blob: 792caf8fbf9656eea3c575d39dc8e00862520b27 [file] [log] [blame] [edit]
//===--- DeserializeSIL.cpp - Read SIL ------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "deserialize"
#include "DeserializeSIL.h"
#include "BCReadingExtras.h"
#include "DeserializationErrors.h"
#include "ModuleFile.h"
#include "SILFormat.h"
#include "SILSerializationFunctionBuilder.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/PrettyStackTrace.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/OnDiskHashTable.h"
#include <type_traits>
using namespace swift;
using namespace swift::serialization;
using namespace swift::serialization::sil_block;
using namespace llvm::support;
const char SILEntityError::ID = '\0';
void SILEntityError::anchor() {}
STATISTIC(NumDeserializedFunc, "Number of deserialized SIL functions");
static Optional<StringLiteralInst::Encoding>
fromStableStringEncoding(unsigned value) {
switch (value) {
case SIL_BYTES: return StringLiteralInst::Encoding::Bytes;
case SIL_UTF8: return StringLiteralInst::Encoding::UTF8;
case SIL_OBJC_SELECTOR: return StringLiteralInst::Encoding::ObjCSelector;
default: return None;
}
}
static Optional<SILLinkage>
fromStableSILLinkage(unsigned value) {
switch (value) {
case SIL_LINKAGE_PUBLIC: return SILLinkage::Public;
case SIL_LINKAGE_PUBLIC_NON_ABI: return SILLinkage::PublicNonABI;
case SIL_LINKAGE_HIDDEN: return SILLinkage::Hidden;
case SIL_LINKAGE_SHARED: return SILLinkage::Shared;
case SIL_LINKAGE_PRIVATE: return SILLinkage::Private;
case SIL_LINKAGE_PUBLIC_EXTERNAL: return SILLinkage::PublicExternal;
case SIL_LINKAGE_HIDDEN_EXTERNAL: return SILLinkage::HiddenExternal;
case SIL_LINKAGE_SHARED_EXTERNAL: return SILLinkage::SharedExternal;
case SIL_LINKAGE_PRIVATE_EXTERNAL: return SILLinkage::PrivateExternal;
default: return None;
}
}
static Optional<SILVTable::Entry::Kind>
fromStableVTableEntryKind(unsigned value) {
switch (value) {
case SIL_VTABLE_ENTRY_NORMAL: return SILVTable::Entry::Kind::Normal;
case SIL_VTABLE_ENTRY_INHERITED: return SILVTable::Entry::Kind::Inherited;
case SIL_VTABLE_ENTRY_OVERRIDE: return SILVTable::Entry::Kind::Override;
default: return None;
}
}
/// Used to deserialize entries in the on-disk func hash table.
class SILDeserializer::FuncTableInfo {
ModuleFile &MF;
public:
using internal_key_type = StringRef;
using external_key_type = StringRef;
using data_type = DeclID;
using hash_value_type = uint32_t;
using offset_type = unsigned;
explicit FuncTableInfo(ModuleFile &MF) : MF(MF) {}
internal_key_type GetInternalKey(external_key_type ID) { return ID; }
external_key_type GetExternalKey(internal_key_type ID) { return ID; }
hash_value_type ComputeHash(internal_key_type key) {
return llvm::djbHash(key, SWIFTMODULE_HASH_SEED);
}
static bool EqualKey(internal_key_type lhs, internal_key_type rhs) {
return lhs == rhs;
}
static std::pair<unsigned, unsigned> ReadKeyDataLength(const uint8_t *&data) {
return { sizeof(uint32_t), sizeof(uint32_t) };
}
internal_key_type ReadKey(const uint8_t *data, unsigned length) {
assert(length == sizeof(uint32_t) && "Expect a single IdentifierID.");
IdentifierID keyID = endian::readNext<uint32_t, little, unaligned>(data);
return MF.getIdentifierText(keyID);
}
static data_type ReadData(internal_key_type key, const uint8_t *data,
unsigned length) {
assert(length == sizeof(uint32_t) && "Expect a single DeclID.");
data_type result = endian::readNext<uint32_t, little, unaligned>(data);
return result;
}
};
SILDeserializer::SILDeserializer(
ModuleFile *MF, SILModule &M,
DeserializationNotificationHandlerSet *callback)
: MF(MF), SILMod(M), Callback(callback) {
SILCursor = MF->getSILCursor();
SILIndexCursor = MF->getSILIndexCursor();
// Early return if either sil block or sil index block does not exist.
if (SILCursor.AtEndOfStream() || SILIndexCursor.AtEndOfStream())
return;
// Load any abbrev records at the start of the block.
MF->fatalIfUnexpected(SILCursor.advance());
llvm::BitstreamCursor cursor = SILIndexCursor;
// We expect SIL_FUNC_NAMES first, then SIL_VTABLE_NAMES, then
// SIL_GLOBALVAR_NAMES, then SIL_WITNESS_TABLE_NAMES, and finally
// SIL_DEFAULT_WITNESS_TABLE_NAMES. But each one can be
// omitted if no entries exist in the module file.
unsigned kind = 0;
while (kind != sil_index_block::SIL_PROPERTY_OFFSETS) {
llvm::BitstreamEntry next = MF->fatalIfUnexpected(cursor.advance());
if (next.Kind == llvm::BitstreamEntry::EndBlock)
return;
SmallVector<uint64_t, 4> scratch;
StringRef blobData;
unsigned prevKind = kind;
kind =
MF->fatalIfUnexpected(cursor.readRecord(next.ID, scratch, &blobData));
assert((next.Kind == llvm::BitstreamEntry::Record &&
kind > prevKind &&
(kind == sil_index_block::SIL_FUNC_NAMES ||
kind == sil_index_block::SIL_VTABLE_NAMES ||
kind == sil_index_block::SIL_GLOBALVAR_NAMES ||
kind == sil_index_block::SIL_WITNESS_TABLE_NAMES ||
kind == sil_index_block::SIL_DEFAULT_WITNESS_TABLE_NAMES ||
kind == sil_index_block::SIL_PROPERTY_OFFSETS ||
kind == sil_index_block::SIL_DIFFERENTIABILITY_WITNESS_NAMES)) &&
"Expect SIL_FUNC_NAMES, SIL_VTABLE_NAMES, SIL_GLOBALVAR_NAMES, \
SIL_WITNESS_TABLE_NAMES, SIL_DEFAULT_WITNESS_TABLE_NAMES, \
SIL_PROPERTY_OFFSETS, or SIL_DIFFERENTIABILITY_WITNESS_NAMES.");
(void)prevKind;
if (kind == sil_index_block::SIL_FUNC_NAMES)
FuncTable = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_VTABLE_NAMES)
VTableList = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_GLOBALVAR_NAMES)
GlobalVarList = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_WITNESS_TABLE_NAMES)
WitnessTableList = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_DEFAULT_WITNESS_TABLE_NAMES)
DefaultWitnessTableList = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_DIFFERENTIABILITY_WITNESS_NAMES)
DifferentiabilityWitnessList = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_PROPERTY_OFFSETS) {
// No matching 'names' block for property descriptors needed yet.
MF->allocateBuffer(Properties, scratch);
return;
}
// Read SIL_FUNC|VTABLE|GLOBALVAR_OFFSETS record.
next = MF->fatalIfUnexpected(cursor.advance());
scratch.clear();
unsigned offKind =
MF->fatalIfUnexpected(cursor.readRecord(next.ID, scratch, &blobData));
(void)offKind;
if (kind == sil_index_block::SIL_FUNC_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_FUNC_OFFSETS) &&
"Expect a SIL_FUNC_OFFSETS record.");
MF->allocateBuffer(Funcs, scratch);
} else if (kind == sil_index_block::SIL_VTABLE_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_VTABLE_OFFSETS) &&
"Expect a SIL_VTABLE_OFFSETS record.");
MF->allocateBuffer(VTables, scratch);
} else if (kind == sil_index_block::SIL_GLOBALVAR_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_GLOBALVAR_OFFSETS) &&
"Expect a SIL_GLOBALVAR_OFFSETS record.");
MF->allocateBuffer(GlobalVars, scratch);
} else if (kind == sil_index_block::SIL_WITNESS_TABLE_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_WITNESS_TABLE_OFFSETS) &&
"Expect a SIL_WITNESS_TABLE_OFFSETS record.");
MF->allocateBuffer(WitnessTables, scratch);
} else if (kind == sil_index_block::SIL_DEFAULT_WITNESS_TABLE_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_DEFAULT_WITNESS_TABLE_OFFSETS) &&
"Expect a SIL_DEFAULT_WITNESS_TABLE_OFFSETS record.");
MF->allocateBuffer(DefaultWitnessTables, scratch);
} else if (kind == sil_index_block::SIL_DIFFERENTIABILITY_WITNESS_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind ==
sil_index_block::SIL_DIFFERENTIABILITY_WITNESS_OFFSETS) &&
"Expect a SIL_DIFFERENTIABILITY_WITNESS_OFFSETS record.");
MF->allocateBuffer(DifferentiabilityWitnesses, scratch);
}
}
}
std::unique_ptr<SILDeserializer::SerializedFuncTable>
SILDeserializer::readFuncTable(ArrayRef<uint64_t> fields, StringRef blobData) {
uint32_t tableOffset;
sil_index_block::ListLayout::readRecord(fields, tableOffset);
auto base = reinterpret_cast<const uint8_t *>(blobData.data());
using OwnedTable = std::unique_ptr<SerializedFuncTable>;
return OwnedTable(SerializedFuncTable::Create(base + tableOffset,
base + sizeof(uint32_t), base,
FuncTableInfo(*MF)));
}
/// A high-level overview of how forward references work in serializer and
/// deserializer:
/// In serializer, we pre-assign a value ID in order, to each basic block
/// argument and each SILInstruction that has a value.
/// In deserializer, we use LocalValues to store the definitions and
/// ForwardLocalValues for forward-referenced values (values that are
/// used but not yet defined). LocalValues are updated in setLocalValue where
/// the ID passed in assumes the same ordering as in serializer: in-order
/// for each basic block argument and each SILInstruction that has a value.
/// We update ForwardLocalValues in getLocalValue and when a value is defined
/// in setLocalValue, the corresponding entry in ForwardLocalValues will be
/// erased.
void SILDeserializer::setLocalValue(ValueBase *Value, ValueID Id) {
ValueBase *&Entry = LocalValues[Id];
assert(!Entry && "We should not redefine the same value.");
auto It = ForwardLocalValues.find(Id);
if (It != ForwardLocalValues.end()) {
// Take the information about the forward ref out of the map.
ValueBase *Placeholder = It->second;
// Remove the entries from the map.
ForwardLocalValues.erase(It);
Placeholder->replaceAllUsesWith(Value);
}
// Store it in our map.
Entry = Value;
}
SILValue SILDeserializer::getLocalValue(ValueID Id,
SILType Type) {
// The first two IDs are special undefined values.
if (Id == 0)
return SILUndef::get(Type, SILMod);
assert(Id != 1 && "This used to be for SILUndef with OwnershipKind::Owned... "
"but we don't support that anymore. Make sure no one "
"changes that without updating this code if needed");
// Check to see if this is already defined.
ValueBase *Entry = LocalValues.lookup(Id);
if (Entry) {
// If this value was already defined, check it to make sure types match.
assert(Entry->getType() == Type && "Value Type mismatch?");
return Entry;
}
// Otherwise, this is a forward reference. Create a dummy node to represent
// it until we see a real definition.
ValueBase *&Placeholder = ForwardLocalValues[Id];
if (!Placeholder)
Placeholder = new (SILMod) GlobalAddrInst(SILDebugLocation(), Type);
return Placeholder;
}
/// Return the SILBasicBlock of a given ID.
SILBasicBlock *SILDeserializer::getBBForDefinition(SILFunction *Fn,
SILBasicBlock *Prev,
unsigned ID) {
SILBasicBlock *&BB = BlocksByID[ID];
// If the block has never been named yet, just create it.
if (BB == nullptr) {
if (Prev) {
BB = Fn->createBasicBlockAfter(Prev);
} else {
BB = Fn->createBasicBlock();
}
return BB;
}
// If it already exists, it was either a forward reference or a redefinition.
// The latter should never happen.
bool wasForwardReferenced = UndefinedBlocks.erase(BB);
assert(wasForwardReferenced);
(void)wasForwardReferenced;
if (Prev)
BB->moveAfter(Prev);
return BB;
}
/// Return the SILBasicBlock of a given ID.
SILBasicBlock *SILDeserializer::getBBForReference(SILFunction *Fn,
unsigned ID) {
SILBasicBlock *&BB = BlocksByID[ID];
if (BB != nullptr)
return BB;
// Otherwise, create it and remember that this is a forward reference
BB = Fn->createBasicBlock();
UndefinedBlocks[BB] = ID;
return BB;
}
/// Helper function to convert from Type to SILType.
