blob: 9caa41b533fa04d724c94df3c81c811d3348192d [file] [log] [blame]
//===--- ExprContextAnalysis.cpp - Expession context analysis -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ExprContextAnalysis.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DeclContext.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Type.h"
#include "swift/AST/Types.h"
#include "swift/Basic/SourceManager.h"
#include "swift/IDE/CodeCompletion.h"
#include "swift/Sema/IDETypeChecking.h"
#include "swift/Subsystems.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "llvm/ADT/SmallSet.h"
using namespace swift;
using namespace ide;
//===----------------------------------------------------------------------===//
// typeCheckContextAt(DeclContext, SourceLoc)
//===----------------------------------------------------------------------===//
void swift::ide::typeCheckContextAt(DeclContext *DC, SourceLoc Loc) {
while (isa<AbstractClosureExpr>(DC))
DC = DC->getParent();
// Make sure the extension has been bound.
{
// Even if the extension is invalid (e.g. nested in a function or another
// type), we want to know the "intended nominal" of the extension so that
// we can know the type of 'Self'.
SmallVector<ExtensionDecl *, 1> extensions;
for (auto typeCtx = DC->getInnermostTypeContext(); typeCtx != nullptr;
typeCtx = typeCtx->getParent()->getInnermostTypeContext()) {
if (auto *ext = dyn_cast<ExtensionDecl>(typeCtx))
extensions.push_back(ext);
}
while (!extensions.empty()) {
extensions.back()->computeExtendedNominal();
extensions.pop_back();
}
// If the completion happens in the inheritance clause of the extension,
// 'DC' is the parent of the extension. We need to iterate the top level
// decls to find it. In theory, we don't need the extended nominal in the
// inheritance clause, but ASTScope lookup requires that. We don't care
// unless 'DC' is not 'SourceFile' because non-toplevel extensions are
// 'canNeverBeBound()' anyway.
if (auto *SF = dyn_cast<SourceFile>(DC)) {
auto &SM = DC->getASTContext().SourceMgr;
for (auto *decl : SF->getTopLevelDecls())
if (auto *ext = dyn_cast<ExtensionDecl>(decl))
if (SM.rangeContainsTokenLoc(ext->getSourceRange(), Loc))
ext->computeExtendedNominal();
}
}
// Type-check this context.
switch (DC->getContextKind()) {
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::Module:
case DeclContextKind::FileUnit:
case DeclContextKind::SerializedLocal:
case DeclContextKind::EnumElementDecl:
case DeclContextKind::GenericTypeDecl:
case DeclContextKind::SubscriptDecl:
case DeclContextKind::ExtensionDecl:
// Nothing to do for these.
break;
case DeclContextKind::Initializer:
if (auto *patternInit = dyn_cast<PatternBindingInitializer>(DC)) {
if (auto *PBD = patternInit->getBinding()) {
auto i = patternInit->getBindingIndex();
PBD->getPattern(i)->forEachVariable(
[](VarDecl *VD) { (void)VD->getInterfaceType(); });
if (PBD->getInit(i)) {
if (!PBD->isInitializerChecked(i))
typeCheckPatternBinding(PBD, i);
}
}
} else if (auto *defaultArg = dyn_cast<DefaultArgumentInitializer>(DC)) {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(defaultArg->getParent())) {
auto *Param = AFD->getParameters()->get(defaultArg->getIndex());
(void)Param->getTypeCheckedDefaultExpr();
}
}
break;
case DeclContextKind::TopLevelCodeDecl:
swift::typeCheckASTNodeAtLoc(DC, Loc);
break;
case DeclContextKind::AbstractFunctionDecl: {
auto *AFD = cast<AbstractFunctionDecl>(DC);
auto &SM = DC->getASTContext().SourceMgr;
auto bodyRange = AFD->getBodySourceRange();
if (SM.rangeContainsTokenLoc(bodyRange, Loc)) {
swift::typeCheckASTNodeAtLoc(DC, Loc);
} else {
assert(bodyRange.isInvalid() && "The body should not be parsed if the "
"completion happens in the signature");
}
break;
}
}
}
//===----------------------------------------------------------------------===//
// findParsedExpr(DeclContext, Expr)
//===----------------------------------------------------------------------===//
namespace {
class ExprFinder : public ASTWalker {
SourceManager &SM;
SourceRange TargetRange;
Expr *FoundExpr = nullptr;
template <typename NodeType> bool isInterstingRange(NodeType *Node) {
return SM.rangeContains(Node->getSourceRange(), TargetRange);
}
bool shouldIgnore(Expr *E) {
// E.g. instanceOfDerived.methodInBaseReturningSelf().#^HERE^#'
// When calling a method in a base class returning 'Self', the call
// expression itself has the type of the base class. That is wrapped with
// CovariantReturnConversionExpr which downcasts it to the derived class.
