ND);
}
llvm::MutableArrayRef<clang::NamedDecl *> getResults() {
return results;
}
};
class FilteringVisibleDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
const ClangModuleUnit *ModuleFilter = nullptr;
public:
FilteringVisibleDeclConsumer(swift::VisibleDeclConsumer &consumer,
const ClangModuleUnit *CMU)
: NextConsumer(consumer), ModuleFilter(CMU) {}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason) override {
if (isVisibleFromModule(ModuleFilter, VD))
NextConsumer.foundDecl(VD, Reason);
}
};
class FilteringDeclaredDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
const ClangModuleUnit *ModuleFilter = nullptr;
public:
FilteringDeclaredDeclConsumer(swift::VisibleDeclConsumer &consumer,
const ClangModuleUnit *CMU)
: NextConsumer(consumer),
ModuleFilter(CMU) {}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason) override {
if (isDeclaredInModule(ModuleFilter, VD))
NextConsumer.foundDecl(VD, Reason);
}
};
/// A hack to hide particular types in the "Darwin" module on Apple platforms.
class DarwinLegacyFilterDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
clang::ASTContext &ClangASTContext;
bool shouldDiscard(ValueDecl *VD) {
if (!VD->hasClangNode())
return false;
const clang::Module *clangModule = getClangOwningModule(VD->getClangNode(),
ClangASTContext);
if (!clangModule)
return false;
if (clangModule->Name == "MacTypes") {
if (!VD->hasName() || VD->getBaseName().isSpecial())
return true;
return llvm::StringSwitch<bool>(VD->getBaseName().getIdentifier().str())
.Cases("OSErr", "OSStatus", "OptionBits", false)
.Cases("FourCharCode", "OSType", false)
.Case("Boolean", false)
.Case("kUnknownType", false)
.Cases("UTF32Char", "UniChar", "UTF16Char", "UTF8Char", false)
.Case("ProcessSerialNumber", false)
.Default(true);
}
if (clangModule->Parent &&
clangModule->Parent->Name == "CarbonCore") {
return llvm::StringSwitch<bool>(clangModule->Name)
.Cases("BackupCore", "DiskSpaceRecovery", "MacErrors", false)
.Case("UnicodeUtilities", false)
.Default(true);
}
if (clangModule->Parent &&
clangModule->Parent->Name == "OSServices") {
// Note that this is a list of things to /drop/ rather than to /keep/.
// We're more likely to see new, modern headers added to OSServices.
return llvm::StringSwitch<bool>(clangModule->Name)
.Cases("IconStorage", "KeychainCore", "Power", true)
.Cases("SecurityCore", "SystemSound", true)
.Cases("WSMethodInvocation", "WSProtocolHandler", "WSTypes", true)
.Default(false);
}
return false;
}
public:
DarwinLegacyFilterDeclConsumer(swift::VisibleDeclConsumer &consumer,
clang::ASTContext &clangASTContext)
: NextConsumer(consumer), ClangASTContext(clangASTContext) {}
static bool needsFiltering(const clang::Module *topLevelModule) {
return topLevelModule && (topLevelModule->Name == "Darwin" ||
topLevelModule->Name == "CoreServices");
}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason) override {
if (!shouldDiscard(VD))
NextConsumer.foundDecl(VD, Reason);
}
};
} // unnamed namespace
/// Translate a MacroDefinition to a ClangNode, either a ModuleMacro for
/// a definition imported from a module or a MacroInfo for a macro defined
/// locally.
ClangNode getClangNodeForMacroDefinition(clang::MacroDefinition &M) {
if (!M.getModuleMacros().empty())
return ClangNode(M.getModuleMacros().back()->getMacroInfo());
if (auto *MD = M.getLocalDirective())
return ClangNode(MD->getMacroInfo());
return ClangNode();
}
void ClangImporter::lookupBridgingHeaderDecls(
llvm::function_ref<bool(ClangNode)> filter,
llvm::function_ref<void(Decl*)> receiver) const {
for (auto &Import : Impl.BridgeHeaderTopLevelImports) {
auto ImportD = Import.get<ImportDecl*>();
if (filter(ImportD->getClangDecl()))
receiver(ImportD);
}
for (auto *ClangD : Impl.BridgeHeaderTopLevelDecls) {
if (filter(ClangD)) {
if (auto *ND = dyn_cast<clang::NamedDecl>(ClangD)) {
if (Decl *imported = Impl.importDeclReal(ND, Impl.CurrentVersion))
receiver(imported);
}
}
}
auto &ClangPP = Impl.getClangPreprocessor();
for (clang::IdentifierInfo *II : Impl.BridgeHeaderMacros) {
auto MD = ClangPP.getMacroDefinition(II);
if (auto macroNode = getClangNodeForMacroDefinition(MD)) {
if (filter(macroNode)) {
auto MI = macroNode.getAsMacro();
Identifier Name = Impl.getNameImporter().importMacroName(II, MI);
if (Decl *imported = Impl.importMacro(Name, macroNode))
receiver(imported);
}
}
}
}
bool ClangImporter::lookupDeclsFromHeader(StringRef Filename,
llvm::function_ref<bool(ClangNode)> filter,
llvm::function_ref<void(Decl*)> receiver) const {
const clang::FileEntry *File =
getClangPreprocessor().getFileManager().getFile(Filename);
if (!File)
return true;
auto &ClangCtx = getClangASTContext();
auto &ClangSM = ClangCtx.getSourceManager();
auto &ClangPP = getClangPreprocessor();
// Look up the header in the includes of the bridging header.
if (Impl.BridgeHeaderFiles.count(File)) {
auto headerFilter = [&](ClangNode ClangN) -> bool {
if (ClangN.isNull())
return false;
auto ClangLoc = ClangSM.getFileLoc(ClangN.getLocation());
if (ClangLoc.isInvalid())
return false;
if (ClangSM.getFileEntryForID(ClangSM.getFileID(ClangLoc)) != File)
return false;
return filter(ClangN);
};
lookupBridgingHeaderDecls(headerFilter, receiver);
return false;
}
clang::FileID FID = ClangSM.translateFile(File);
if (FID.isInvalid())
return false;
// Look up the header in the ASTReader.
if (ClangSM.isLoadedFileID(FID)) {
// Decls.