SILType SILDeserializer::getSILType(Type Ty, SILValueCategory Category,
SILFunction *inContext) {
auto TyLoc = TypeLoc::withoutLoc(Ty);
if (!inContext) {
return SILType::getPrimitiveType(TyLoc.getType()->getCanonicalType(),
Category);
}
return inContext->getLoweredType(TyLoc.getType()->getCanonicalType())
.getCategoryType(Category);
}
/// Helper function to find a SILDifferentiabilityWitness, given its mangled
/// key.
SILDifferentiabilityWitness *
SILDeserializer::getSILDifferentiabilityWitnessForReference(
StringRef mangledKey) {
// Check to see if we have a witness under this key already.
auto *witness = SILMod.lookUpDifferentiabilityWitness(mangledKey);
if (witness)
return witness;
// Otherwise, look for a witness under this key in the module.
if (!DifferentiabilityWitnessList)
return nullptr;
auto iter = DifferentiabilityWitnessList->find(mangledKey);
if (iter == DifferentiabilityWitnessList->end())
return nullptr;
return readDifferentiabilityWitness(*iter);
}
/// Helper function to find a SILFunction, given its name and type.
SILFunction *SILDeserializer::getFuncForReference(StringRef name,
SILType type) {
// Check to see if we have a function by this name already.
SILFunction *fn = SILMod.lookUpFunction(name);
if (!fn) {
// Otherwise, look for a function with this name in the module.
auto iter = FuncTable->find(name);
if (iter != FuncTable->end()) {
auto maybeFn = readSILFunctionChecked(*iter, nullptr, name,
/*declarationOnly*/ true);
if (maybeFn) {
fn = maybeFn.get();
} else {
// Ignore the failure; we'll synthesize a bogus function instead.
llvm::consumeError(maybeFn.takeError());
}
}
}
// FIXME: check for matching types.
// At this point, if fn is set, we know that we have a good function to use.
if (fn)
return fn;
// Otherwise, create a function declaration with the right type and a bogus
// source location. This ensures that we can at least parse the rest of the
// SIL.
SourceLoc sourceLoc;
SILSerializationFunctionBuilder builder(SILMod);
return builder.createDeclaration(name, type, RegularLocation(sourceLoc));
}
/// Helper function to find a SILFunction, given its name and type.
SILFunction *SILDeserializer::getFuncForReference(StringRef name) {
// Check to see if we have a function by this name already.
SILFunction *fn = SILMod.lookUpFunction(name);
if (fn)
return fn;
// Otherwise, look for a function with this name in the module.
auto iter = FuncTable->find(name);
if (iter == FuncTable->end())
return nullptr;
auto maybeFn = readSILFunctionChecked(*iter, nullptr, name,
/*declarationOnly*/ true);
if (!maybeFn) {
// Ignore the failure and just pretend the function doesn't exist
llvm::consumeError(maybeFn.takeError());
return nullptr;
}
return maybeFn.get();
}
/// Helper function to find a SILGlobalVariable given its name. It first checks
/// in the module. If we cannot find it in the module, we attempt to
/// deserialize it.
SILGlobalVariable *SILDeserializer::getGlobalForReference(StringRef name) {
// Check to see if we have a global by this name already.
if (SILGlobalVariable *g = SILMod.lookUpGlobalVariable(name))
return g;
// Otherwise, look for a global with this name in the module.
return readGlobalVar(name);
}
/// Deserialize a SILFunction if it is not already deserialized. The input
/// SILFunction can either be an empty declaration or null. If it is an empty
/// declaration, we fill in the contents. If the input SILFunction is
/// null, we create a SILFunction.
SILFunction *SILDeserializer::readSILFunction(DeclID FID,
SILFunction *existingFn,
StringRef name,
bool declarationOnly,
bool errorIfEmptyBody) {
llvm::Expected<SILFunction *> deserialized =
readSILFunctionChecked(FID, existingFn, name, declarationOnly,
errorIfEmptyBody);
if (!deserialized) {
MF->fatal(deserialized.takeError());
}
return deserialized.get();
}
llvm::Expected<SILFunction *>
SILDeserializer::readSILFunctionChecked(DeclID FID, SILFunction *existingFn,
StringRef name, bool declarationOnly,
bool errorIfEmptyBody) {
// We can't deserialize function bodies after IRGen lowering passes have
// happened since other definitions in the module will no longer be in
// canonical SIL form.
switch (SILMod.getStage()) {
case SILStage::Raw:
case SILStage::Canonical:
break;
case SILStage::Lowered:
llvm_unreachable("cannot deserialize into a module that has entered "
"Lowered stage");
}
if (FID == 0)
return nullptr;
assert(FID <= Funcs.size() && "invalid SILFunction ID");
PrettyStackTraceStringAction trace("deserializing SIL function", name);
auto &cacheEntry = Funcs[FID-1];
if (cacheEntry.isFullyDeserialized() ||
(cacheEntry.isDeserialized() && declarationOnly))
return cacheEntry.get();
BCOffsetRAII restoreOffset(SILCursor);
if (llvm::Error Err = SILCursor.JumpToBit(cacheEntry.getOffset()))
return std::move(Err);
llvm::Expected<llvm::BitstreamEntry> maybeEntry =
SILCursor.advance(AF_DontPopBlockAtEnd);
if (!maybeEntry)
return maybeEntry.takeError();
llvm::BitstreamEntry entry = maybeEntry.get();
if (entry.Kind == llvm::BitstreamEntry::Error) {
LLVM_DEBUG(llvm::dbgs() << "Cursor advance error in readSILFunction.\n");
MF->fatal();
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
llvm::Expected<unsigned> maybeKind =
SILCursor.readRecord(entry.ID, scratch, &blobData);
if (!maybeKind)
MF->fatal(maybeKind.takeError());
unsigned kind = maybeKind.get();
assert(kind == SIL_FUNCTION && "expect a sil function");
(void)kind;
DeclID clangNodeOwnerID;
TypeID funcTyID;
IdentifierID replacedFunctionID;
GenericSignatureID genericSigID;
unsigned rawLinkage, isTransparent, isSerialized, isThunk,
isWithoutactuallyEscapingThunk, specialPurpose, inlineStrategy,
optimizationMode, subclassScope, hasCReferences, effect, numSpecAttrs,
hasQualifiedOwnership, isWeakImported, LIST_VER_TUPLE_PIECES(available),
isDynamic, isExactSelfClass;
ArrayRef<uint64_t> SemanticsIDs;
SILFunctionLayout::readRecord(
scratch, rawLinkage, isTransparent, isSerialized, isThunk,
isWithoutactuallyEscapingThunk, specialPurpose, inlineStrategy,
optimizationMode, subclassScope, hasCReferences, effect, numSpecAttrs,
hasQualifiedOwnership, isWeakImported, LIST_VER_TUPLE_PIECES(available),
isDynamic, isExactSelfClass, funcTyID, replacedFunctionID, genericSigID,
clangNodeOwnerID, SemanticsIDs);
if (funcTyID == 0) {
LLVM_DEBUG(llvm::dbgs() << "SILFunction typeID is 0.\n");
MF->fatal();
}
auto astType = MF->getTypeChecked(funcTyID);
if (!astType) {
if (!existingFn || errorIfEmptyBody) {
return llvm::make_error<SILEntityError>(
name, takeErrorInfo(astType.takeError()));
}
consumeError(astType.takeError());
return existingFn;
}
auto ty = getSILType(astType.get(), SILValueCategory::Object, nullptr);
if (!ty.is<SILFunctionType>()) {
LLVM_DEBUG(llvm::dbgs() << "not a function type for SILFunction\n");
MF->fatal();
}
SILFunction *replacedFunction = nullptr;
Identifier replacedObjectiveCFunc;
if (replacedFunctionID &&
ty.getAs<SILFunctionType>()->getExtInfo().getRepresentation() !=
SILFunctionTypeRepresentation::ObjCMethod) {
replacedFunction =
getFuncForReference(MF->getIdentifier(replacedFunctionID).str());
} else if (replacedFunctionID) {
replacedObjectiveCFunc = MF->getIdentifier(replacedFunctionID);
}
auto linkageOpt = fromStableSILLinkage(rawLinkage);
if (!linkageOpt) {
LLVM_DEBUG(llvm::dbgs() << "invalid linkage code " << rawLinkage
<< " for SILFunction\n");
MF->fatal();
}
SILLinkage linkage = linkageOpt.getValue();
ValueDecl *clangNodeOwner = nullptr;
if (clangNodeOwnerID != 0) {
clangNodeOwner = dyn_cast_or_null<ValueDecl>(MF->getDecl(clangNodeOwnerID));
if (!clangNodeOwner) {
LLVM_DEBUG(llvm::dbgs() << "invalid clang node owner for SILFunction\n");
MF->fatal();
}
}
// If we weren't handed a function, check for an existing
// declaration in the output module.
if (!existingFn) existingFn = SILMod.lookUpFunction(name);
auto fn = existingFn;
// TODO: use the correct SILLocation from module.
SILLocation loc = RegularLocation::getAutoGeneratedLocation();
// If we've already serialized the module, don't mark the function
// as serialized, since we no longer need to enforce resilience
// boundaries.
if (SILMod.isSerialized())
isSerialized = IsNotSerialized;
SILSerializationFunctionBuilder builder(SILMod);
// If we have an existing function, verify that the types match up.
if (fn) {
if (fn->getLoweredType() != ty) {
LLVM_DEBUG(llvm::dbgs() << "SILFunction type mismatch.\n");
MF->fatal();
}
fn->setSerialized(IsSerialized_t(isSerialized));
// If the serialized function comes from the same module, we're merging
// modules, and can update the the linkage directly. This is needed to
// correctly update the linkage for forward declarations to entities defined
// in another file of the same module – we want to ensure the linkage
// reflects the fact that the entity isn't really external and shouldn't be
// dropped from the resulting merged module.
if (getFile()->getParentModule() == SILMod.getSwiftModule())
fn->setLinkage(linkage);
// Don't override the transparency or linkage of a function with
// an existing declaration, except if we deserialized a
// PublicNonABI function, which has HiddenExternal when
// referenced as a declaration, and SharedExternal when it has
// a deserialized body.
if (isAvailableExternally(fn->getLinkage())) {
if (linkage == SILLinkage::PublicNonABI) {
fn->setLinkage(SILLinkage::SharedExternal);
} else if (hasPublicVisibility(linkage)) {
// Cross-module-optimization can change the linkage to public. In this
// case we need to update the linkage of the function (which is
// originally just derived from the AST).
fn->setLinkage(SILLinkage::PublicExternal);
}
}
if (fn->isDynamicallyReplaceable() != isDynamic) {
LLVM_DEBUG(llvm::dbgs() << "SILFunction type mismatch.\n");
MF->fatal();
}
} else {
// Otherwise, create a new function.
fn = builder.createDeclaration(name, ty, loc);
fn->setLinkage(linkage);
fn->setTransparent(IsTransparent_t(isTransparent == 1));
fn->setSerialized(IsSerialized_t(isSerialized));
fn->setThunk(IsThunk_t(isThunk));
fn->setWithoutActuallyEscapingThunk(bool(isWithoutactuallyEscapingThunk));
fn->setInlineStrategy(Inline_t(inlineStrategy));
fn->setSpecialPurpose(SILFunction::Purpose(specialPurpose));
fn->setEffectsKind(EffectsKind(effect));
fn->setOptimizationMode(OptimizationMode(optimizationMode));
fn->setAlwaysWeakImported(isWeakImported);
fn->setClassSubclassScope(SubclassScope(subclassScope));
fn->setHasCReferences(bool(hasCReferences));
llvm::VersionTuple available;
DECODE_VER_TUPLE(available);
fn->setAvailabilityForLinkage(
available.empty()
? AvailabilityContext::alwaysAvailable()
: AvailabilityContext(VersionRange::allGTE(available)));
fn->setIsDynamic(IsDynamicallyReplaceable_t(isDynamic));
fn->setIsExactSelfClass(IsExactSelfClass_t(isExactSelfClass));
if (replacedFunction)
fn->setDynamicallyReplacedFunction(replacedFunction);
if (!replacedObjectiveCFunc.empty())
fn->setObjCReplacement(replacedObjectiveCFunc);
if (clangNodeOwner)
fn->setClangNodeOwner(clangNodeOwner);
for (auto ID : SemanticsIDs) {
fn->addSemanticsAttr(MF->getIdentifierText(ID));
}
if (Callback) Callback->didDeserialize(MF->getAssociatedModule(), fn);
}
// First before we do /anything/ validate that our function is truly empty.
assert(fn->empty() && "SILFunction to be deserialized starts being empty.");
// Given that our original function was empty, just match the deserialized
// function. Ownership doesn't really have a meaning without a body.