if (isa<CovariantReturnConversionExpr>(E))
return false;
// E.g. TypeName(#^HERE^#
// In this case, we want the type expression instead of a reference to the
// initializer.
if (isa<ConstructorRefCallExpr>(E))
return true;
// Ignore other implicit expression.
if (E->isImplicit())
return true;
return false;
}
public:
ExprFinder(SourceManager &SM, SourceRange TargetRange)
: SM(SM), TargetRange(TargetRange) {}
Expr *get() const { return FoundExpr; }
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (TargetRange == E->getSourceRange() && !shouldIgnore(E)) {
assert(!FoundExpr && "non-nullptr for found expr");
FoundExpr = E;
return {false, nullptr};
}
return {isInterstingRange(E), E};
}
std::pair<bool, Pattern *> walkToPatternPre(Pattern *P) override {
return {isInterstingRange(P), P};
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
return {isInterstingRange(S), S};
}
bool walkToTypeReprPre(TypeRepr *T) override { return false; }
};
} // anonymous namespace
Expr *swift::ide::findParsedExpr(const DeclContext *DC,
SourceRange TargetRange) {
ExprFinder finder(DC->getASTContext().SourceMgr, TargetRange);
const_cast<DeclContext *>(DC)->walkContext(finder);
return finder.get();
}
//===----------------------------------------------------------------------===//
// removeCodeCompletionExpr(ASTContext, Expr)
//===----------------------------------------------------------------------===//
namespace {
// TODO: Implement other expressions?
class CCExprRemover: public ASTWalker, public ExprVisitor<CCExprRemover, Expr *> {
ASTContext &Ctx;
public:
bool Removed = false;
CCExprRemover(ASTContext &Ctx) : Ctx(Ctx) {}
Expr *visitCallExpr(CallExpr *E) {
SourceLoc lParenLoc, rParenLoc;
SmallVector<Identifier, 2> argLabels;
SmallVector<SourceLoc, 2> argLabelLocs;
SmallVector<Expr *, 2> args;
SmallVector<TrailingClosure, 2> trailingClosures;
bool removing = false;
if (auto paren = dyn_cast<ParenExpr>(E->getArg())) {
if (isa<CodeCompletionExpr>(paren->getSubExpr())) {
lParenLoc = paren->getLParenLoc();
rParenLoc = paren->getRParenLoc();
removing = true;
}
} else if (auto tuple = dyn_cast<TupleExpr>(E->getArg())) {
lParenLoc = tuple->getLParenLoc();
rParenLoc = tuple->getRParenLoc();
assert((!E->getUnlabeledTrailingClosureIndex().hasValue() ||
(tuple->getNumElements() == E->getArgumentLabels().size() &&
tuple->getNumElements() == E->getArgumentLabelLocs().size())) &&
"CallExpr with trailing closure must have the same number of "
"argument labels");
assert(tuple->getNumElements() == E->getArgumentLabels().size());
assert(tuple->getNumElements() == E->getArgumentLabelLocs().size() ||
E->getArgumentLabelLocs().size() == 0);
bool hasArgumentLabelLocs = E->getArgumentLabelLocs().size() > 0;
for (unsigned i = 0, e = tuple->getNumElements(); i != e; ++i) {
if (isa<CodeCompletionExpr>(tuple->getElement(i))) {
removing = true;
continue;
}
if (!E->getUnlabeledTrailingClosureIndex().hasValue() ||
i < *E->getUnlabeledTrailingClosureIndex()) {
// Normal arguments.