SmallVector<clang::Decl *, 32> Decls;
unsigned Length = ClangSM.getFileIDSize(FID);
ClangCtx.getExternalSource()->FindFileRegionDecls(FID, 0, Length, Decls);
for (auto *ClangD : Decls) {
if (Impl.shouldIgnoreBridgeHeaderTopLevelDecl(ClangD))
continue;
if (filter(ClangD)) {
if (auto *ND = dyn_cast<clang::NamedDecl>(ClangD)) {
if (Decl *imported = Impl.importDeclReal(ND, Impl.CurrentVersion))
receiver(imported);
}
}
}
// Macros.
if (auto *ppRec = ClangPP.getPreprocessingRecord()) {
clang::SourceLocation B = ClangSM.getLocForStartOfFile(FID);
clang::SourceLocation E = ClangSM.getLocForEndOfFile(FID);
clang::SourceRange R(B, E);
const auto &Entities = ppRec->getPreprocessedEntitiesInRange(R);
for (auto I = Entities.begin(), E = Entities.end(); I != E; ++I) {
if (!ppRec->isEntityInFileID(I, FID))
continue;
clang::PreprocessedEntity *PPE = *I;
if (!PPE)
continue;
if (auto *MDR = dyn_cast<clang::MacroDefinitionRecord>(PPE)) {
auto *II = const_cast<clang::IdentifierInfo*>(MDR->getName());
auto MD = ClangPP.getMacroDefinition(II);
if (auto macroNode = getClangNodeForMacroDefinition(MD)) {
if (filter(macroNode)) {
auto MI = macroNode.getAsMacro();
Identifier Name = Impl.getNameImporter().importMacroName(II, MI);
if (Decl *imported = Impl.importMacro(Name, macroNode))
receiver(imported);
}
}
}
}
// FIXME: Module imports inside that header.
}
return false;
}
return true; // no info found about that header.
}
void ClangImporter::lookupValue(DeclName name, VisibleDeclConsumer &consumer){
Impl.forEachLookupTable([&](SwiftLookupTable &table) -> bool {
Impl.lookupValue(table, name, consumer);
return false;
});
}
void ClangModuleUnit::lookupVisibleDecls(ModuleDecl::AccessPathTy accessPath,
VisibleDeclConsumer &consumer,
NLKind lookupKind) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// FIXME: Respect the access path.
FilteringVisibleDeclConsumer filterConsumer(consumer, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filterConsumer,
getClangASTContext());
swift::VisibleDeclConsumer *actualConsumer = &filterConsumer;
if (lookupKind == NLKind::UnqualifiedLookup &&
DarwinLegacyFilterDeclConsumer::needsFiltering(clangModule)) {
actualConsumer = &darwinFilterConsumer;
}
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupVisibleDecls(*lookupTable, *actualConsumer);
}
}
namespace {
class VectorDeclPtrConsumer : public swift::VisibleDeclConsumer {
public:
SmallVectorImpl<Decl *> &Results;
explicit VectorDeclPtrConsumer(SmallVectorImpl<Decl *> &Decls)
: Results(Decls) {}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason) override {
Results.push_back(VD);
}
};
} // unnamed namespace
void ClangModuleUnit::getTopLevelDecls(SmallVectorImpl<Decl*> &results) const {
VectorDeclPtrConsumer consumer(results);
FilteringDeclaredDeclConsumer filterConsumer(consumer, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filterConsumer,
getClangASTContext());
const clang::Module *topLevelModule =
clangModule ? clangModule->getTopLevelModule() : nullptr;
swift::VisibleDeclConsumer *actualConsumer = &filterConsumer;
if (DarwinLegacyFilterDeclConsumer::needsFiltering(topLevelModule))
actualConsumer = &darwinFilterConsumer;
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(topLevelModule)) {
// Search it.
owner.lookupVisibleDecls(*lookupTable, *actualConsumer);
// Add the extensions produced by importing categories.
for (auto category : lookupTable->categories()) {
if (auto extension = cast_or_null<ExtensionDecl>(
owner.importDecl(category, owner.CurrentVersion)))
results.push_back(extension);
}
// Retrieve all of the globals that will be mapped to members.
// FIXME: Since we don't represent Clang submodules as Swift
// modules, we're getting everything.
llvm::SmallPtrSet<ExtensionDecl *, 8> knownExtensions;
for (auto entry : lookupTable->allGlobalsAsMembers()) {
auto decl = entry.get<clang::NamedDecl *>();
auto importedDecl =
owner.importDecl(decl, owner.CurrentVersion);
if (!importedDecl) continue;
// Find the enclosing extension, if there is one.