builder.setHasOwnership(fn, hasQualifiedOwnership);
// Mark this function as deserialized. This avoids rerunning diagnostic
// passes. Certain passes in the madatory pipeline may not work as expected
// after arbitrary optimization and lowering.
if (!MF->isSIB())
fn->setWasDeserializedCanonical();
fn->setBare(IsBare);
const SILDebugScope *DS = fn->getDebugScope();
if (!DS) {
DS = new (SILMod) SILDebugScope(loc, fn);
fn->setDebugScope(DS);
}
// Read and instantiate the specialize attributes.
bool shouldAddAtttributes = fn->getSpecializeAttrs().empty();
while (numSpecAttrs--) {
llvm::Expected<llvm::BitstreamEntry> maybeNext =
SILCursor.advance(AF_DontPopBlockAtEnd);
if (!maybeNext)
return maybeNext.takeError();
llvm::BitstreamEntry next = maybeNext.get();
assert(next.Kind == llvm::BitstreamEntry::Record);
scratch.clear();
llvm::Expected<unsigned> maybeKind = SILCursor.readRecord(next.ID, scratch);
if (!maybeKind)
return maybeKind.takeError();
unsigned kind = maybeKind.get();
assert(kind == SIL_SPECIALIZE_ATTR && "Missing specialization attribute");
unsigned exported;
unsigned specializationKindVal;
GenericSignatureID specializedSigID;
IdentifierID targetFunctionID;
IdentifierID spiGroupID;
ModuleID spiModuleID;
SILSpecializeAttrLayout::readRecord(
scratch, exported, specializationKindVal, specializedSigID,
targetFunctionID, spiGroupID, spiModuleID);
SILFunction *target = nullptr;
if (targetFunctionID) {
target = getFuncForReference(MF->getIdentifier(targetFunctionID).str());
}
Identifier spiGroup;
const ModuleDecl *spiModule = nullptr;
if (spiGroupID) {
spiGroup = MF->getIdentifier(spiGroupID);
spiModule = MF->getModule(spiModuleID);
}
SILSpecializeAttr::SpecializationKind specializationKind =
specializationKindVal ? SILSpecializeAttr::SpecializationKind::Partial
: SILSpecializeAttr::SpecializationKind::Full;
auto specializedSig = MF->getGenericSignature(specializedSigID);
// Only add the specialize attributes once.
if (shouldAddAtttributes) {
// Read the substitution list and construct a SILSpecializeAttr.
fn->addSpecializeAttr(SILSpecializeAttr::create(
SILMod, specializedSig, exported != 0, specializationKind, target,
spiGroup, spiModule));
}
}
GenericEnvironment *genericEnv = nullptr;
if (!declarationOnly)
if (auto genericSig = MF->getGenericSignature(genericSigID))
genericEnv = genericSig->getGenericEnvironment();
// If the next entry is the end of the block, then this function has
// no contents.
maybeEntry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (!maybeEntry)
return maybeEntry.takeError();
entry = maybeEntry.get();
bool isEmptyFunction = (entry.Kind == llvm::BitstreamEntry::EndBlock);
assert((!isEmptyFunction || !genericEnv) &&
"generic environment without body?!");
// Remember this in our cache in case it's a recursive function.
// Increase the reference count to keep it alive.
bool isFullyDeserialized = (isEmptyFunction || !declarationOnly);
if (cacheEntry.isDeserialized()) {
assert(fn == cacheEntry.get() && "changing SIL function during deserialization!");
} else {
fn->incrementRefCount();
}
cacheEntry.set(fn, isFullyDeserialized);
// Stop here if we have nothing else to do.
if (isEmptyFunction || declarationOnly) {
return fn;
}
++NumDeserializedFunc;
assert(!(fn->getGenericEnvironment() && !fn->empty())
&& "function already has context generic params?!");
if (genericEnv)
fn->setGenericEnvironment(genericEnv);
scratch.clear();
maybeKind = SILCursor.readRecord(entry.ID, scratch);
if (!maybeKind)
return maybeKind.takeError();
kind = maybeKind.get();
SILBasicBlock *CurrentBB = nullptr;
// Clear up at the beginning of each SILFunction.
BasicBlockID = 0;
BlocksByID.clear();
UndefinedBlocks.clear();
// The first two IDs are reserved for SILUndef.
LastValueID = 1;
LocalValues.clear();
ForwardLocalValues.clear();
SILOpenedArchetypesTracker OpenedArchetypesTracker(fn);
SILBuilder Builder(*fn);
// Track the archetypes just like SILGen. This
// is required for adding typedef operands to instructions.
Builder.setOpenedArchetypesTracker(&OpenedArchetypesTracker);
// Define a callback to be invoked on the deserialized types.
auto OldDeserializedTypeCallback = MF->DeserializedTypeCallback;
SWIFT_DEFER {
MF->DeserializedTypeCallback = OldDeserializedTypeCallback;
};
MF->DeserializedTypeCallback = [&OpenedArchetypesTracker] (Type ty) {
// We can't call getCanonicalType() immediately on everything we
// deserialize, but fortunately we only need to register opened
// existentials.
if (ty->isOpenedExistential())
OpenedArchetypesTracker.registerUsedOpenedArchetypes(CanType(ty));
};
// Another SIL_FUNCTION record means the end of this SILFunction.
// SIL_VTABLE or SIL_GLOBALVAR or SIL_WITNESS_TABLE record also means the end
// of this SILFunction.
while (kind != SIL_FUNCTION && kind != SIL_VTABLE && kind != SIL_GLOBALVAR &&
kind != SIL_WITNESS_TABLE && kind != SIL_DIFFERENTIABILITY_WITNESS) {
if (kind == SIL_BASIC_BLOCK)
// Handle a SILBasicBlock record.
CurrentBB = readSILBasicBlock(fn, CurrentBB, scratch);
else {
// If CurrentBB is empty, just return fn. The code in readSILInstruction
// assumes that such a situation means that fn is a declaration. Thus it
// is using return false to mean two different things, error a failure
// occurred and this is a declaration. Work around that for now.
if (!CurrentBB)
return fn;
Builder.setInsertionPoint(CurrentBB);
// Handle a SILInstruction record.
if (readSILInstruction(fn, Builder, kind, scratch)) {
LLVM_DEBUG(llvm::dbgs() << "readSILInstruction returns error.\n");
MF->fatal();
}
}
// Fetch the next record.
scratch.clear();
llvm::Expected<llvm::BitstreamEntry> maybeEntry =
SILCursor.advance(AF_DontPopBlockAtEnd);
if (!maybeEntry)
return maybeEntry.takeError();
llvm::BitstreamEntry entry = maybeEntry.get();
// EndBlock means the end of this SILFunction.
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
break;
maybeKind = SILCursor.readRecord(entry.ID, scratch);
if (!maybeKind)
return maybeKind.takeError();
kind = maybeKind.get();
}
// If fn is empty, we failed to deserialize its body. Return nullptr to signal
// error.
if (fn->empty() && errorIfEmptyBody)
return nullptr;
// Check that there are no unresolved forward definitions of opened
// archetypes.
if (OpenedArchetypesTracker.hasUnresolvedOpenedArchetypeDefinitions())
llvm_unreachable(
"All forward definitions of opened archetypes should be resolved");
if (Callback)
Callback->didDeserializeFunctionBody(MF->getAssociatedModule(), fn);
return fn;
}
// We put these static asserts here to formalize our assumption that both
// SILValueCategory and ValueOwnershipKind have uint8_t as their underlying
// pointer values.
static_assert(
std::is_same<std::underlying_type<SILValueCategory>::type, uint8_t>::value,
"Expected an underlying uint8_t type");
// We put these static asserts here to formalize our assumption that both
// SILValueCategory and ValueOwnershipKind have uint8_t as their underlying
// pointer values.
static_assert(std::is_same<std::underlying_type<OwnershipKind::innerty>::type,
uint8_t>::value,
"Expected an underlying uint8_t type");
SILBasicBlock *SILDeserializer::readSILBasicBlock(SILFunction *Fn,
SILBasicBlock *Prev,
SmallVectorImpl<uint64_t> &scratch) {
ArrayRef<uint64_t> Args;
SILBasicBlockLayout::readRecord(scratch, Args);
// Args should be a list of triples of the following form:
//
// 1. A TypeID.
// 2. A flag of metadata. This currently includes the SILValueCategory and
// ValueOwnershipKind. We enforce size constraints of these types above.
// 3. A ValueID.
SILBasicBlock *CurrentBB = getBBForDefinition(Fn, Prev, BasicBlockID++);
bool IsEntry = CurrentBB->isEntry();
for (unsigned I = 0, E = Args.size(); I < E; I += 3) {
TypeID TyID = Args[I];
if (!TyID) return nullptr;
ValueID ValId = Args[I+2];
if (!ValId) return nullptr;
auto ArgTy = MF->getType(TyID);
SILArgument *Arg;
auto ValueCategory = SILValueCategory(Args[I + 1] & 0xF);
SILType SILArgTy = getSILType(ArgTy, ValueCategory, Fn);
if (IsEntry) {
Arg = CurrentBB->createFunctionArgument(SILArgTy);
} else {
auto OwnershipKind = ValueOwnershipKind((Args[I + 1] >> 8) & 0xF);
Arg = CurrentBB->createPhiArgument(SILArgTy, OwnershipKind);
}
LastValueID = LastValueID + 1;
setLocalValue(Arg, LastValueID);
}
return CurrentBB;
}
static CastConsumptionKind getCastConsumptionKind(unsigned attr) {
switch (attr) {
case SIL_CAST_CONSUMPTION_TAKE_ALWAYS:
return CastConsumptionKind::TakeAlways;
case SIL_CAST_CONSUMPTION_TAKE_ON_SUCCESS:
return CastConsumptionKind::TakeOnSuccess;
case SIL_CAST_CONSUMPTION_COPY_ON_SUCCESS:
return CastConsumptionKind::CopyOnSuccess;
case SIL_CAST_CONSUMPTION_BORROW_ALWAYS:
return CastConsumptionKind::BorrowAlways;
default:
llvm_unreachable("not a valid CastConsumptionKind for SIL");
}
}
/// Construct a SILDeclRef from ListOfValues.
