blob: 1ff93904ba63ab76d378ed64bca2f39092476107 [file] [log] [blame]
//===--- CollectionAlgorithms.swift ---------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// last
//===----------------------------------------------------------------------===//
extension BidirectionalCollection {
/// The last element of the collection.
///
/// If the collection is empty, the value of this property is `nil`.
///
/// let numbers = [10, 20, 30, 40, 50]
/// if let lastNumber = numbers.last {
/// print(lastNumber)
/// }
/// // Prints "50"
///
/// - Complexity: O(1)
@inlinable
public var last: Element? {
return isEmpty ? nil : self[index(before: endIndex)]
}
}
//===----------------------------------------------------------------------===//
// firstIndex(of:)/firstIndex(where:)
//===----------------------------------------------------------------------===//
extension Collection where Element: Equatable {
/// Returns the first index where the specified value appears in the
/// collection.
///
/// After using `firstIndex(of:)` to find the position of a particular element
/// in a collection, you can use it to access the element by subscripting.
/// This example shows how you can modify one of the names in an array of
/// students.
///
/// var students = ["Ben", "Ivy", "Jordell", "Maxime"]
/// if let i = students.firstIndex(of: "Maxime") {
/// students[i] = "Max"
/// }
/// print(students)
/// // Prints "["Ben", "Ivy", "Jordell", "Max"]"
///
/// - Parameter element: An element to search for in the collection.
/// - Returns: The first index where `element` is found. If `element` is not
/// found in the collection, returns `nil`.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public func firstIndex(of element: Element) -> Index? {
if let result = _customIndexOfEquatableElement(element) {
return result
}
var i = self.startIndex
while i != self.endIndex {
if self[i] == element {
return i
}
self.formIndex(after: &i)
}
return nil
}
}
extension Collection {
/// Returns the first index in which an element of the collection satisfies
/// the given predicate.
///
/// You can use the predicate to find an element of a type that doesn't
/// conform to the `Equatable` protocol or to find an element that matches
/// particular criteria. Here's an example that finds a student name that
/// begins with the letter "A":
///
/// let students = ["Kofi", "Abena", "Peter", "Kweku", "Akosua"]
/// if let i = students.firstIndex(where: { $0.hasPrefix("A") }) {
/// print("\(students[i]) starts with 'A'!")
/// }
/// // Prints "Abena starts with 'A'!"
///
/// - Parameter predicate: A closure that takes an element as its argument
/// and returns a Boolean value that indicates whether the passed element
/// represents a match.
/// - Returns: The index of the first element for which `predicate` returns
/// `true`. If no elements in the collection satisfy the given predicate,
/// returns `nil`.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public func firstIndex(
where predicate: (Element) throws -> Bool
) rethrows -> Index? {
var i = self.startIndex
while i != self.endIndex {
if try predicate(self[i]) {
return i
}
self.formIndex(after: &i)
}
return nil
}
}
//===----------------------------------------------------------------------===//
// lastIndex(of:)/lastIndex(where:)
//===----------------------------------------------------------------------===//
extension BidirectionalCollection {
/// Returns the last element of the sequence that satisfies the given
/// predicate.
///
/// This example uses the `last(where:)` method to find the last
/// negative number in an array of integers:
///
/// let numbers = [3, 7, 4, -2, 9, -6, 10, 1]
/// if let lastNegative = numbers.last(where: { $0 < 0 }) {
/// print("The last negative number is \(lastNegative).")
/// }
/// // Prints "The last negative number is -6."
///
/// - Parameter predicate: A closure that takes an element of the sequence as
/// its argument and returns a Boolean value indicating whether the
/// element is a match.
/// - Returns: The last element of the sequence that satisfies `predicate`,
/// or `nil` if there is no element that satisfies `predicate`.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public func last(
where predicate: (Element) throws -> Bool
) rethrows -> Element? {
return try lastIndex(where: predicate).map { self[$0] }
}
/// Returns the index of the last element in the collection that matches the
/// given predicate.
///
/// You can use the predicate to find an element of a type that doesn't
/// conform to the `Equatable` protocol or to find an element that matches
/// particular criteria. This example finds the index of the last name that
/// begins with the letter *A:*
///
/// let students = ["Kofi", "Abena", "Peter", "Kweku", "Akosua"]
/// if let i = students.lastIndex(where: { $0.hasPrefix("A") }) {
/// print("\(students[i]) starts with 'A'!")