ExtensionDecl *ext = nullptr;
for (auto importedDC = importedDecl->getDeclContext();
!importedDC->isModuleContext();
importedDC = importedDC->getParent()) {
ext = dyn_cast<ExtensionDecl>(importedDC);
if (ext) break;
}
if (!ext) continue;
if (knownExtensions.insert(ext).second)
results.push_back(ext);
}
}
}
ImportDecl *swift::createImportDecl(ASTContext &Ctx,
DeclContext *DC,
ClangNode ClangN,
ArrayRef<clang::Module *> Exported) {
auto *ImportedMod = ClangN.getClangModule();
assert(ImportedMod);
SmallVector<std::pair<swift::Identifier, swift::SourceLoc>, 4> AccessPath;
auto *TmpMod = ImportedMod;
while (TmpMod) {
AccessPath.push_back({ Ctx.getIdentifier(TmpMod->Name), SourceLoc() });
TmpMod = TmpMod->Parent;
}
std::reverse(AccessPath.begin(), AccessPath.end());
bool IsExported = false;
for (auto *ExportedMod : Exported) {
if (ImportedMod == ExportedMod) {
IsExported = true;
break;
}
}
auto *ID = ImportDecl::create(Ctx, DC, SourceLoc(),
ImportKind::Module, SourceLoc(), AccessPath,
ClangN);
if (IsExported)
ID->getAttrs().add(new (Ctx) ExportedAttr(/*IsImplicit=*/false));
return ID;
}
static void getImportDecls(ClangModuleUnit *ClangUnit, const clang::Module *M,
SmallVectorImpl<Decl *> &Results) {
assert(M);
SmallVector<clang::Module *, 1> Exported;
M->getExportedModules(Exported);
ASTContext &Ctx = ClangUnit->getASTContext();
for (auto *ImportedMod : M->Imports) {
auto *ID = createImportDecl(Ctx, ClangUnit, ImportedMod, Exported);
Results.push_back(ID);
}
}
void ClangModuleUnit::getDisplayDecls(SmallVectorImpl<Decl*> &results) const {
if (clangModule)
getImportDecls(const_cast<ClangModuleUnit *>(this), clangModule, results);
getTopLevelDecls(results);
}
void ClangModuleUnit::lookupValue(ModuleDecl::AccessPathTy accessPath,
DeclName name, NLKind lookupKind,
SmallVectorImpl<ValueDecl*> &results) const {
if (!ModuleDecl::matchesAccessPath(accessPath, name))
return;
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
VectorDeclConsumer vectorWriter(results);
FilteringVisibleDeclConsumer filteringConsumer(vectorWriter, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filteringConsumer,
getClangASTContext());
swift::VisibleDeclConsumer *consumer = &filteringConsumer;
if (lookupKind == NLKind::UnqualifiedLookup &&
DarwinLegacyFilterDeclConsumer::needsFiltering(clangModule)) {
consumer = &darwinFilterConsumer;
}
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupValue(*lookupTable, name, *consumer);
}
}
/// Determine whether the given Clang entry is visible.
///
/// FIXME: this is an elaborate hack to badly reflect Clang's
/// submodule visibility into Swift.
static bool isVisibleClangEntry(clang::ASTContext &ctx,
SwiftLookupTable::SingleEntry entry) {
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
// For a declaration, check whether the declaration is hidden.
if (!clangDecl->isHidden()) return true;
// Is any redeclaration visible?
for (auto redecl : clangDecl->redecls()) {
if (!cast<clang::NamedDecl>(redecl)->isHidden()) return true;
}
return false;
}
// If it's a macro from a module, check whether the module has been imported.
if (auto moduleMacro = entry.dyn_cast<clang::ModuleMacro *>()) {
clang::Module *module = moduleMacro->getOwningModule();
return module->NameVisibility == clang::Module::AllVisible;
}
return true;
}
TypeDecl *
ClangModuleUnit::lookupNestedType(Identifier name,
const NominalTypeDecl *baseType) const {
// Special case for error code enums: try looking directly into the struct
// first. But only if it looks like a synthesized error wrapped struct.
if (name == getASTContext().Id_Code && !baseType->hasClangNode() &&
isa<StructDecl>(baseType) && !baseType->hasLazyMembers() &&
baseType->isChildContextOf(this)) {
auto *mutableBase = const_cast<NominalTypeDecl *>(baseType);
auto codeEnum = mutableBase->lookupDirect(name,/*ignoreNewExtensions*/true);
// Double-check that we actually have a good result. It's possible what we
// found is /not/ a synthesized error struct, but just something that looks
// like it. But if we still found a good result we should return that.
if (codeEnum.size() == 1 && isa<TypeDecl>(codeEnum.front()))
return cast<TypeDecl>(codeEnum.front());
if (codeEnum.size() > 1)
return nullptr;
// Otherwise, fall back and try via lookup table.
}
auto lookupTable = owner.findLookupTable(clangModule);
if (!lookupTable)
return nullptr;
auto baseTypeContext = owner.getEffectiveClangContext(baseType);
if (!baseTypeContext)
return nullptr;
auto &clangCtx = owner.getClangASTContext();
// FIXME: This is very similar to what's in Implementation::lookupValue and
// Implementation::loadAllMembers.
SmallVector<TypeDecl *, 2> results;
for (auto entry : lookupTable->lookup(SerializedSwiftName(name.str()),
baseTypeContext)) {
// If the entry is not visible, skip it.
if (!isVisibleClangEntry(clangCtx, entry)) continue;
auto clangDecl = entry.dyn_cast<clang::NamedDecl *>();
auto clangTypeDecl = dyn_cast_or_null<clang::TypeDecl>(clangDecl);
if (!clangTypeDecl)
continue;
clangTypeDecl = cast<clang::TypeDecl>(clangTypeDecl->getMostRecentDecl());
bool anyMatching = false;
TypeDecl *originalDecl = nullptr;
owner.forEachDistinctName(clangTypeDecl,
[&](ImportedName newName,
ImportNameVersion nameVersion) -> bool {
if (anyMatching)
return true;
if (!newName.getDeclName().isSimpleName(name))
return true;
auto decl = dyn_cast_or_null<TypeDecl>(
owner.importDeclReal(clangTypeDecl, nameVersion));
if (!decl)
return false;
if (!originalDecl)
originalDecl = decl;
else if (originalDecl == decl)
return true;
auto *importedContext = decl->getDeclContext()->
getAsNominalTypeOrNominalTypeExtensionContext();
if (importedContext != baseType)
return true;
assert(decl->getFullName().matchesRef(name) &&
"importFullName behaved differently from importDecl");
results.push_back(decl);
anyMatching = true;
return true;
});
}
if (results.size() != 1) {
// It's possible that two types were import-as-member'd onto the same base
// type with the same name. In this case, fall back to regular lookup.