static SILDeclRef getSILDeclRef(ModuleFile *MF,
ArrayRef<uint64_t> ListOfValues,
unsigned &NextIdx) {
assert(ListOfValues.size() >= NextIdx+3 &&
"Expect 3 numbers for SILDeclRef");
SILDeclRef DRef(cast<ValueDecl>(MF->getDecl(ListOfValues[NextIdx])),
(SILDeclRef::Kind)ListOfValues[NextIdx+1],
/*isForeign=*/ListOfValues[NextIdx+2] > 0);
NextIdx += 3;
return DRef;
}
Optional<KeyPathPatternComponent>
SILDeserializer::readKeyPathComponent(ArrayRef<uint64_t> ListOfValues,
unsigned &nextValue) {
auto kind =
(KeyPathComponentKindEncoding)ListOfValues[nextValue++];
if (kind == KeyPathComponentKindEncoding::Trivial)
return None;
auto type = MF->getType(ListOfValues[nextValue++])
->getCanonicalType();
auto handleComputedId =
[&]() -> KeyPathPatternComponent::ComputedPropertyId {
auto kind =
(KeyPathComputedComponentIdKindEncoding)ListOfValues[nextValue++];
switch (kind) {
case KeyPathComputedComponentIdKindEncoding::Property:
return cast<VarDecl>(MF->getDecl(ListOfValues[nextValue++]));
case KeyPathComputedComponentIdKindEncoding::Function: {
auto name = MF->getIdentifierText(ListOfValues[nextValue++]);
return getFuncForReference(name);
}
case KeyPathComputedComponentIdKindEncoding::DeclRef: {
// read SILDeclRef
return getSILDeclRef(MF, ListOfValues, nextValue);
}
}
llvm_unreachable("unhandled kind");
};
ArrayRef<KeyPathPatternComponent::Index> indices;
SILFunction *indicesEquals = nullptr;
SILFunction *indicesHash = nullptr;
AbstractStorageDecl *externalDecl = nullptr;
SubstitutionMap externalSubs;
auto handleComputedExternalReferenceAndIndices = [&] {
auto externalDeclID = ListOfValues[nextValue++];
externalDecl =
cast_or_null<AbstractStorageDecl>(MF->getDecl(externalDeclID));
externalSubs = MF->getSubstitutionMap(ListOfValues[nextValue++]);
SmallVector<KeyPathPatternComponent::Index, 4> indicesBuf;
auto numIndexes = ListOfValues[nextValue++];
indicesBuf.reserve(numIndexes);
while (numIndexes-- > 0) {
unsigned operand = ListOfValues[nextValue++];
auto formalType = MF->getType(ListOfValues[nextValue++]);
auto loweredType = MF->getType(ListOfValues[nextValue++]);
auto loweredCategory = (SILValueCategory)ListOfValues[nextValue++];
auto conformance = MF->readConformance(SILCursor);
indicesBuf.push_back({
operand, formalType->getCanonicalType(),
SILType::getPrimitiveType(loweredType->getCanonicalType(),
loweredCategory),
conformance});
}
indices = MF->getContext().AllocateCopy(indicesBuf);
if (!indices.empty()) {
auto indicesEqualsName = MF->getIdentifierText(ListOfValues[nextValue++]);
auto indicesHashName = MF->getIdentifierText(ListOfValues[nextValue++]);
indicesEquals = getFuncForReference(indicesEqualsName);
indicesHash = getFuncForReference(indicesHashName);
}
};
switch (kind) {
case KeyPathComponentKindEncoding::StoredProperty: {
auto decl = cast<VarDecl>(MF->getDecl(ListOfValues[nextValue++]));
return KeyPathPatternComponent::forStoredProperty(decl, type);
}
case KeyPathComponentKindEncoding::GettableProperty: {
auto id = handleComputedId();
auto getterName = MF->getIdentifierText(ListOfValues[nextValue++]);
auto getter = getFuncForReference(getterName);
handleComputedExternalReferenceAndIndices();
return KeyPathPatternComponent::forComputedGettableProperty(
id, getter, indices, indicesEquals, indicesHash,
externalDecl, externalSubs, type);
}
case KeyPathComponentKindEncoding::SettableProperty: {
auto id = handleComputedId();
auto getterName = MF->getIdentifierText(ListOfValues[nextValue++]);
auto getter = getFuncForReference(getterName);
auto setterName = MF->getIdentifierText(ListOfValues[nextValue++]);
auto setter = getFuncForReference(setterName);
handleComputedExternalReferenceAndIndices();
return KeyPathPatternComponent::forComputedSettableProperty(
id, getter, setter, indices, indicesEquals, indicesHash,
externalDecl, externalSubs, type);
break;
}
case KeyPathComponentKindEncoding::OptionalChain:
return KeyPathPatternComponent::forOptional(
KeyPathPatternComponent::Kind::OptionalChain, type);
case KeyPathComponentKindEncoding::OptionalForce:
return KeyPathPatternComponent::forOptional(
KeyPathPatternComponent::Kind::OptionalForce, type);
case KeyPathComponentKindEncoding::OptionalWrap:
return KeyPathPatternComponent::forOptional(
KeyPathPatternComponent::Kind::OptionalWrap, type);
case KeyPathComponentKindEncoding::TupleElement:
return KeyPathPatternComponent::forTupleElement(
ListOfValues[nextValue++], type);
case KeyPathComponentKindEncoding::Trivial:
llvm_unreachable("handled above");
}
llvm_unreachable("invalid key path component kind encoding");
}
bool SILDeserializer::readSILInstruction(SILFunction *Fn,
SILBuilder &Builder,
unsigned RecordKind,
SmallVectorImpl<uint64_t> &scratch) {
if (Fn)
Builder.setCurrentDebugScope(Fn->getDebugScope());
unsigned RawOpCode = 0, TyCategory = 0, TyCategory2 = 0, TyCategory3 = 0,
Attr = 0, Attr2 = 0, Attr3 = 0, Attr4 = 0, NumSubs = 0,
NumConformances = 0, IsNonThrowingApply = 0;
ValueID ValID, ValID2, ValID3;
TypeID TyID, TyID2, TyID3;
TypeID ConcreteTyID;
SourceLoc SLoc;
ArrayRef<uint64_t> ListOfValues;
SILLocation Loc = RegularLocation(SLoc);
switch (RecordKind) {
default:
llvm_unreachable("Record kind for a SIL instruction is not supported.");
case SIL_ONE_VALUE_ONE_OPERAND:
SILOneValueOneOperandLayout::readRecord(scratch, RawOpCode, Attr,
ValID, TyID, TyCategory,
ValID2);
break;
case SIL_ONE_TYPE:
SILOneTypeLayout::readRecord(scratch, RawOpCode, Attr, TyID, TyCategory);
break;
case SIL_ONE_OPERAND:
SILOneOperandLayout::readRecord(scratch, RawOpCode, Attr,
TyID, TyCategory, ValID);
break;
case SIL_ONE_OPERAND_EXTRA_ATTR:
SILOneOperandExtraAttributeLayout::readRecord(scratch, RawOpCode, Attr,
TyID, TyCategory, ValID);
break;
case SIL_ONE_TYPE_ONE_OPERAND:
SILOneTypeOneOperandLayout::readRecord(scratch, RawOpCode, Attr,
TyID, TyCategory,
TyID2, TyCategory2,
ValID);
break;
case SIL_INIT_EXISTENTIAL:
SILInitExistentialLayout::readRecord(scratch, RawOpCode,
TyID, TyCategory,
TyID2, TyCategory2,
ValID,
ConcreteTyID,
NumConformances);
break;
case SIL_ONE_TYPE_VALUES:
SILOneTypeValuesLayout::readRecord(scratch, RawOpCode, TyID, TyCategory,
ListOfValues);
break;
case SIL_TWO_OPERANDS:
SILTwoOperandsLayout::readRecord(scratch, RawOpCode, Attr,
TyID, TyCategory, ValID,
TyID2, TyCategory2, ValID2);
break;
case SIL_TWO_OPERANDS_EXTRA_ATTR:
SILTwoOperandsExtraAttributeLayout::readRecord(scratch, RawOpCode, Attr,
TyID, TyCategory, ValID,
TyID2, TyCategory2, ValID2);
break;
case SIL_TAIL_ADDR:
SILTailAddrLayout::readRecord(scratch, RawOpCode,
TyID, ValID,
TyID2, ValID2,
TyID3);
break;
case SIL_INST_APPLY: {
unsigned IsPartial;
SILInstApplyLayout::readRecord(scratch, IsPartial, NumSubs, TyID, TyID2,
ValID, ListOfValues);
switch (IsPartial) {
case SIL_APPLY:
RawOpCode = (unsigned)SILInstructionKind::ApplyInst;
break;
case SIL_PARTIAL_APPLY:
RawOpCode = (unsigned)SILInstructionKind::PartialApplyInst;
break;
case SIL_BUILTIN:
RawOpCode = (unsigned)SILInstructionKind::BuiltinInst;
break;
case SIL_TRY_APPLY:
RawOpCode = (unsigned)SILInstructionKind::TryApplyInst;
break;
case SIL_NON_THROWING_APPLY:
RawOpCode = (unsigned)SILInstructionKind::ApplyInst;
IsNonThrowingApply = true;
break;
case SIL_BEGIN_APPLY:
RawOpCode = (unsigned)SILInstructionKind::BeginApplyInst;
break;
case SIL_NON_THROWING_BEGIN_APPLY:
RawOpCode = (unsigned)SILInstructionKind::BeginApplyInst;
IsNonThrowingApply = true;
break;
default:
llvm_unreachable("unexpected apply inst kind");
}
break;
}
case SIL_INST_NO_OPERAND:
SILInstNoOperandLayout::readRecord(scratch, RawOpCode);
break;
case SIL_INST_WITNESS_METHOD:
SILInstWitnessMethodLayout::readRecord(
scratch, TyID, TyCategory, Attr, TyID2, TyCategory2, TyID3,
TyCategory3, ValID3, ListOfValues);
RawOpCode = (unsigned)SILInstructionKind::WitnessMethodInst;
break;
case SIL_INST_DIFFERENTIABLE_FUNCTION:
SILInstDifferentiableFunctionLayout::readRecord(
scratch, /*numParams*/ Attr, /*numResults*/ Attr2,
/*numDiffParams*/ Attr3,
/*hasDerivativeFunctions*/ Attr4, ListOfValues);
RawOpCode = (unsigned)SILInstructionKind::DifferentiableFunctionInst;
break;
case SIL_INST_LINEAR_FUNCTION:
SILInstLinearFunctionLayout::readRecord(scratch, /*numDiffParams*/ Attr,
/*hasTransposeFunction*/ Attr2,
ListOfValues);
RawOpCode = (unsigned)SILInstructionKind::LinearFunctionInst;
break;
case SIL_INST_DIFFERENTIABLE_FUNCTION_EXTRACT:
SILInstDifferentiableFunctionExtractLayout::readRecord(
scratch, TyID, TyCategory, ValID, /*extractee*/ Attr,
/*hasExplicitExtracteeType*/ Attr2, /*explicitExtracteeType*/ TyID2);
RawOpCode = (unsigned)SILInstructionKind::DifferentiableFunctionExtractInst;
break;
case SIL_INST_LINEAR_FUNCTION_EXTRACT:
SILInstLinearFunctionExtractLayout::readRecord(
scratch, TyID, TyCategory, ValID, /*extractee*/ Attr);
RawOpCode = (unsigned)SILInstructionKind::LinearFunctionExtractInst;
break;
}
// FIXME: validate
SILInstructionKind OpCode = (SILInstructionKind) RawOpCode;
SILInstruction *ResultInst;
switch (OpCode) {
case SILInstructionKind::DebugValueInst:
case SILInstructionKind::DebugValueAddrInst:
llvm_unreachable("not supported");
case SILInstructionKind::AllocBoxInst:
assert(RecordKind == SIL_ONE_TYPE && "Layout should be OneType.");
ResultInst = Builder.createAllocBox(
Loc, cast<SILBoxType>(MF->getType(TyID)->getCanonicalType()), None,
/*bool hasDynamicLifetime*/ Attr != 0);
break;
case SILInstructionKind::AllocStackInst:
assert(RecordKind == SIL_ONE_TYPE && "Layout should be OneType.");
ResultInst = Builder.createAllocStack(
Loc, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn),
None, /*bool hasDynamicLifetime*/ Attr != 0);
break;
case SILInstructionKind::MetatypeInst:
assert(RecordKind == SIL_ONE_TYPE && "Layout should be OneType.");
ResultInst = Builder.createMetatype(
Loc, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
break;
case SILInstructionKind::GetAsyncContinuationInst:
assert(RecordKind == SIL_ONE_TYPE && "Layout should be OneType.");
ResultInst = Builder.createGetAsyncContinuation(
Loc, MF->getType(TyID)->getCanonicalType(),
/*throws*/ Attr != 0);
break;
case SILInstructionKind::GetAsyncContinuationAddrInst:
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND
&& "Layout should be OneTypeOneOperand.");
ResultInst = Builder.createGetAsyncContinuationAddr(Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn)),
MF->getType(TyID)->getCanonicalType(),
/*throws*/ Attr != 0);
break;
#define ONETYPE_ONEOPERAND_INST(ID) \
case SILInstructionKind::ID##Inst: \
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND && \
"Layout should be OneTypeOneOperand."); \
ResultInst = Builder.create##ID( \
Loc, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn), \
getLocalValue(ValID, getSILType(MF->getType(TyID2), \
(SILValueCategory)TyCategory2, Fn))); \
break;
ONETYPE_ONEOPERAND_INST(ValueMetatype)
ONETYPE_ONEOPERAND_INST(ExistentialMetatype)
ONETYPE_ONEOPERAND_INST(AllocValueBuffer)
ONETYPE_ONEOPERAND_INST(ProjectValueBuffer)
ONETYPE_ONEOPERAND_INST(ProjectExistentialBox)
ONETYPE_ONEOPERAND_INST(DeallocValueBuffer)
#undef ONETYPE_ONEOPERAND_INST
case SILInstructionKind::DeallocBoxInst:
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
ResultInst = Builder.createDeallocBox(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn)));
break;
case SILInstructionKind::OpenExistentialAddrInst:
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
ResultInst = Builder.createOpenExistentialAddr(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn)),
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn),
Attr == 0 ? OpenedExistentialAccess::Immutable
: OpenedExistentialAccess::Mutable);
break;
#define ONEOPERAND_ONETYPE_INST(ID) \
case SILInstructionKind::ID##Inst: \
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND && \
"Layout should be OneTypeOneOperand."); \
ResultInst = Builder.create##ID( \
Loc, \
getLocalValue(ValID, getSILType(MF->getType(TyID2), \
(SILValueCategory)TyCategory2, Fn)), \
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn)); \
break;
ONEOPERAND_ONETYPE_INST(OpenExistentialRef)
ONEOPERAND_ONETYPE_INST(OpenExistentialMetatype)
ONEOPERAND_ONETYPE_INST(OpenExistentialBox)
ONEOPERAND_ONETYPE_INST(OpenExistentialValue)
ONEOPERAND_ONETYPE_INST(OpenExistentialBoxValue)
// Conversion instructions.