/// }
/// // Prints "Akosua starts with 'A'!"
///
/// - Parameter predicate: A closure that takes an element as its argument
/// and returns a Boolean value that indicates whether the passed element
/// represents a match.
/// - Returns: The index of the last element in the collection that matches
/// `predicate`, or `nil` if no elements match.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public func lastIndex(
where predicate: (Element) throws -> Bool
) rethrows -> Index? {
var i = endIndex
while i != startIndex {
formIndex(before: &i)
if try predicate(self[i]) {
return i
}
}
return nil
}
}
extension BidirectionalCollection where Element: Equatable {
/// Returns the last index where the specified value appears in the
/// collection.
///
/// After using `lastIndex(of:)` to find the position of the last instance of
/// a particular element in a collection, you can use it to access the
/// element by subscripting. This example shows how you can modify one of
/// the names in an array of students.
///
/// var students = ["Ben", "Ivy", "Jordell", "Ben", "Maxime"]
/// if let i = students.lastIndex(of: "Ben") {
/// students[i] = "Benjamin"
/// }
/// print(students)
/// // Prints "["Ben", "Ivy", "Jordell", "Benjamin", "Max"]"
///
/// - Parameter element: An element to search for in the collection.
/// - Returns: The last index where `element` is found. If `element` is not
/// found in the collection, this method returns `nil`.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public func lastIndex(of element: Element) -> Index? {
if let result = _customLastIndexOfEquatableElement(element) {
return result
}
return lastIndex(where: { $0 == element })
}
}
//===----------------------------------------------------------------------===//
// partition(by:)
//===----------------------------------------------------------------------===//
extension MutableCollection {
/// Reorders the elements of the collection such that all the elements
/// that match the given predicate are after all the elements that don't
/// match.
///
/// After partitioning a collection, there is a pivot index `p` where
/// no element before `p` satisfies the `belongsInSecondPartition`
/// predicate and every element at or after `p` satisfies
/// `belongsInSecondPartition`.
///
/// In the following example, an array of numbers is partitioned by a
/// predicate that matches elements greater than 30.
///
/// var numbers = [30, 40, 20, 30, 30, 60, 10]
/// let p = numbers.partition(by: { $0 > 30 })
/// // p == 5
/// // numbers == [30, 10, 20, 30, 30, 60, 40]
///
/// The `numbers` array is now arranged in two partitions. The first
/// partition, `numbers[..<p]`, is made up of the elements that
/// are not greater than 30. The second partition, `numbers[p...]`,
/// is made up of the elements that *are* greater than 30.
///
/// let first = numbers[..<p]
/// // first == [30, 10, 20, 30, 30]
/// let second = numbers[p...]
/// // second == [60, 40]
///
/// - Parameter belongsInSecondPartition: A predicate used to partition
/// the collection. All elements satisfying this predicate are ordered
/// after all elements not satisfying it.
/// - Returns: The index of the first element in the reordered collection
/// that matches `belongsInSecondPartition`. If no elements in the
/// collection match `belongsInSecondPartition`, the returned index is
/// equal to the collection's `endIndex`.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public mutating func partition(
by belongsInSecondPartition: (Element) throws -> Bool
) rethrows -> Index {
return try _halfStablePartition(isSuffixElement: belongsInSecondPartition)
}
/// Moves all elements satisfying `isSuffixElement` into a suffix of the
/// collection, returning the start position of the resulting suffix.
///
/// - Complexity: O(*n*) where n is the length of the collection.
@inlinable
internal mutating func _halfStablePartition(
isSuffixElement: (Element) throws -> Bool
) rethrows -> Index {
guard var i = try firstIndex(where: isSuffixElement)
else { return endIndex }
var j = index(after: i)
while j != endIndex {
if try !isSuffixElement(self[j]) { swapAt(i, j); formIndex(after: &i) }
formIndex(after: &j)
}
return i
}
}
extension MutableCollection where Self: BidirectionalCollection {
/// Reorders the elements of the collection such that all the elements
/// that match the given predicate are after all the elements that don't
/// match.
///
/// After partitioning a collection, there is a pivot index `p` where
/// no element before `p` satisfies the `belongsInSecondPartition`
/// predicate and every element at or after `p` satisfies
/// `belongsInSecondPartition`.
///
/// In the following example, an array of numbers is partitioned by a
/// predicate that matches elements greater than 30.