return nullptr;
}
return results.front();
}
void ClangImporter::loadExtensions(NominalTypeDecl *nominal,
unsigned previousGeneration) {
// Determine the effective Clang context for this Swift nominal type.
auto effectiveClangContext = Impl.getEffectiveClangContext(nominal);
if (!effectiveClangContext) return;
// For an Objective-C class, import all of the visible categories.
if (auto objcClass = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
effectiveClangContext.getAsDeclContext())) {
// Simply importing the categories adds them to the list of extensions.
for (auto I = objcClass->visible_categories_begin(),
E = objcClass->visible_categories_end();
I != E; ++I) {
Impl.importDeclReal(*I, Impl.CurrentVersion);
}
}
// Dig through each of the Swift lookup tables, creating extensions
// where needed.
auto &clangCtx = Impl.getClangASTContext();
(void)Impl.forEachLookupTable([&](SwiftLookupTable &table) -> bool {
// FIXME: If we already looked at this for this generation,
// skip.
for (auto entry : table.lookupGlobalsAsMembers(effectiveClangContext)) {
// If the entry is not visible, skip it.
if (!isVisibleClangEntry(clangCtx, entry)) continue;
if (auto decl = entry.dyn_cast<clang::NamedDecl *>()) {
// Import the context of this declaration, which has the
// side effect of creating instantiations.
(void)Impl.importDeclContextOf(decl, effectiveClangContext);
} else {
llvm_unreachable("Macros cannot be imported as members.");
}
}
return false;
});
}
void ClangImporter::loadObjCMethods(
ClassDecl *classDecl,
ObjCSelector selector,
bool isInstanceMethod,
unsigned previousGeneration,
llvm::TinyPtrVector<AbstractFunctionDecl *> &methods) {
// If we're currently looking for this selector, don't load any Objective-C
// methods.
if (Impl.ActiveSelectors.count({selector, isInstanceMethod}))
return;
const auto *objcClass =
dyn_cast_or_null<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
if (!objcClass)
return;
// Collect the set of visible Objective-C methods with this selector.
clang::Selector clangSelector = Impl.exportSelector(selector);
SmallVector<clang::ObjCMethodDecl *, 4> objcMethods;
auto &sema = Impl.Instance->getSema();
sema.CollectMultipleMethodsInGlobalPool(clangSelector, objcMethods,
isInstanceMethod,
/*CheckTheOther=*/false);
// Check whether this method is in the class we care about.
SmallVector<AbstractFunctionDecl *, 4> foundMethods;
for (auto objcMethod : objcMethods) {
// Find the owner of this method and determine whether it is the class
// we're looking for.
if (objcMethod->getClassInterface() != objcClass)
continue;
if (auto method = dyn_cast_or_null<AbstractFunctionDecl>(
Impl.importDecl(objcMethod, Impl.CurrentVersion))) {
foundMethods.push_back(method);
}
}
// If we didn't find anything, we're done.
if (foundMethods.empty())
return;
// If we did find something, it might be a duplicate of something we found
// earlier, because we aren't tracking generation counts for Clang modules.
// Filter out the duplicates.
// FIXME: We shouldn't need to do this.
llvm::SmallPtrSet<AbstractFunctionDecl *, 4> known;
known.insert(methods.begin(), methods.end());
for (auto method : foundMethods) {
if (known.insert(method).second)
methods.push_back(method);
}
}
void
ClangModuleUnit::lookupClassMember(ModuleDecl::AccessPathTy accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
VectorDeclConsumer consumer(results);
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupObjCMembers(*lookupTable, name, consumer);
}
}
void ClangModuleUnit::lookupClassMembers(ModuleDecl::AccessPathTy accessPath,
VisibleDeclConsumer &consumer) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupAllObjCMembers(*lookupTable, consumer);
}
}
void ClangModuleUnit::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// Map the selector into a Clang selector.
auto clangSelector = owner.exportSelector(selector);
if (clangSelector.isNull()) return;
// Collect all of the Objective-C methods with this selector.
SmallVector<clang::ObjCMethodDecl *, 8> objcMethods;
auto &clangSema = owner.getClangSema();
clangSema.CollectMultipleMethodsInGlobalPool(clangSelector,
objcMethods,
/*InstanceFirst=*/true,
/*CheckTheOther=*/false);
clangSema.CollectMultipleMethodsInGlobalPool(clangSelector,
objcMethods,
/*InstanceFirst=*/false,
/*CheckTheOther=*/false);
// Import the methods.
auto &clangCtx = clangSema.getASTContext();
for (auto objcMethod : objcMethods) {
// Verify that this method came from this module.
auto owningClangModule = getClangOwningModule(objcMethod, clangCtx);
if (owningClangModule)
owningClangModule = owningClangModule->getTopLevelModule();
if (owningClangModule != clangModule) continue;
// If we found a property accessor, import the property.
if (objcMethod->isPropertyAccessor())
(void)owner.importDecl(objcMethod->findPropertyDecl(true),
owner.CurrentVersion);
// Import it.