#define LOADABLE_REF_STORAGE(Name, ...) \
ONEOPERAND_ONETYPE_INST(RefTo##Name) \
ONEOPERAND_ONETYPE_INST(Name##ToRef)
#include "swift/AST/ReferenceStorage.def"
ONEOPERAND_ONETYPE_INST(UncheckedRefCast)
ONEOPERAND_ONETYPE_INST(UncheckedAddrCast)
ONEOPERAND_ONETYPE_INST(UncheckedTrivialBitCast)
ONEOPERAND_ONETYPE_INST(UncheckedBitwiseCast)
ONEOPERAND_ONETYPE_INST(UncheckedValueCast)
ONEOPERAND_ONETYPE_INST(BridgeObjectToRef)
ONEOPERAND_ONETYPE_INST(BridgeObjectToWord)
ONEOPERAND_ONETYPE_INST(Upcast)
ONEOPERAND_ONETYPE_INST(AddressToPointer)
ONEOPERAND_ONETYPE_INST(RefToRawPointer)
ONEOPERAND_ONETYPE_INST(RawPointerToRef)
ONEOPERAND_ONETYPE_INST(ThinToThickFunction)
ONEOPERAND_ONETYPE_INST(ThickToObjCMetatype)
ONEOPERAND_ONETYPE_INST(ObjCToThickMetatype)
ONEOPERAND_ONETYPE_INST(ObjCMetatypeToObject)
ONEOPERAND_ONETYPE_INST(ObjCExistentialMetatypeToObject)
ONEOPERAND_ONETYPE_INST(ThinFunctionToPointer)
ONEOPERAND_ONETYPE_INST(PointerToThinFunction)
ONEOPERAND_ONETYPE_INST(ProjectBlockStorage)
#undef ONEOPERAND_ONETYPE_INST
case SILInstructionKind::ProjectBoxInst: {
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
ResultInst = Builder.createProjectBox(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn)),
TyID);
break;
}
case SILInstructionKind::ConvertEscapeToNoEscapeInst: {
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
bool isLifetimeGuaranteed = Attr & 0x01;
ResultInst = Builder.createConvertEscapeToNoEscape(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn)),
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn),
isLifetimeGuaranteed);
break;
}
case SILInstructionKind::ConvertFunctionInst: {
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND
&& "Layout should be OneTypeOneOperand.");
bool withoutActuallyEscaping = Attr & 0x01;
ResultInst = Builder.createConvertFunction(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn)),
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn),
withoutActuallyEscaping);
break;
}
case SILInstructionKind::PointerToAddressInst: {
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
bool isStrict = Attr & 0x01;
bool isInvariant = Attr & 0x02;
ResultInst = Builder.createPointerToAddress(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn)),
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn),
isStrict, isInvariant);
break;
}
case SILInstructionKind::DeallocExistentialBoxInst: {
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
ResultInst = Builder.createDeallocExistentialBox(
Loc, MF->getType(TyID)->getCanonicalType(),
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn)));
break;
}
case SILInstructionKind::RefToBridgeObjectInst: {
auto RefTy =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
auto Ref = getLocalValue(ValID, RefTy);
auto BitsTy =
getSILType(MF->getType(TyID2), (SILValueCategory)TyCategory2, Fn);
auto Bits = getLocalValue(ValID2, BitsTy);
ResultInst = Builder.createRefToBridgeObject(Loc, Ref, Bits);
break;
}
case SILInstructionKind::ObjCProtocolInst: {
auto Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
auto Proto = MF->getDecl(ValID);
ResultInst = Builder.createObjCProtocol(Loc, cast<ProtocolDecl>(Proto), Ty);
break;
}
case SILInstructionKind::InitExistentialAddrInst:
case SILInstructionKind::InitExistentialValueInst:
case SILInstructionKind::InitExistentialMetatypeInst:
case SILInstructionKind::InitExistentialRefInst:
case SILInstructionKind::AllocExistentialBoxInst: {
auto Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
auto Ty2 = MF->getType(TyID2);
CanType ConcreteTy;
if (OpCode != SILInstructionKind::InitExistentialMetatypeInst)
ConcreteTy = MF->getType(ConcreteTyID)->getCanonicalType();
SILValue operand;
if (OpCode != SILInstructionKind::AllocExistentialBoxInst)
operand = getLocalValue(
ValID, getSILType(Ty2, (SILValueCategory)TyCategory2, Fn));
SmallVector<ProtocolConformanceRef, 2> conformances;
while (NumConformances--) {
auto conformance = MF->readConformance(SILCursor);
conformances.push_back(conformance);
}
auto ctxConformances = MF->getContext().AllocateCopy(conformances);
switch (OpCode) {
default: llvm_unreachable("Out of sync with parent switch");
case SILInstructionKind::InitExistentialAddrInst:
ResultInst = Builder.createInitExistentialAddr(Loc, operand, ConcreteTy,
Ty, ctxConformances);
break;
case SILInstructionKind::InitExistentialValueInst:
ResultInst = Builder.createInitExistentialValue(Loc, Ty, ConcreteTy,
operand, ctxConformances);
break;
case SILInstructionKind::InitExistentialMetatypeInst:
ResultInst = Builder.createInitExistentialMetatype(Loc, operand, Ty,
ctxConformances);
break;
case SILInstructionKind::InitExistentialRefInst:
ResultInst = Builder.createInitExistentialRef(Loc, Ty, ConcreteTy,
operand, ctxConformances);
break;
case SILInstructionKind::AllocExistentialBoxInst:
ResultInst = Builder.createAllocExistentialBox(Loc, Ty, ConcreteTy,
ctxConformances);
break;
}
break;
}
case SILInstructionKind::AllocRefInst:
case SILInstructionKind::AllocRefDynamicInst: {
assert(RecordKind == SIL_ONE_TYPE_VALUES &&
"Layout should be OneTypeValues.");
unsigned NumVals = ListOfValues.size();
assert(NumVals >= 1 && "Not enough values");
unsigned Flags = ListOfValues[0];
bool isObjC = (bool)(Flags & 1);
bool canAllocOnStack = (bool)((Flags >> 1) & 1);
SILType ClassTy =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
SmallVector<SILValue, 4> Counts;
SmallVector<SILType, 4> TailTypes;
unsigned i = 1;
for (; i + 2 < NumVals; i += 3) {
SILType TailType = getSILType(MF->getType(ListOfValues[i]),
SILValueCategory::Object, Fn);
TailTypes.push_back(TailType);
SILType CountType = getSILType(MF->getType(ListOfValues[i + 2]),
SILValueCategory::Object, Fn);
SILValue CountVal = getLocalValue(ListOfValues[i+1], CountType);
Counts.push_back(CountVal);
}
if (OpCode == SILInstructionKind::AllocRefDynamicInst) {
assert(i + 2 == NumVals);
assert(!canAllocOnStack);
SILType MetadataType = getSILType(MF->getType(ListOfValues[i+1]),
SILValueCategory::Object, Fn);
SILValue MetadataOp = getLocalValue(ListOfValues[i], MetadataType);
ResultInst = Builder.createAllocRefDynamic(Loc, MetadataOp, ClassTy,
isObjC, TailTypes, Counts);
} else {
assert(i == NumVals);
ResultInst = Builder.createAllocRef(Loc, ClassTy, isObjC, canAllocOnStack,
TailTypes, Counts);
}
break;
}
case SILInstructionKind::ApplyInst:
case SILInstructionKind::BeginApplyInst: {
// Format: attributes such as transparent, the callee's type, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber.
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
SILType FnTy = getSILType(Ty, SILValueCategory::Object, Fn);
SILType SubstFnTy = getSILType(Ty2, SILValueCategory::Object, Fn);
SILFunctionConventions substConventions(SubstFnTy.castTo<SILFunctionType>(),
Builder.getModule());
assert(substConventions.getNumSILArguments() == ListOfValues.size()
&& "Argument number mismatch in ApplyInst.");
SmallVector<SILValue, 4> Args;
for (unsigned I = 0, E = ListOfValues.size(); I < E; ++I)
Args.push_back(getLocalValue(ListOfValues[I],
substConventions.getSILArgumentType(
I, Builder.getTypeExpansionContext())));
SubstitutionMap Substitutions = MF->getSubstitutionMap(NumSubs);
if (OpCode == SILInstructionKind::ApplyInst) {
ResultInst =
Builder.createApply(Loc, getLocalValue(ValID, FnTy), Substitutions,
Args, IsNonThrowingApply != 0);
} else {
ResultInst = Builder.createBeginApply(Loc, getLocalValue(ValID, FnTy),
Substitutions, Args,
IsNonThrowingApply != 0);
}
break;
}
case SILInstructionKind::TryApplyInst: {
// Format: attributes such as transparent, the callee's type, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber. The final
// two values in the list are the basic block identifiers.
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
SILType FnTy = getSILType(Ty, SILValueCategory::Object, Fn);
SILType SubstFnTy = getSILType(Ty2, SILValueCategory::Object, Fn);
SILBasicBlock *errorBB = getBBForReference(Fn, ListOfValues.back());
ListOfValues = ListOfValues.drop_back();
SILBasicBlock *normalBB = getBBForReference(Fn, ListOfValues.back());
ListOfValues = ListOfValues.drop_back();
SILFunctionConventions substConventions(SubstFnTy.castTo<SILFunctionType>(),
Builder.getModule());
assert(substConventions.getNumSILArguments() == ListOfValues.size()
&& "Argument number mismatch in ApplyInst.");
SmallVector<SILValue, 4> Args;
for (unsigned I = 0, E = ListOfValues.size(); I < E; ++I)
Args.push_back(getLocalValue(ListOfValues[I],
substConventions.getSILArgumentType(
I, Builder.getTypeExpansionContext())));
SubstitutionMap Substitutions = MF->getSubstitutionMap(NumSubs);
ResultInst = Builder.createTryApply(Loc, getLocalValue(ValID, FnTy),
Substitutions, Args, normalBB, errorBB);
break;
}
case SILInstructionKind::PartialApplyInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
SILType FnTy = getSILType(Ty, SILValueCategory::Object, Fn);
SILType closureTy = getSILType(Ty2, SILValueCategory::Object, Fn);
SubstitutionMap Substitutions = MF->getSubstitutionMap(NumSubs);
auto SubstFnTy = SILType::getPrimitiveObjectType(
FnTy.castTo<SILFunctionType>()->substGenericArgs(
Builder.getModule(), Substitutions,
Builder.getTypeExpansionContext()));
SILFunctionConventions fnConv(SubstFnTy.castTo<SILFunctionType>(),
Builder.getModule());
unsigned numArgs = fnConv.getNumSILArguments();
assert(numArgs >= ListOfValues.size()
&& "Argument number mismatch in PartialApplyInst.");
SILValue FnVal = getLocalValue(ValID, FnTy);
SmallVector<SILValue, 4> Args;
unsigned unappliedArgs = numArgs - ListOfValues.size();
for (unsigned I = 0, E = ListOfValues.size(); I < E; ++I)
Args.push_back(getLocalValue(
ListOfValues[I],
fnConv.getSILArgumentType(I + unappliedArgs,
Builder.getTypeExpansionContext())));
auto onStack = closureTy.castTo<SILFunctionType>()->isNoEscape()
? PartialApplyInst::OnStackKind::OnStack
: PartialApplyInst::OnStackKind::NotOnStack;
// FIXME: Why the arbitrary order difference in IRBuilder type argument?
ResultInst = Builder.createPartialApply(
Loc, FnVal, Substitutions, Args,
closureTy.castTo<SILFunctionType>()->getCalleeConvention(), onStack);
break;
}
case SILInstructionKind::BuiltinInst: {
auto ASTTy = MF->getType(TyID);
auto ResultTy = getSILType(ASTTy, (SILValueCategory)(unsigned)TyID2, Fn);
SmallVector<SILValue, 4> Args;
for (unsigned i = 0, e = ListOfValues.size(); i < e; i += 3) {
auto ArgASTTy = MF->getType(ListOfValues[i+1]);
auto ArgTy = getSILType(
ArgASTTy, (SILValueCategory)(unsigned)ListOfValues[i + 2], Fn);
Args.push_back(getLocalValue(ListOfValues[i], ArgTy));
}
SubstitutionMap Substitutions = MF->getSubstitutionMap(NumSubs);
Identifier Name = MF->getIdentifier(ValID);
ResultInst =
Builder.createBuiltin(Loc, Name, ResultTy, Substitutions, Args);
break;
}
case SILInstructionKind::AllocGlobalInst: {
// Format: Name and type. Use SILOneOperandLayout.
StringRef Name = MF->getIdentifierText(ValID);
// Find the global variable.
SILGlobalVariable *g = getGlobalForReference(Name);
assert(g && "Can't deserialize global variable");
ResultInst = Builder.createAllocGlobal(Loc, g);
break;
}
case SILInstructionKind::GlobalAddrInst:
case SILInstructionKind::GlobalValueInst: {
// Format: Name and type. Use SILOneOperandLayout.
auto Ty = MF->getType(TyID);
StringRef Name = MF->getIdentifierText(ValID);
// Find the global variable.