///
/// var numbers = [30, 40, 20, 30, 30, 60, 10]
/// let p = numbers.partition(by: { $0 > 30 })
/// // p == 5
/// // numbers == [30, 10, 20, 30, 30, 60, 40]
///
/// The `numbers` array is now arranged in two partitions. The first
/// partition, `numbers[..<p]`, is made up of the elements that
/// are not greater than 30. The second partition, `numbers[p...]`,
/// is made up of the elements that *are* greater than 30.
///
/// let first = numbers[..<p]
/// // first == [30, 10, 20, 30, 30]
/// let second = numbers[p...]
/// // second == [60, 40]
///
/// - Parameter belongsInSecondPartition: A predicate used to partition
/// the collection. All elements satisfying this predicate are ordered
/// after all elements not satisfying it.
/// - Returns: The index of the first element in the reordered collection
/// that matches `belongsInSecondPartition`. If no elements in the
/// collection match `belongsInSecondPartition`, the returned index is
/// equal to the collection's `endIndex`.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public mutating func partition(
by belongsInSecondPartition: (Element) throws -> Bool
) rethrows -> Index {
let maybeOffset = try _withUnsafeMutableBufferPointerIfSupported {
(bufferPointer) -> Int in
let unsafeBufferPivot = try bufferPointer._partitionImpl(
by: belongsInSecondPartition)
return unsafeBufferPivot - bufferPointer.startIndex
}
if let offset = maybeOffset {
return index(startIndex, offsetBy: offset)
} else {
return try _partitionImpl(by: belongsInSecondPartition)
}
}
@usableFromInline
internal mutating func _partitionImpl(
by belongsInSecondPartition: (Element) throws -> Bool
) rethrows -> Index {
var lo = startIndex
var hi = endIndex
while true {
// Invariants at this point:
//
// * `lo <= hi`
// * all elements in `startIndex ..< lo` belong in the first partition
// * all elements in `hi ..< endIndex` belong in the second partition
// Find next element from `lo` that may not be in the right place.
while true {
guard lo < hi else { return lo }
if try belongsInSecondPartition(self[lo]) { break }
formIndex(after: &lo)
}
// Find next element down from `hi` that we can swap `lo` with.
while true {
formIndex(before: &hi)
guard lo < hi else { return lo }
if try !belongsInSecondPartition(self[hi]) { break }
}
swapAt(lo, hi)
formIndex(after: &lo)
}
}
}
//===----------------------------------------------------------------------===//
// _indexedStablePartition / _partitioningIndex
//===----------------------------------------------------------------------===//
extension MutableCollection {
/// Moves all elements at the indices satisfying `belongsInSecondPartition`
/// into a suffix of the collection, preserving their relative order, and
/// returns the start of the resulting suffix.
///
/// - Complexity: O(*n* log *n*) where *n* is the number of elements.
/// - Precondition:
/// `n == distance(from: range.lowerBound, to: range.upperBound)`
internal mutating func _indexedStablePartition(
count n: Int,
range: Range<Index>,
by belongsInSecondPartition: (Index) throws-> Bool
) rethrows -> Index {
if n == 0 { return range.lowerBound }
if n == 1 {
return try belongsInSecondPartition(range.lowerBound)
? range.lowerBound
: range.upperBound
}
let h = n / 2, i = index(range.lowerBound, offsetBy: h)
let j = try _indexedStablePartition(
count: h,
range: range.lowerBound..<i,
by: belongsInSecondPartition)
let k = try _indexedStablePartition(
count: n - h,
range: i..<range.upperBound,
by: belongsInSecondPartition)
return _rotate(in: j..<k, shiftingToStart: i)
}
}
//===----------------------------------------------------------------------===//
// _partitioningIndex(where:)
//===----------------------------------------------------------------------===//
extension Collection {
/// Returns the index of the first element in the collection that matches
/// the predicate.
///
/// The collection must already be partitioned according to the predicate.
/// That is, there should be an index `i` where for every element in
/// `collection[..<i]` the predicate is `false`, and for every element
/// in `collection[i...]` the predicate is `true`.
///
/// - Parameter predicate: A predicate that partitions the collection.
/// - Returns: The index of the first element in the collection for which
/// `predicate` returns `true`.