// FIXME: Retrying a failed import works around recursion bugs in the Clang
// importer.
auto imported =
owner.importDecl(objcMethod, owner.CurrentVersion);
if (!imported)
imported = owner.importDecl(objcMethod, owner.CurrentVersion);
if (!imported) continue;
if (auto func = dyn_cast<AbstractFunctionDecl>(imported))
results.push_back(func);
// If there is an alternate declaration, also look at it.
for (auto alternate : owner.getAlternateDecls(imported)) {
if (auto func = dyn_cast<AbstractFunctionDecl>(alternate))
results.push_back(func);
}
}
}
void ClangModuleUnit::collectLinkLibraries(
ModuleDecl::LinkLibraryCallback callback) const {
if (!clangModule)
return;
for (auto clangLinkLib : clangModule->LinkLibraries) {
LibraryKind kind;
if (clangLinkLib.IsFramework)
kind = LibraryKind::Framework;
else
kind = LibraryKind::Library;
callback(LinkLibrary(clangLinkLib.Library, kind));
}
}
StringRef ClangModuleUnit::getFilename() const {
if (!clangModule) {
StringRef SinglePCH = owner.getSinglePCHImport();
if (SinglePCH.empty())
return "<imports>";
else
return SinglePCH;
}
if (const clang::FileEntry *F = clangModule->getASTFile())
if (!F->getName().empty())
return F->getName();
return StringRef();
}
clang::TargetInfo &ClangImporter::getTargetInfo() const {
return Impl.Instance->getTarget();
}
clang::ASTContext &ClangImporter::getClangASTContext() const {
return Impl.getClangASTContext();
}
clang::Preprocessor &ClangImporter::getClangPreprocessor() const {
return Impl.getClangPreprocessor();
}
const clang::CompilerInstance &ClangImporter::getClangInstance() const {
return *Impl.Instance;
}
const clang::Module *ClangImporter::getClangOwningModule(ClangNode Node) const {
return Impl.getClangOwningModule(Node);
}
const clang::Module *
ClangImporter::Implementation::getClangOwningModule(ClangNode Node) const {
return ::getClangOwningModule(Node, getClangASTContext());
}
bool ClangImporter::hasTypedef(const clang::Decl *typeDecl) const {
return Impl.DeclsWithSuperfluousTypedefs.count(typeDecl);
}
clang::Sema &ClangImporter::getClangSema() const {
return Impl.getClangSema();
}
clang::CodeGenOptions &ClangImporter::getClangCodeGenOpts() const {
return Impl.getClangCodeGenOpts();
}
std::string ClangImporter::getClangModuleHash() const {
return Impl.Invocation->getModuleHash(Impl.Instance->getDiagnostics());
}
Decl *ClangImporter::importDeclCached(const clang::NamedDecl *ClangDecl) {
return Impl.importDeclCached(ClangDecl, Impl.CurrentVersion);
}
void ClangImporter::printStatistics() const {
Impl.Instance->getModuleManager()->PrintStats();
}
void ClangImporter::verifyAllModules() {
#ifndef NDEBUG
if (Impl.VerifiedDeclsCounter == Impl.ImportedDecls.size())
return;
// Collect the Decls before verifying them; the act of verifying may cause
// more decls to be imported and modify the map while we are iterating it.
size_t verifiedCounter = Impl.ImportedDecls.size();
SmallVector<Decl *, 8> Decls;
for (auto &I : Impl.ImportedDecls)
if (I.first.second == Impl.CurrentVersion)
if (Decl *D = I.second)
Decls.push_back(D);
for (auto D : Decls)
verify(D);
Impl.VerifiedDeclsCounter = verifiedCounter;
#endif
}
//===----------------------------------------------------------------------===//
// ClangModule Implementation
//===----------------------------------------------------------------------===//
ClangModuleUnit::ClangModuleUnit(ModuleDecl &M,
ClangImporter::Implementation &owner,
const clang::Module *clangModule)
: LoadedFile(FileUnitKind::ClangModule, M), owner(owner),
clangModule(clangModule) {
}
bool ClangModuleUnit::hasClangModule(ModuleDecl *M) {
for (auto F : M->getFiles()) {
if (isa<ClangModuleUnit>(F))
return true;
}
return false;
}
bool ClangModuleUnit::isTopLevel() const {
return !clangModule || !clangModule->isSubModule();
}
bool ClangModuleUnit::isSystemModule() const {
return clangModule && clangModule->IsSystem;
}
clang::ASTContext &ClangModuleUnit::getClangASTContext() const {
return owner.getClangASTContext();
}
std::string ClangModuleUnit::getExportedModuleName() const {
if (clangModule && !clangModule->ExportAsModule.empty())
return clangModule->ExportAsModule;
return getParentModule()->getName().str();
}
ModuleDecl *ClangModuleUnit::getAdapterModule() const {
if (!clangModule)
return nullptr;
if (owner.DisableAdapterModules)
return nullptr;
if (!isTopLevel()) {
// FIXME: Is this correct for submodules?
auto topLevel = clangModule->getTopLevelModule();
auto wrapper = owner.getWrapperForModule(topLevel);
return wrapper->getAdapterModule();
}
if (!adapterModule.getInt()) {
// FIXME: Include proper source location.
ModuleDecl *M = getParentModule();
ASTContext &Ctx = M->getASTContext();
auto adapter = Ctx.getModule(ModuleDecl::AccessPathTy({M->getName(),
SourceLoc()}));
if (adapter == M) {
adapter = nullptr;
} else {
auto &sharedModuleRef = Ctx.LoadedModules[M->getName()];
assert(!sharedModuleRef || sharedModuleRef == adapter ||
sharedModuleRef == M);
sharedModuleRef = adapter;
}
auto mutableThis = const_cast<ClangModuleUnit *>(this);
mutableThis->adapterModule.setPointerAndInt(adapter, true);
}
return adapterModule.getPointer();
}
void ClangModuleUnit::getImportedModules(
SmallVectorImpl<ModuleDecl::ImportedModule> &imports,
ModuleDecl::ImportFilter filter) const {
if (filter != ModuleDecl::ImportFilter::Public)
imports.push_back({ModuleDecl::AccessPathTy(), owner.getStdlibModule()});
if (!clangModule) {
// This is the special "imported headers" module.