SILGlobalVariable *g = getGlobalForReference(Name);
assert(g && "Can't deserialize global variable");
SILType expectedType =
(OpCode == SILInstructionKind::GlobalAddrInst
? g->getLoweredTypeInContext(TypeExpansionContext(*Fn))
.getAddressType()
: g->getLoweredTypeInContext(TypeExpansionContext(*Fn)));
assert(expectedType == getSILType(Ty, (SILValueCategory)TyCategory, Fn) &&
"Type of a global variable does not match GlobalAddr.");
(void)Ty;
(void)expectedType;
if (OpCode == SILInstructionKind::GlobalAddrInst) {
ResultInst = Builder.createGlobalAddr(Loc, g);
} else {
ResultInst = Builder.createGlobalValue(Loc, g);
}
break;
}
case SILInstructionKind::BaseAddrForOffsetInst:
assert(RecordKind == SIL_ONE_TYPE && "Layout should be OneType.");
ResultInst = Builder.createBaseAddrForOffset(
Loc, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
break;
case SILInstructionKind::DeallocStackInst: {
auto Ty = MF->getType(TyID);
ResultInst = Builder.createDeallocStack(
Loc,
getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory, Fn)));
break;
}
case SILInstructionKind::DeallocRefInst: {
auto Ty = MF->getType(TyID);
bool OnStack = (bool)Attr;
ResultInst = Builder.createDeallocRef(
Loc,
getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory, Fn)),
OnStack);
break;
}
case SILInstructionKind::DeallocPartialRefInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultInst = Builder.createDeallocPartialRef(
Loc,
getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory, Fn)),
getLocalValue(ValID2,
getSILType(Ty2, (SILValueCategory)TyCategory2, Fn)));
break;
}
case SILInstructionKind::FunctionRefInst: {
auto Ty = MF->getType(TyID);
StringRef FuncName = MF->getIdentifierText(ValID);
ResultInst = Builder.createFunctionRef(
Loc,
getFuncForReference(
FuncName, getSILType(Ty, (SILValueCategory)TyCategory, nullptr)));
break;
}
case SILInstructionKind::DynamicFunctionRefInst: {
auto Ty = MF->getType(TyID);
StringRef FuncName = MF->getIdentifierText(ValID);
ResultInst = Builder.createDynamicFunctionRef(
Loc,
getFuncForReference(
FuncName, getSILType(Ty, (SILValueCategory)TyCategory, nullptr)));
break;
}
case SILInstructionKind::PreviousDynamicFunctionRefInst: {
auto Ty = MF->getType(TyID);
StringRef FuncName = MF->getIdentifierText(ValID);
ResultInst = Builder.createPreviousDynamicFunctionRef(
Loc,
getFuncForReference(
FuncName, getSILType(Ty, (SILValueCategory)TyCategory, nullptr)));
break;
}
case SILInstructionKind::MarkDependenceInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultInst = Builder.createMarkDependence(
Loc,
getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory, Fn)),
getLocalValue(ValID2,
getSILType(Ty2, (SILValueCategory)TyCategory2, Fn)));
break;
}
case SILInstructionKind::CopyBlockWithoutEscapingInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultInst = Builder.createCopyBlockWithoutEscaping(
Loc,
getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory, Fn)),
getLocalValue(ValID2,
getSILType(Ty2, (SILValueCategory)TyCategory2, Fn)));
break;
}
case SILInstructionKind::IndexAddrInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultInst = Builder.createIndexAddr(
Loc,
getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory, Fn)),
getLocalValue(ValID2,
getSILType(Ty2, (SILValueCategory)TyCategory2, Fn)));
break;
}
case SILInstructionKind::TailAddrInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
auto ResultTy = MF->getType(TyID3);
ResultInst = Builder.createTailAddr(
Loc,
getLocalValue(ValID, getSILType(Ty, SILValueCategory::Address, Fn)),
getLocalValue(ValID2, getSILType(Ty2, SILValueCategory::Object, Fn)),
getSILType(ResultTy, SILValueCategory::Address, Fn));
break;
}
case SILInstructionKind::IndexRawPointerInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultInst = Builder.createIndexRawPointer(
Loc,
getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory, Fn)),
getLocalValue(ValID2,
getSILType(Ty2, (SILValueCategory)TyCategory2, Fn)));
break;
}
case SILInstructionKind::IntegerLiteralInst: {
auto Ty = MF->getType(TyID);
auto intTy = Ty->castTo<AnyBuiltinIntegerType>();
StringRef text = MF->getIdentifierText(ValID);
bool negate = text[0] == '-';
if (negate) text = text.drop_front();
APInt value = intTy->getWidth().parse(text, 10, negate);
ResultInst = Builder.createIntegerLiteral(
Loc, getSILType(Ty, (SILValueCategory)TyCategory, Fn), value);
break;
}
case SILInstructionKind::FloatLiteralInst: {
auto Ty = MF->getType(TyID);
auto floatTy = Ty->castTo<BuiltinFloatType>();
StringRef StringVal = MF->getIdentifierText(ValID);
// Build APInt from string.
APInt bits(floatTy->getBitWidth(), StringVal, 16);
if (bits.getBitWidth() != floatTy->getBitWidth())
bits = bits.zextOrTrunc(floatTy->getBitWidth());
APFloat value(floatTy->getAPFloatSemantics(), bits);
ResultInst = Builder.createFloatLiteral(
Loc, getSILType(Ty, (SILValueCategory)TyCategory, Fn), value);
break;
}
case SILInstructionKind::StringLiteralInst: {
StringRef StringVal = MF->getIdentifierText(ValID);
auto encoding = fromStableStringEncoding(Attr);
if (!encoding) return true;
ResultInst =
Builder.createStringLiteral(Loc, StringVal, encoding.getValue());
break;
}
case SILInstructionKind::CondFailInst: {
SILValue Op = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
StringRef StringVal = MF->getIdentifierText(ValID2);
ResultInst = Builder.createCondFail(Loc, Op, StringVal);
break;
}
case SILInstructionKind::MarkFunctionEscapeInst: {
// Format: a list of typed values. A typed value is expressed by 4 IDs:
// TypeID, TypeCategory, ValueID, ValueResultNumber.
SmallVector<SILValue, 4> OpList;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 3) {
auto EltTy = MF->getType(ListOfValues[I]);
OpList.push_back(getLocalValue(
ListOfValues[I + 2],
getSILType(EltTy, (SILValueCategory)ListOfValues[I + 1], Fn)));
}
ResultInst = Builder.createMarkFunctionEscape(Loc, OpList);
break;
}
// Checked Conversion instructions.
case SILInstructionKind::UnconditionalCheckedCastInst: {
SILType srcLoweredType = getSILType(MF->getType(ListOfValues[1]),
(SILValueCategory)ListOfValues[2], Fn);
SILValue src = getLocalValue(ListOfValues[0], srcLoweredType);
SILType targetLoweredType =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
CanType targetFormalType =
MF->getType(ListOfValues[3])->getCanonicalType();
ResultInst = Builder.createUnconditionalCheckedCast(
Loc, src, targetLoweredType, targetFormalType);
break;
}
#define UNARY_INSTRUCTION(ID) \
case SILInstructionKind::ID##Inst: \
assert(RecordKind == SIL_ONE_OPERAND && "Layout should be OneOperand."); \
ResultInst = Builder.create##ID( \
Loc, \
getLocalValue(ValID, getSILType(MF->getType(TyID), \
(SILValueCategory)TyCategory, Fn))); \
break;
#define REFCOUNTING_INSTRUCTION(ID) \
case SILInstructionKind::ID##Inst: \
assert(RecordKind == SIL_ONE_OPERAND && "Layout should be OneOperand."); \
ResultInst = Builder.create##ID( \
Loc, \
getLocalValue(ValID, getSILType(MF->getType(TyID), \
(SILValueCategory)TyCategory, Fn)), \
(Atomicity)Attr); \
break;
#define UNCHECKED_REF_STORAGE(Name, ...) \
UNARY_INSTRUCTION(StrongCopy##Name##Value)
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
REFCOUNTING_INSTRUCTION(Name##Retain) \
REFCOUNTING_INSTRUCTION(Name##Release) \
REFCOUNTING_INSTRUCTION(StrongRetain##Name) \
UNARY_INSTRUCTION(StrongCopy##Name##Value)
#include "swift/AST/ReferenceStorage.def"
REFCOUNTING_INSTRUCTION(RetainValue)
REFCOUNTING_INSTRUCTION(RetainValueAddr)
REFCOUNTING_INSTRUCTION(UnmanagedRetainValue)
UNARY_INSTRUCTION(CopyValue)
UNARY_INSTRUCTION(DestroyValue)
REFCOUNTING_INSTRUCTION(ReleaseValue)
REFCOUNTING_INSTRUCTION(ReleaseValueAddr)
REFCOUNTING_INSTRUCTION(UnmanagedReleaseValue)
REFCOUNTING_INSTRUCTION(AutoreleaseValue)
REFCOUNTING_INSTRUCTION(UnmanagedAutoreleaseValue)
REFCOUNTING_INSTRUCTION(SetDeallocating)
UNARY_INSTRUCTION(DeinitExistentialAddr)
UNARY_INSTRUCTION(DeinitExistentialValue)
UNARY_INSTRUCTION(EndBorrow)
UNARY_INSTRUCTION(DestroyAddr)
UNARY_INSTRUCTION(Return)
UNARY_INSTRUCTION(Throw)
UNARY_INSTRUCTION(ClassifyBridgeObject)
UNARY_INSTRUCTION(ValueToBridgeObject)
UNARY_INSTRUCTION(FixLifetime)
UNARY_INSTRUCTION(EndLifetime)
UNARY_INSTRUCTION(CopyBlock)
UNARY_INSTRUCTION(LoadBorrow)
UNARY_INSTRUCTION(BeginBorrow)
REFCOUNTING_INSTRUCTION(StrongRetain)
REFCOUNTING_INSTRUCTION(StrongRelease)
UNARY_INSTRUCTION(IsUnique)
UNARY_INSTRUCTION(AbortApply)
UNARY_INSTRUCTION(EndApply)
UNARY_INSTRUCTION(HopToExecutor)
#undef UNARY_INSTRUCTION
#undef REFCOUNTING_INSTRUCTION
case SILInstructionKind::IsEscapingClosureInst: {
assert(RecordKind == SIL_ONE_OPERAND && "Layout should be OneOperand.");
unsigned verificationType = Attr;
ResultInst = Builder.createIsEscapingClosure(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory, Fn)),
verificationType);
break;
}
case SILInstructionKind::BeginCOWMutationInst: {
assert(RecordKind == SIL_ONE_OPERAND && "Layout should be OneOperand.");
unsigned isNative = Attr;
ResultInst = Builder.createBeginCOWMutation(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory, Fn)),
isNative != 0);
break;
}
case SILInstructionKind::EndCOWMutationInst: {
assert(RecordKind == SIL_ONE_OPERAND && "Layout should be OneOperand.");
unsigned keepUnique = Attr;
ResultInst = Builder.createEndCOWMutation(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory, Fn)),
keepUnique != 0);
break;
}
case SILInstructionKind::DestructureTupleInst: {
assert(RecordKind == SIL_ONE_OPERAND && "Layout should be OneOperand.");
SILValue Operand = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
ResultInst = Builder.createDestructureTuple(Loc, Operand);
break;
}
case SILInstructionKind::DestructureStructInst: {
assert(RecordKind == SIL_ONE_OPERAND && "Layout should be OneOperand.");
SILValue Operand = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
ResultInst = Builder.createDestructureStruct(Loc, Operand);
break;
}
case SILInstructionKind::UncheckedOwnershipConversionInst: {
auto Ty = MF->getType(TyID);
auto ResultKind = ValueOwnershipKind(Attr);
ResultInst = Builder.createUncheckedOwnershipConversion(
Loc,
getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory, Fn)),
ResultKind);
break;
}
case SILInstructionKind::LoadInst: {
auto Ty = MF->getType(TyID);
auto Qualifier = LoadOwnershipQualifier(Attr);
ResultInst = Builder.createLoad(
Loc,
getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory, Fn)),
Qualifier);
break;
}
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Load##Name##Inst: { \
auto Ty = MF->getType(TyID); \
bool isTake = (Attr > 0); \
auto Val = getLocalValue( \
ValID, getSILType(Ty, SILValueCategory(TyCategory), Fn)); \
ResultInst = Builder.createLoad##Name(Loc, Val, IsTake_t(isTake)); \
break; \
} \
case SILInstructionKind::Store##Name##Inst: { \
auto Ty = MF->getType(TyID); \
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory, Fn); \
auto refType = addrType.castTo<Name##StorageType>(); \
auto ValType = SILType::getPrimitiveObjectType(refType.getReferentType()); \
bool isInit = (Attr > 0); \
ResultInst = Builder.createStore##Name(Loc, getLocalValue(ValID, ValType), \
getLocalValue(ValID2, addrType), \
IsInitialization_t(isInit)); \
break; \
}
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::MarkUninitializedInst: {