///
/// - Complexity: O(log *n*), where *n* is the length of this collection if
/// the collection conforms to `RandomAccessCollection`, otherwise O(*n*).
internal func _partitioningIndex(
where predicate: (Element) throws -> Bool
) rethrows -> Index {
var n = count
var l = startIndex
while n > 0 {
let half = n / 2
let mid = index(l, offsetBy: half)
if try predicate(self[mid]) {
n = half
} else {
l = index(after: mid)
n -= half + 1
}
}
return l
}
}
//===----------------------------------------------------------------------===//
// shuffled()/shuffle()
//===----------------------------------------------------------------------===//
extension Sequence {
/// Returns the elements of the sequence, shuffled using the given generator
/// as a source for randomness.
///
/// You use this method to randomize the elements of a sequence when you are
/// using a custom random number generator. For example, you can shuffle the
/// numbers between `0` and `9` by calling the `shuffled(using:)` method on
/// that range:
///
/// let numbers = 0...9
/// let shuffledNumbers = numbers.shuffled(using: &myGenerator)
/// // shuffledNumbers == [8, 9, 4, 3, 2, 6, 7, 0, 5, 1]
///
/// - Parameter generator: The random number generator to use when shuffling
/// the sequence.
/// - Returns: An array of this sequence's elements in a shuffled order.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
/// - Note: The algorithm used to shuffle a sequence may change in a future
/// version of Swift. If you're passing a generator that results in the
/// same shuffled order each time you run your program, that sequence may
/// change when your program is compiled using a different version of
/// Swift.
@inlinable
public func shuffled<T: RandomNumberGenerator>(
using generator: inout T
) -> [Element] {
var result = ContiguousArray(self)
result.shuffle(using: &generator)
return Array(result)
}
/// Returns the elements of the sequence, shuffled.
///
/// For example, you can shuffle the numbers between `0` and `9` by calling
/// the `shuffled()` method on that range:
///
/// let numbers = 0...9
/// let shuffledNumbers = numbers.shuffled()
/// // shuffledNumbers == [1, 7, 6, 2, 8, 9, 4, 3, 5, 0]
///
/// This method is equivalent to calling `shuffled(using:)`, passing in the
/// system's default random generator.
///
/// - Returns: A shuffled array of this sequence's elements.
///
/// - Complexity: O(*n*), where *n* is the length of the sequence.
@inlinable
public func shuffled() -> [Element] {
var g = SystemRandomNumberGenerator()
return shuffled(using: &g)
}
}
extension MutableCollection where Self: RandomAccessCollection {
/// Shuffles the collection in place, using the given generator as a source
/// for randomness.
///
/// You use this method to randomize the elements of a collection when you
/// are using a custom random number generator. For example, you can use the
/// `shuffle(using:)` method to randomly reorder the elements of an array.
///
/// var names = ["Alejandro", "Camila", "Diego", "Luciana", "Luis", "Sofía"]
/// names.shuffle(using: &myGenerator)
/// // names == ["Sofía", "Alejandro", "Camila", "Luis", "Diego", "Luciana"]
///
/// - Parameter generator: The random number generator to use when shuffling
/// the collection.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
/// - Note: The algorithm used to shuffle a collection may change in a future
/// version of Swift. If you're passing a generator that results in the
/// same shuffled order each time you run your program, that sequence may
/// change when your program is compiled using a different version of
/// Swift.
@inlinable
public mutating func shuffle<T: RandomNumberGenerator>(
using generator: inout T
) {
guard count > 1 else { return }
var amount = count
var currentIndex = startIndex
while amount > 1 {
let random = Int.random(in: 0 ..< amount, using: &generator)
amount -= 1
swapAt(
currentIndex,
index(currentIndex, offsetBy: random)
)
formIndex(after: &currentIndex)
}
}
/// Shuffles the collection in place.
///
/// Use the `shuffle()` method to randomly reorder the elements of an array.
///
/// var names = ["Alejandro", "Camila", "Diego", "Luciana", "Luis", "Sofía"]
/// names.shuffle(using: myGenerator)
/// // names == ["Luis", "Camila", "Luciana", "Sofía", "Alejandro", "Diego"]
///
/// This method is equivalent to calling `shuffle(using:)`, passing in the
/// system's default random generator.
///
/// - Complexity: O(*n*), where *n* is the length of the collection.
@inlinable
public mutating func shuffle() {
var g = SystemRandomNumberGenerator()
shuffle(using: &g)
}
}