if (filter != ModuleDecl::ImportFilter::Private) {
imports.append(owner.ImportedHeaderExports.begin(),
owner.ImportedHeaderExports.end());
}
return;
}
auto topLevelAdapter = getAdapterModule();
SmallVector<clang::Module *, 8> imported;
clangModule->getExportedModules(imported);
if (filter != ModuleDecl::ImportFilter::Public) {
if (filter == ModuleDecl::ImportFilter::All) {
llvm::SmallPtrSet<clang::Module *, 8> knownModules;
imported.append(clangModule->Imports.begin(), clangModule->Imports.end());
imported.erase(std::remove_if(imported.begin(), imported.end(),
[&](clang::Module *mod) -> bool {
return !knownModules.insert(mod).second;
}),
imported.end());
} else {
llvm::SmallPtrSet<clang::Module *, 8> knownModules(imported.begin(),
imported.end());
SmallVector<clang::Module *, 8> privateImports;
std::copy_if(clangModule->Imports.begin(), clangModule->Imports.end(),
std::back_inserter(privateImports), [&](clang::Module *mod) {
return knownModules.count(mod) == 0;
});
imported.swap(privateImports);
}
// FIXME: The parent module isn't exactly a private import, but it is
// needed for link dependencies.
if (clangModule->Parent)
imported.push_back(clangModule->Parent);
}
for (auto importMod : imported) {
auto wrapper = owner.getWrapperForModule(importMod);
auto actualMod = wrapper->getAdapterModule();
if (!actualMod) {
// HACK: Deal with imports of submodules by importing the top-level module
// as well.
auto importTopLevel = importMod->getTopLevelModule();
if (importTopLevel != importMod &&
importTopLevel != clangModule->getTopLevelModule()) {
auto topLevelWrapper = owner.getWrapperForModule(importTopLevel);
imports.push_back({ ModuleDecl::AccessPathTy(),
topLevelWrapper->getParentModule() });
}
actualMod = wrapper->getParentModule();
} else if (actualMod == topLevelAdapter) {
actualMod = wrapper->getParentModule();
}
assert(actualMod && "Missing imported adapter module");
imports.push_back({ModuleDecl::AccessPathTy(), actualMod});
}
}
void ClangModuleUnit::getImportedModulesForLookup(
SmallVectorImpl<ModuleDecl::ImportedModule> &imports) const {
if (!clangModule) {
// This is the special "imported headers" module.
imports.append(owner.ImportedHeaderExports.begin(),
owner.ImportedHeaderExports.end());
return;
}
// Reuse our cached list of imports if we have one.
if (!importedModulesForLookup.empty()) {
imports.append(importedModulesForLookup.begin(),
importedModulesForLookup.end());
return;
}
size_t firstImport = imports.size();
auto topLevel = clangModule->getTopLevelModule();
auto topLevelAdapter = getAdapterModule();
SmallVector<clang::Module *, 8> imported;
clangModule->getExportedModules(imported);
if (imported.empty())
return;
SmallPtrSet<clang::Module *, 32> seen{imported.begin(), imported.end()};
SmallVector<clang::Module *, 8> tmpBuf;
llvm::SmallSetVector<clang::Module *, 8> topLevelImported;
// Get the transitive set of top-level imports. That is, if a particular
// import is a top-level import, add it. Otherwise, keep searching.
while (!imported.empty()) {
clang::Module *next = imported.pop_back_val();
// HACK: Deal with imports of submodules by importing the top-level module
// as well, unless it's the top-level module we're currently in.
clang::Module *nextTopLevel = next->getTopLevelModule();
if (nextTopLevel != topLevel) {
topLevelImported.insert(nextTopLevel);
// Don't continue looking through submodules of modules that have
// overlays. The overlay might shadow things.
auto wrapper = owner.getWrapperForModule(nextTopLevel);
if (wrapper->getAdapterModule())
continue;
}
// Only look through the current module if it's not top-level.
if (nextTopLevel == next)
continue;
next->getExportedModules(tmpBuf);
for (clang::Module *nextImported : tmpBuf) {
if (seen.insert(nextImported).second)
imported.push_back(nextImported);
}
tmpBuf.clear();
}
for (auto importMod : topLevelImported) {
auto wrapper = owner.getWrapperForModule(importMod);
auto actualMod = wrapper->getAdapterModule();
if (!actualMod || actualMod == topLevelAdapter)
actualMod = wrapper->getParentModule();
assert(actualMod && "Missing imported adapter module");
imports.push_back({ModuleDecl::AccessPathTy(), actualMod});
}
// Cache our results for use next time.
auto importsToCache = llvm::makeArrayRef(imports).slice(firstImport);
importedModulesForLookup = getASTContext().AllocateCopy(importsToCache);
}
void ClangImporter::getMangledName(raw_ostream &os,
const clang::NamedDecl *clangDecl) const {
if (!Impl.Mangler)
Impl.Mangler.reset(Impl.getClangASTContext().createMangleContext());
Impl.Mangler->mangleName(clangDecl, os);
}
// ---------------------------------------------------------------------------
// Swift lookup tables
// ---------------------------------------------------------------------------
SwiftLookupTable *ClangImporter::Implementation::findLookupTable(
const clang::Module *clangModule) {
// If the Clang module is null, use the bridging header lookup table.
if (!clangModule)
return BridgingHeaderLookupTable.get();
// Submodules share lookup tables with their parents.
if (clangModule->isSubModule())
return findLookupTable(clangModule->getTopLevelModule());
// Look for a Clang module with this name.
auto known = LookupTables.find(clangModule->Name);
if (known == LookupTables.end()) return nullptr;
return known->second.get();
}
bool ClangImporter::Implementation::forEachLookupTable(
llvm::function_ref<bool(SwiftLookupTable &table)> fn) {
// Visit the bridging header's lookup table.
if (fn(*BridgingHeaderLookupTable)) return true;
// Collect and sort the set of module names.