auto Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
auto Kind = (MarkUninitializedInst::Kind)Attr;
auto Val = getLocalValue(ValID, Ty);
ResultInst = Builder.createMarkUninitialized(Loc, Val, Kind);
break;
}
case SILInstructionKind::StoreInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory, Fn);
SILType ValType = addrType.getObjectType();
auto Qualifier = StoreOwnershipQualifier(Attr);
ResultInst =
Builder.createStore(Loc, getLocalValue(ValID, ValType),
getLocalValue(ValID2, addrType), Qualifier);
break;
}
case SILInstructionKind::StoreBorrowInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory, Fn);
SILType ValType = addrType.getObjectType();
ResultInst = Builder.createStoreBorrow(Loc, getLocalValue(ValID, ValType),
getLocalValue(ValID2, addrType));
break;
}
case SILInstructionKind::BeginAccessInst: {
SILValue op = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
auto accessKind = SILAccessKind(Attr & 0x3);
auto enforcement = SILAccessEnforcement((Attr >> 2) & 0x3);
bool noNestedConflict = (Attr >> 4) & 0x01;
bool fromBuiltin = (Attr >> 5) & 0x01;
ResultInst = Builder.createBeginAccess(Loc, op, accessKind, enforcement,
noNestedConflict, fromBuiltin);
break;
}
case SILInstructionKind::EndAccessInst: {
SILValue op = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
bool aborted = Attr & 0x1;
ResultInst = Builder.createEndAccess(Loc, op, aborted);
break;
}
case SILInstructionKind::BeginUnpairedAccessInst: {
SILValue source = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
SILValue buffer =
getLocalValue(ValID2, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn));
auto accessKind = SILAccessKind(Attr & 0x3);
auto enforcement = SILAccessEnforcement((Attr >> 2) & 0x03);
bool noNestedConflict = (Attr >> 4) & 0x01;
bool fromBuiltin = (Attr >> 5) & 0x01;
ResultInst = Builder.createBeginUnpairedAccess(
Loc, source, buffer, accessKind, enforcement, noNestedConflict,
fromBuiltin);
break;
}
case SILInstructionKind::EndUnpairedAccessInst: {
SILValue op = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
bool aborted = Attr & 0x1;
auto enforcement = SILAccessEnforcement((Attr >> 1) & 0x03);
bool fromBuiltin = (Attr >> 3) & 0x01;
ResultInst = Builder.createEndUnpairedAccess(Loc, op, enforcement, aborted,
fromBuiltin);
break;
}
case SILInstructionKind::CopyAddrInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory, Fn);
bool isInit = (Attr & 0x2) > 0;
bool isTake = (Attr & 0x1) > 0;
ResultInst = Builder.createCopyAddr(
Loc, getLocalValue(ValID, addrType), getLocalValue(ValID2, addrType),
IsTake_t(isTake), IsInitialization_t(isInit));
break;
}
case SILInstructionKind::AssignInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory, Fn);
SILType valType = addrType.getObjectType();
auto qualifier = AssignOwnershipQualifier(Attr);
ResultInst =
Builder.createAssign(Loc, getLocalValue(ValID, valType),
getLocalValue(ValID2, addrType), qualifier);
break;
}
case SILInstructionKind::AssignByWrapperInst:
llvm_unreachable("not supported");
case SILInstructionKind::BindMemoryInst: {
assert(RecordKind == SIL_ONE_TYPE_VALUES &&
"Layout should be OneTypeValues.");
auto Ty = MF->getType(TyID); // BoundTy
ResultInst = Builder.createBindMemory(
Loc,
getLocalValue(ListOfValues[2],
getSILType(MF->getType(ListOfValues[0]),
(SILValueCategory)ListOfValues[1], Fn)),
getLocalValue(ListOfValues[5],
getSILType(MF->getType(ListOfValues[3]),
(SILValueCategory)ListOfValues[4], Fn)),
getSILType(Ty, (SILValueCategory)TyCategory, Fn));
break;
}
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::StructExtractInst: {
// Use SILOneValueOneOperandLayout.
VarDecl *Field = cast<VarDecl>(MF->getDecl(ValID));
auto Ty = MF->getType(TyID);
auto Val =
getLocalValue(ValID2, getSILType(Ty, (SILValueCategory)TyCategory, Fn));
auto ResultTy = Val->getType().getFieldType(
Field, SILMod, Builder.getTypeExpansionContext());
if (OpCode == SILInstructionKind::StructElementAddrInst)
ResultInst = Builder.createStructElementAddr(Loc, Val, Field,
ResultTy.getAddressType());
else
ResultInst = Builder.createStructExtract(Loc, Val, Field,
ResultTy.getObjectType());
break;
}
case SILInstructionKind::StructInst: {
// Format: a type followed by a list of typed values. A typed value is
// expressed by 4 IDs: TypeID, TypeCategory, ValueID, ValueResultNumber.
auto Ty = MF->getType(TyID);
SmallVector<SILValue, 4> OpList;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 3) {
auto EltTy = MF->getType(ListOfValues[I]);
OpList.push_back(getLocalValue(
ListOfValues[I + 2],
getSILType(EltTy, (SILValueCategory)ListOfValues[I + 1], Fn)));
}
ResultInst = Builder.createStruct(
Loc, getSILType(Ty, (SILValueCategory)TyCategory, Fn), OpList);
break;
}
case SILInstructionKind::TupleElementAddrInst:
case SILInstructionKind::TupleExtractInst: {
// Use OneTypeOneOperand layout where the field number is stored in TypeID.
auto Ty2 = MF->getType(TyID2);
SILType ST = getSILType(Ty2, (SILValueCategory)TyCategory2, Fn);
TupleType *TT = ST.castTo<TupleType>();
auto ResultTy = TT->getElement(TyID).getType();
switch (OpCode) {
default: llvm_unreachable("Out of sync with parent switch");
case SILInstructionKind::TupleElementAddrInst:
ResultInst = Builder.createTupleElementAddr(
Loc, getLocalValue(ValID, ST), TyID,
getSILType(ResultTy, SILValueCategory::Address, Fn));
break;
case SILInstructionKind::TupleExtractInst:
ResultInst = Builder.createTupleExtract(
Loc, getLocalValue(ValID, ST), TyID,
getSILType(ResultTy, SILValueCategory::Object, Fn));
break;
}
break;
}
case SILInstructionKind::TupleInst: {
// Format: a type followed by a list of values. A value is expressed by
// 2 IDs: ValueID, ValueResultNumber.
auto Ty = MF->getType(TyID);
TupleType *TT = Ty->castTo<TupleType>();
assert(TT && "Type of a TupleInst should be TupleType");
SmallVector<SILValue, 4> OpList;
for (unsigned I = 0, E = ListOfValues.size(); I < E; ++I) {
Type EltTy = TT->getElement(I).getType();
OpList.push_back(
getLocalValue(ListOfValues[I],
getSILType(EltTy, SILValueCategory::Object, Fn)));
}
ResultInst = Builder.createTuple(
Loc, getSILType(Ty, (SILValueCategory)TyCategory, Fn), OpList);
break;
}
case SILInstructionKind::ObjectInst: {
assert(RecordKind == SIL_ONE_TYPE_VALUES &&
"Layout should be OneTypeValues.");
unsigned NumVals = ListOfValues.size();
assert(NumVals >= 1 && "Not enough values");
unsigned numBaseElements = ListOfValues[0];
SILType ClassTy =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
SmallVector<SILValue, 4> elements;
for (unsigned i = 1; i < NumVals; i += 2) {
SILType elementType = getSILType(MF->getType(ListOfValues[i + 1]),
SILValueCategory::Object, Fn);
SILValue elementVal = getLocalValue(ListOfValues[i], elementType);
elements.push_back(elementVal);
}
ResultInst = Builder.createObject(Loc, ClassTy, elements, numBaseElements);
break;
}
case SILInstructionKind::BranchInst: {
SmallVector<SILValue, 4> Args;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 3)
Args.push_back(
getLocalValue(ListOfValues[I + 2],
getSILType(MF->getType(ListOfValues[I]),
(SILValueCategory)ListOfValues[I + 1], Fn)));
ResultInst = Builder.createBranch(Loc, getBBForReference(Fn, TyID), Args);
break;
}
case SILInstructionKind::CondBranchInst: {
// Format: condition, true basic block ID, a list of arguments, false basic
// block ID, a list of arguments. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, true basic block ID,
// false basic block ID, number of true arguments, and a list of true|false
// arguments.
SILValue Cond = getLocalValue(
ListOfValues[0],
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
unsigned NumTrueArgs = ListOfValues[3];
unsigned StartOfTrueArg = 4;
unsigned StartOfFalseArg = StartOfTrueArg + 3*NumTrueArgs;
SmallVector<SILValue, 4> TrueArgs;
for (unsigned I = StartOfTrueArg, E = StartOfFalseArg; I < E; I += 3)
TrueArgs.push_back(
getLocalValue(ListOfValues[I + 2],
getSILType(MF->getType(ListOfValues[I]),
(SILValueCategory)ListOfValues[I + 1], Fn)));
SmallVector<SILValue, 4> FalseArgs;
for (unsigned I = StartOfFalseArg, E = ListOfValues.size(); I < E; I += 3)
FalseArgs.push_back(
getLocalValue(ListOfValues[I + 2],
getSILType(MF->getType(ListOfValues[I]),
(SILValueCategory)ListOfValues[I + 1], Fn)));
ResultInst = Builder.createCondBranch(
Loc, Cond, getBBForReference(Fn, ListOfValues[1]), TrueArgs,
getBBForReference(Fn, ListOfValues[2]), FalseArgs);
break;
}
case SILInstructionKind::AwaitAsyncContinuationInst: {
// Format: continuation, resume block ID, error block ID if given
SILValue Cont = getLocalValue(
ListOfValues[0],
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
SILBasicBlock *resultBB = getBBForReference(Fn, ListOfValues[1]);
SILBasicBlock *errorBB = nullptr;
if (ListOfValues.size() >= 3) {
errorBB = getBBForReference(Fn, ListOfValues[2]);
}
ResultInst = Builder.createAwaitAsyncContinuation(Loc, Cont, resultBB, errorBB);
break;
}
case SILInstructionKind::SwitchEnumInst:
case SILInstructionKind::SwitchEnumAddrInst: {
// Format: condition, a list of cases (EnumElementDecl + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, hasDefault, default
// basic block ID, a list of (DeclID, BasicBlock ID).
SILValue Cond = getLocalValue(
ListOfValues[0],
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
SILBasicBlock *DefaultBB = nullptr;
if (ListOfValues[1])
DefaultBB = getBBForReference(Fn, ListOfValues[2]);
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 4> CaseBBs;
for (unsigned I = 3, E = ListOfValues.size(); I < E; I += 2) {
CaseBBs.push_back( {cast<EnumElementDecl>(MF->getDecl(ListOfValues[I])),
getBBForReference(Fn, ListOfValues[I+1])} );
}
if (OpCode == SILInstructionKind::SwitchEnumInst)
ResultInst = Builder.createSwitchEnum(Loc, Cond, DefaultBB, CaseBBs);
else
ResultInst = Builder.createSwitchEnumAddr(Loc, Cond, DefaultBB, CaseBBs);
break;
}
case SILInstructionKind::SelectEnumInst:
case SILInstructionKind::SelectEnumAddrInst: {
// Format: condition, a list of cases (EnumElementDecl + Value ID),
// default value ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, result type,
// hasDefault, default
// basic block ID, a list of (DeclID, BasicBlock ID).
SILValue Cond = getLocalValue(ListOfValues[0],
getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory, Fn));
Type ResultLoweredTy = MF->getType(ListOfValues[1]);
SILValueCategory ResultCategory = (SILValueCategory)ListOfValues[2];
SILType ResultTy = getSILType(ResultLoweredTy, ResultCategory, Fn);
SILValue DefaultVal = nullptr;
if (ListOfValues[3])
DefaultVal = getLocalValue(ListOfValues[4], ResultTy);
SmallVector<std::pair<EnumElementDecl*, SILValue>, 4> CaseVals;
for (unsigned I = 5, E = ListOfValues.size(); I < E; I += 2) {
auto Value = getLocalValue(ListOfValues[I+1], ResultTy);
CaseVals.push_back({cast<EnumElementDecl>(MF->getDecl(ListOfValues[I])),
Value});
}
if (OpCode == SILInstructionKind::SelectEnumInst)
ResultInst =
Builder.createSelectEnum(Loc, Cond, ResultTy, DefaultVal, CaseVals);
else
ResultInst = Builder.createSelectEnumAddr(Loc, Cond, ResultTy, DefaultVal,
CaseVals);
break;
}
case SILInstructionKind::SwitchValueInst: {
// Format: condition, a list of cases (Value ID + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list contains value for condition, hasDefault, default
// basic block ID, a list of (Value ID, BasicBlock ID).