SmallVector<StringRef, 4> moduleNames;
for (const auto &entry : LookupTables) {
moduleNames.push_back(entry.first());
}
llvm::array_pod_sort(moduleNames.begin(), moduleNames.end());
// Visit the lookup tables.
for (auto moduleName : moduleNames) {
if (fn(*LookupTables[moduleName])) return true;
}
return false;
}
void ClangImporter::Implementation::lookupValue(
SwiftLookupTable &table, DeclName name,
VisibleDeclConsumer &consumer) {
auto &clangCtx = getClangASTContext();
auto clangTU = clangCtx.getTranslationUnitDecl();
for (auto entry : table.lookup(name.getBaseName(), clangTU)) {
// If the entry is not visible, skip it.
if (!isVisibleClangEntry(clangCtx, entry)) continue;
ValueDecl *decl;
// If it's a Clang declaration, try to import it.
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
decl = cast_or_null<ValueDecl>(
importDeclReal(clangDecl->getMostRecentDecl(), CurrentVersion));
if (!decl) continue;
} else if (!name.isSpecial()) {
// Try to import a macro.
if (auto modMacro = entry.dyn_cast<clang::ModuleMacro *>())
decl = importMacro(name.getBaseIdentifier(), modMacro);
else if (auto clangMacro = entry.dyn_cast<clang::MacroInfo *>())
decl = importMacro(name.getBaseIdentifier(), clangMacro);
else
llvm_unreachable("new kind of lookup table entry");
if (!decl) continue;
} else {
continue;
}
// If we found a declaration from the standard library, make sure
// it does not show up in the lookup results for the imported
// module.
if (decl->getDeclContext()->isModuleScopeContext() &&
decl->getModuleContext() == getStdlibModule())
continue;
// If the name matched, report this result.
bool anyMatching = false;
if (decl->getFullName().matchesRef(name) &&
decl->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(decl, DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
// If there is an alternate declaration and the name matches,
// report this result.
for (auto alternate : getAlternateDecls(decl)) {
if (alternate->getFullName().matchesRef(name) &&
alternate->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(alternate, DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
}
// If we have a declaration and nothing matched so far, try the names used
// in other versions of Swift.
if (!anyMatching) {
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
const clang::NamedDecl *recentClangDecl =
clangDecl->getMostRecentDecl();
CurrentVersion.forEachOtherImportNameVersion(
[&](ImportNameVersion nameVersion) {
if (anyMatching)
return;
// Check to see if the name and context match what we expect.
ImportedName newName = importFullName(recentClangDecl, nameVersion);
if (!newName.getDeclName().matchesRef(name))
return;
const clang::DeclContext *clangDC =
newName.getEffectiveContext().getAsDeclContext();
if (!clangDC || !clangDC->isFileContext())
return;
// Then try to import the decl under the alternate name.
auto alternateNamedDecl =
cast_or_null<ValueDecl>(importDeclReal(recentClangDecl,
nameVersion));
if (!alternateNamedDecl || alternateNamedDecl == decl)
return;
assert(alternateNamedDecl->getFullName().matchesRef(name) &&
"importFullName behaved differently from importDecl");
if (alternateNamedDecl->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(alternateNamedDecl,
DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
});
}
}
}
}
void ClangImporter::Implementation::lookupVisibleDecls(
SwiftLookupTable &table,
VisibleDeclConsumer &consumer) {
// Retrieve and sort all of the base names in this particular table.
auto baseNames = table.allBaseNames();
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
// Look for namespace-scope entities with each base name.
for (auto baseName : baseNames) {
lookupValue(table, baseName.toDeclBaseName(SwiftContext), consumer);
}
}
void ClangImporter::Implementation::lookupObjCMembers(
SwiftLookupTable &table,
DeclName name,
VisibleDeclConsumer &consumer) {
auto &clangCtx = getClangASTContext();
for (auto clangDecl : table.lookupObjCMembers(name.getBaseName())) {
// If the entry is not visible, skip it.
if (!isVisibleClangEntry(clangCtx, clangDecl)) continue;
forEachDistinctName(clangDecl,
[&](ImportedName importedName,
ImportNameVersion nameVersion) -> bool {
// Import the declaration.
auto decl =
cast_or_null<ValueDecl>(importDeclReal(clangDecl, nameVersion));
if (!decl)
return false;
// If the name we found matches, report the declaration.
// FIXME: If we didn't need to check alternate decls here, we could avoid
// importing the member at all by checking importedName ahead of time.
if (decl->getFullName().matchesRef(name)) {
consumer.foundDecl(decl, DeclVisibilityKind::DynamicLookup);
}
// Check for an alternate declaration; if its name matches,
// report it.
for (auto alternate : getAlternateDecls(decl)) {
if (alternate->getFullName().matchesRef(name)) {
consumer.foundDecl(alternate, DeclVisibilityKind::DynamicLookup);
}
}
return true;
});
}
}
void ClangImporter::Implementation::lookupAllObjCMembers(
SwiftLookupTable &table,
VisibleDeclConsumer &consumer) {
// Retrieve and sort all of the base names in this particular table.
auto baseNames = table.allBaseNames();
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
// Look for Objective-C members with each base name.
for (auto baseName : baseNames) {
lookupObjCMembers(table, baseName.toDeclBaseName(SwiftContext), consumer);
}
}
Optional<TinyPtrVector<ValueDecl *>>
ClangImporter::Implementation::loadNamedMembers(
const IterableDeclContext *IDC, DeclName N, uint64_t contextData) {
auto *D = IDC->getDecl();
auto *DC = cast<DeclContext>(D);
auto *CD = D->getClangDecl();
auto *CDC = cast<clang::DeclContext>(CD);
assert(CD && "loadNamedMembers on a Decl without a clangDecl");
auto *nominal = DC->getAsNominalTypeOrNominalTypeExtensionContext();
auto effectiveClangContext = getEffectiveClangContext(nominal);
// FIXME: The legacy of mirroring protocol members rears its ugly head,
// and as a result we have to bail on any @interface or @category that
// has a declared protocol conformance.