SILType ResultTy = getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory, Fn);
SILValue Cond = getLocalValue(
ListOfValues[0],
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
SILBasicBlock *DefaultBB = nullptr;
if (ListOfValues[1])
DefaultBB = getBBForReference(Fn, ListOfValues[2]);
SmallVector<std::pair<SILValue, SILBasicBlock*>, 4> CaseBBs;
for (unsigned I = 3, E = ListOfValues.size(); I < E; I += 2) {
auto value = getLocalValue(ListOfValues[I], ResultTy);
CaseBBs.push_back( {value, getBBForReference(Fn, ListOfValues[I+1])} );
}
ResultInst = Builder.createSwitchValue(Loc, Cond, DefaultBB, CaseBBs);
break;
}
case SILInstructionKind::SelectValueInst: {
// Format: condition, a list of cases (ValueID + Value ID),
// default value ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, result type,
// hasDefault, default,
// basic block ID, a list of (Value ID, Value ID).
SILValue Cond = getLocalValue(
ListOfValues[0],
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
Type ResultLoweredTy = MF->getType(ListOfValues[1]);
SILValueCategory ResultCategory = (SILValueCategory)ListOfValues[2];
SILType ResultTy = getSILType(ResultLoweredTy, ResultCategory, Fn);
SILValue DefaultVal = nullptr;
if (ListOfValues[3])
DefaultVal = getLocalValue(ListOfValues[4], ResultTy);
SmallVector<std::pair<SILValue, SILValue>, 4> CaseValuesAndResults;
for (unsigned I = 5, E = ListOfValues.size(); I < E; I += 2) {
auto CaseValue = getLocalValue(ListOfValues[I], Cond->getType());
auto Result = getLocalValue(ListOfValues[I+1], ResultTy);
CaseValuesAndResults.push_back({CaseValue, Result});
}
ResultInst = Builder.createSelectValue(Loc, Cond, ResultTy, DefaultVal,
CaseValuesAndResults);
break;
}
case SILInstructionKind::EnumInst: {
// Format: a type, an operand and a decl ID. Use SILTwoOperandsLayout: type,
// (DeclID + hasOperand), and an operand.
SILValue Operand;
if (Attr)
Operand =
getLocalValue(ValID2, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn));
ResultInst = Builder.createEnum(
Loc, Operand, cast<EnumElementDecl>(MF->getDecl(ValID)),
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn));
break;
}
case SILInstructionKind::InitEnumDataAddrInst: {
// Use SILOneValueOneOperandLayout.
EnumElementDecl *Elt = cast<EnumElementDecl>(MF->getDecl(ValID));
SILType OperandTy = getSILType(MF->getType(TyID),
(SILValueCategory) TyCategory, Fn);
SILType ResultTy = OperandTy.getEnumElementType(
Elt, SILMod, Builder.getTypeExpansionContext());
ResultInst = Builder.createInitEnumDataAddr(
Loc, getLocalValue(ValID2, OperandTy), Elt, ResultTy);
break;
}
case SILInstructionKind::UncheckedEnumDataInst: {
// Use SILOneValueOneOperandLayout.
EnumElementDecl *Elt = cast<EnumElementDecl>(MF->getDecl(ValID));
SILType OperandTy =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
SILType ResultTy = OperandTy.getEnumElementType(
Elt, SILMod, Builder.getTypeExpansionContext());
ResultInst = Builder.createUncheckedEnumData(
Loc, getLocalValue(ValID2, OperandTy), Elt, ResultTy);
break;
}
case SILInstructionKind::UncheckedTakeEnumDataAddrInst: {
// Use SILOneValueOneOperandLayout.
EnumElementDecl *Elt = cast<EnumElementDecl>(MF->getDecl(ValID));
SILType OperandTy =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
SILType ResultTy = OperandTy.getEnumElementType(
Elt, SILMod, Builder.getTypeExpansionContext());
ResultInst = Builder.createUncheckedTakeEnumDataAddr(
Loc, getLocalValue(ValID2, OperandTy), Elt, ResultTy);
break;
}
case SILInstructionKind::InjectEnumAddrInst: {
// Use SILOneValueOneOperandLayout.
EnumElementDecl *Elt = cast<EnumElementDecl>(MF->getDecl(ValID));
auto Ty = MF->getType(TyID);
ResultInst = Builder.createInjectEnumAddr(
Loc,
getLocalValue(ValID2, getSILType(Ty, (SILValueCategory)TyCategory, Fn)),
Elt);
break;
}
case SILInstructionKind::RefElementAddrInst: {
// Use SILOneValueOneOperandLayout.
VarDecl *Field = cast<VarDecl>(MF->getDecl(ValID));
auto Ty = MF->getType(TyID);
auto Val = getLocalValue(ValID2,
getSILType(Ty, (SILValueCategory)TyCategory, Fn));
auto ResultTy = Val->getType().getFieldType(
Field, SILMod, Builder.getTypeExpansionContext());
ResultInst = Builder.createRefElementAddr(Loc, Val, Field, ResultTy,
/*Immutable*/ Attr & 0x1);
break;
}
case SILInstructionKind::RefTailAddrInst: {
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
assert((SILValueCategory)TyCategory == SILValueCategory::Address);
ResultInst = Builder.createRefTailAddr(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2, Fn)),
getSILType(MF->getType(TyID), SILValueCategory::Address, Fn),
/*Immutable*/ Attr & 0x1);
break;
}
case SILInstructionKind::ClassMethodInst:
case SILInstructionKind::SuperMethodInst:
case SILInstructionKind::ObjCMethodInst:
case SILInstructionKind::ObjCSuperMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel), and an operand.
unsigned NextValueIndex = 0;
SILDeclRef DRef = getSILDeclRef(MF, ListOfValues, NextValueIndex);
SILType Ty =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
assert(ListOfValues.size() >= NextValueIndex + 2 &&
"Out of entries for MethodInst");
SILType operandTy =
getSILType(MF->getType(ListOfValues[NextValueIndex]),
(SILValueCategory)ListOfValues[NextValueIndex + 1], Fn);
NextValueIndex += 2;
switch (OpCode) {
default: llvm_unreachable("Out of sync with parent switch");
case SILInstructionKind::ClassMethodInst:
ResultInst = Builder.createClassMethod(
Loc, getLocalValue(ListOfValues[NextValueIndex], operandTy), DRef,
Ty);
break;
case SILInstructionKind::SuperMethodInst:
ResultInst = Builder.createSuperMethod(
Loc, getLocalValue(ListOfValues[NextValueIndex], operandTy), DRef,
Ty);
break;
case SILInstructionKind::ObjCMethodInst:
ResultInst = Builder.createObjCMethod(
Loc, getLocalValue(ListOfValues[NextValueIndex], operandTy), DRef,
Ty);
break;
case SILInstructionKind::ObjCSuperMethodInst:
ResultInst = Builder.createObjCSuperMethod(
Loc, getLocalValue(ListOfValues[NextValueIndex], operandTy), DRef,
Ty);
break;
}
break;
}
case SILInstructionKind::WitnessMethodInst: {
unsigned NextValueIndex = 0;
SILDeclRef DRef = getSILDeclRef(MF, ListOfValues, NextValueIndex);
assert(ListOfValues.size() >= NextValueIndex &&
"Out of entries for MethodInst");
CanType Ty = MF->getType(TyID)->getCanonicalType();
SILType OperandTy =
getSILType(MF->getType(TyID2), (SILValueCategory)TyCategory2, Fn);
auto Conformance = MF->readConformance(SILCursor);
// Read the optional opened existential.
SILValue ExistentialOperand;
if (TyID3) {
SILType ExistentialOperandTy =
getSILType(MF->getType(TyID3), (SILValueCategory)TyCategory3, Fn);
if (ValID3)
ExistentialOperand = getLocalValue(ValID3, ExistentialOperandTy);
}
ResultInst =
Builder.createWitnessMethod(Loc, Ty, Conformance, DRef, OperandTy);
break;
}
case SILInstructionKind::DynamicMethodBranchInst: {
// Format: a typed value, a SILDeclRef, a BasicBlock ID for method,
// a BasicBlock ID for no method. Use SILOneTypeValuesLayout.
unsigned NextValueIndex = 1;
SILDeclRef DRef = getSILDeclRef(MF, ListOfValues, NextValueIndex);
assert(ListOfValues.size() == NextValueIndex + 2 &&
"Wrong number of entries for DynamicMethodBranchInst");
ResultInst = Builder.createDynamicMethodBranch(
Loc,
getLocalValue(
ListOfValues[0],
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn)),
DRef, getBBForReference(Fn, ListOfValues[NextValueIndex]),
getBBForReference(Fn, ListOfValues[NextValueIndex + 1]));
break;
}
case SILInstructionKind::CheckedCastBranchInst: {
// Format: the cast kind, a typed value, a BasicBlock ID for success,
// a BasicBlock ID for failure. Uses SILOneTypeValuesLayout.
bool isExact = ListOfValues[0] != 0;
SILType opTy = getSILType(MF->getType(ListOfValues[2]),
(SILValueCategory)ListOfValues[3], Fn);
SILValue op = getLocalValue(ListOfValues[1], opTy);
SILType targetLoweredType =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
CanType targetFormalType =
MF->getType(ListOfValues[4])->getCanonicalType();
auto *successBB = getBBForReference(Fn, ListOfValues[5]);
auto *failureBB = getBBForReference(Fn, ListOfValues[6]);
ResultInst =
Builder.createCheckedCastBranch(Loc, isExact, op, targetLoweredType,
targetFormalType, successBB, failureBB);
break;
}
case SILInstructionKind::CheckedCastValueBranchInst: {
CanType srcFormalType = MF->getType(ListOfValues[0])->getCanonicalType();
SILType srcLoweredType = getSILType(MF->getType(ListOfValues[2]),
(SILValueCategory)ListOfValues[3], Fn);
SILValue op = getLocalValue(ListOfValues[1], srcLoweredType);
SILType targetLoweredType =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
CanType targetFormalType =
MF->getType(ListOfValues[4])->getCanonicalType();
auto *successBB = getBBForReference(Fn, ListOfValues[5]);
auto *failureBB = getBBForReference(Fn, ListOfValues[6]);
ResultInst = Builder.createCheckedCastValueBranch(
Loc, op, srcFormalType, targetLoweredType, targetFormalType, successBB,
failureBB);
break;
}
case SILInstructionKind::UnconditionalCheckedCastValueInst: {
CanType srcFormalType = MF->getType(ListOfValues[0])->getCanonicalType();
SILType srcLoweredType = getSILType(MF->getType(ListOfValues[2]),
(SILValueCategory)ListOfValues[3], Fn);
SILValue src = getLocalValue(ListOfValues[1], srcLoweredType);
SILType targetLoweredType =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
CanType targetFormalType = MF->getType(ListOfValues[4])->getCanonicalType();
ResultInst = Builder.createUnconditionalCheckedCastValue(
Loc, src, srcFormalType, targetLoweredType, targetFormalType);
break;
}
case SILInstructionKind::UnconditionalCheckedCastAddrInst: {
// ignore attr.
CanType srcFormalType = MF->getType(ListOfValues[0])->getCanonicalType();
SILType srcLoweredType = getSILType(MF->getType(ListOfValues[2]),
(SILValueCategory)ListOfValues[3], Fn);
SILValue src = getLocalValue(ListOfValues[1], srcLoweredType);
CanType targetFormalType = MF->getType(ListOfValues[4])->getCanonicalType();
SILType targetLoweredType =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory, Fn);
SILValue dest = getLocalValue(ListOfValues[5], targetLoweredType);
ResultInst = Builder.createUnconditionalCheckedCastAddr(
Loc, src, srcFormalType, dest, targetFormalType);
break;
}
case SILInstructionKind::CheckedCastAddrBranchInst: {
CastConsumptionKind consumption = getCastConsumptionKind(ListOfValues[0]);
CanType srcFormalType = MF->getType(ListOfValues[1])->getCanonicalType();
SILType srcLoweredType = getSILType(MF->getType(ListOfValues[3]),
(SILValueCategory)ListOfValues[4], Fn);
SILValue src = getLocalValue(ListOfValues[2], srcLoweredType);