if (auto *ID = dyn_cast<clang::ObjCInterfaceDecl>(CD)) {
if (ID->protocol_begin() != ID->protocol_end())
return None;
}
if (auto *CCD = dyn_cast<clang::ObjCCategoryDecl>(CD)) {
if (CCD->protocol_begin() != CCD->protocol_end())
return None;
}
// Also bail out if there are any global-as-member mappings for this type; we
// can support some of them lazily but the full set of idioms seems
// prohibitively complex (also they're not stored in by-name lookup, for
// reasons unclear).
if (forEachLookupTable([&](SwiftLookupTable &table) -> bool {
return (table.lookupGlobalsAsMembers(
effectiveClangContext).size() > 0);
}))
return None;
// There are 3 cases:
//
// - The decl is from a bridging header, CMO is Some(nullptr)
// which denotes the __ObjC Swift module and its associated
// BridgingHeaderLookupTable.
//
// - The decl is from a clang module, CMO is Some(M) for non-null
// M and we can use the table for that module.
//
// - The decl is a forward declaration, CMO is None, which should
// never be the case if we got here (someone is asking for members).
//
// findLookupTable, below, handles the first two cases; we assert on the
// third.
auto CMO = getClangSubmoduleForDecl(CD);
assert(CMO && "loadNamedMembers on a forward-declared Decl");
auto table = findLookupTable(*CMO);
assert(table && "clang module without lookup table");
clang::ASTContext &clangCtx = getClangASTContext();
assert(isa<clang::ObjCContainerDecl>(CD));
TinyPtrVector<ValueDecl *> Members;
for (auto entry : table->lookup(SerializedSwiftName(N.getBaseName()),
effectiveClangContext)) {
if (!entry.is<clang::NamedDecl *>()) continue;
auto member = entry.get<clang::NamedDecl *>();
if (!isVisibleClangEntry(clangCtx, member)) continue;
// Skip Decls from different clang::DeclContexts
if (member->getDeclContext() != CDC) continue;
SmallVector<Decl*, 4> tmp;
insertMembersAndAlternates(member, tmp);
for (auto *TD : tmp) {
if (auto *V = dyn_cast<ValueDecl>(TD)) {
// Skip ValueDecls if they import under different names.
if (V->getFullName().matchesRef(N)) {
Members.push_back(V);
}
}
}
}
return Members;
}
EffectiveClangContext ClangImporter::Implementation::getEffectiveClangContext(
const NominalTypeDecl *nominal) {
// If we have a Clang declaration, look at it to determine the
// effective Clang context.
if (auto constClangDecl = nominal->getClangDecl()) {
auto clangDecl = const_cast<clang::Decl *>(constClangDecl);
if (auto dc = dyn_cast<clang::DeclContext>(clangDecl))
return EffectiveClangContext(dc);
if (auto typedefName = dyn_cast<clang::TypedefNameDecl>(clangDecl))
return EffectiveClangContext(typedefName);
return EffectiveClangContext();
}
// Resolve the type.
if (auto typeResolver = getTypeResolver())
typeResolver->resolveDeclSignature(const_cast<NominalTypeDecl *>(nominal));
// If it's an @objc entity, go look for it.
if (nominal->isObjC()) {
// Map the name. If we can't represent the Swift name in Clang.
// FIXME: We should be using the Objective-C name here!
auto clangName = exportName(nominal->getName());
if (!clangName)
return EffectiveClangContext();
// Perform name lookup into the global scope.
auto &sema = Instance->getSema();
clang::LookupResult lookupResult(sema, clangName,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (sema.LookupName(lookupResult, /*Scope=*/nullptr)) {
// FIXME: Filter based on access path? C++ access control?
for (auto clangDecl : lookupResult) {
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(clangDecl))
return EffectiveClangContext(objcClass);
/// FIXME: Other type declarations should also be okay?
}
}
}
return EffectiveClangContext();
}
void ClangImporter::dumpSwiftLookupTables() {
Impl.dumpSwiftLookupTables();
}
void ClangImporter::Implementation::dumpSwiftLookupTables() {
// Sort the module names so we can print in a deterministic order.
SmallVector<StringRef, 4> moduleNames;
for (const auto &lookupTable : LookupTables) {
moduleNames.push_back(lookupTable.first());
}
array_pod_sort(moduleNames.begin(), moduleNames.end());
// Print out the lookup tables for the various modules.
for (auto moduleName : moduleNames) {
llvm::errs() << "<<" << moduleName << " lookup table>>\n";
LookupTables[moduleName]->deserializeAll();
LookupTables[moduleName]->dump();
}
llvm::errs() << "<<Bridging header lookup table>>\n";
BridgingHeaderLookupTable->dump();
}
DeclName ClangImporter::
importName(const clang::NamedDecl *D,
clang::DeclarationName preferredName) {
return Impl.importFullName(D, Impl.CurrentVersion, preferredName).
getDeclName();
}
bool swift::isInOverlayModuleForImportedModule(const DeclContext *overlayDC,
const DeclContext *importedDC) {
overlayDC = overlayDC->getModuleScopeContext();
importedDC = importedDC->getModuleScopeContext();
auto importedClangModuleUnit = dyn_cast<ClangModuleUnit>(importedDC);
if (!importedClangModuleUnit)
return false;
auto overlayModule = overlayDC->getParentModule();
if (overlayModule == importedClangModuleUnit->getAdapterModule())
return true;
// Is this a private module that's re-exported to the public (overlay) name?
auto clangModule =
importedClangModuleUnit->getClangModule()->getTopLevelModule();
return !clangModule->ExportAsModule.empty() &&
clangModule->ExportAsModule == overlayModule->getName().str();
}