argLabels.push_back(E->getArgumentLabels()[i]);
if (hasArgumentLabelLocs)
argLabelLocs.push_back(E->getArgumentLabelLocs()[i]);
args.push_back(tuple->getElement(i));
} else {
// Trailing closure arguments.
trailingClosures.emplace_back(E->getArgumentLabels()[i],
E->getArgumentLabelLocs()[i],
tuple->getElement(i));
}
}
}
if (removing) {
Removed = true;
return CallExpr::create(Ctx, E->getFn(), lParenLoc, args, argLabels,
argLabelLocs, rParenLoc, trailingClosures,
E->isImplicit());
}
return E;
}
Expr *visitExpr(Expr *E) {
return E;
}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (Removed)
return {false, nullptr};
E = visit(E);
return {!Removed, E};
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
if (Removed)
return {false, nullptr};
return {true, S};
}
bool walkToDeclPre(Decl *D) override {
return !Removed;
}
};
}
bool swift::ide::removeCodeCompletionExpr(ASTContext &Ctx, Expr *&expr) {
CCExprRemover remover(Ctx);
expr = expr->walk(remover);
return remover.Removed;
}
//===----------------------------------------------------------------------===//
// collectPossibleReturnTypesFromContext(DeclContext, SmallVectorImpl<Type>)
//===----------------------------------------------------------------------===//
void swift::ide::collectPossibleReturnTypesFromContext(
DeclContext *DC, SmallVectorImpl<Type> &candidates) {
if (auto FD = dyn_cast<AbstractFunctionDecl>(DC)) {
auto Ty = FD->getInterfaceType();
if (FD->getDeclContext()->isTypeContext())
Ty = FD->getMethodInterfaceType();
if (auto FT = Ty->getAs<AnyFunctionType>()) {
candidates.push_back(DC->mapTypeIntoContext(FT->getResult()));
}
}
if (auto ACE = dyn_cast<AbstractClosureExpr>(DC)) {
// Try type checking the closure signature if it hasn't.
if (!ACE->getType())
swift::typeCheckASTNodeAtLoc(ACE->getParent(), ACE->getLoc());
// Use the type checked type if it has.
if (ACE->getType() && !ACE->getType()->hasError() &&
!ACE->getResultType()->hasUnresolvedType()) {
candidates.push_back(ACE->getResultType());
return;
}
if (auto CE = dyn_cast<ClosureExpr>(ACE)) {
if (CE->hasExplicitResultType()) {
// If the closure has a explicit return type, use it.
if (auto ty = CE->getExplicitResultType()) {
candidates.push_back(ty);
return;
} else {
const auto type = swift::performTypeResolution(
CE->getExplicitResultTypeRepr(), DC->getASTContext(),
/*isSILMode=*/false, /*isSILType=*/false,
DC->getGenericEnvironmentOfContext(), /*GenericParams=*/nullptr,
const_cast<DeclContext *>(DC), /*diagnostics=*/false);
if (!type->hasError()) {
candidates.push_back(type);
return;
}
}
} else {
// Otherwise, check the context type of the closure.
ExprContextInfo closureCtxInfo(CE->getParent(), CE);
for (auto closureTy : closureCtxInfo.getPossibleTypes()) {
if (auto funcTy = closureTy->getAs<AnyFunctionType>())
candidates.push_back(funcTy->getResult());
}
if (!candidates.empty())
return;
}
}
// Even if the type checked type has unresolved types, it's better than
// nothing.
if (ACE->getType() && !ACE->getType()->hasError())
candidates.push_back(ACE->getResultType());
}
}
//===----------------------------------------------------------------------===//
// ExprContextInfo(DeclContext, SourceRange)
//===----------------------------------------------------------------------===//
namespace {
class ExprParentFinder : public ASTWalker {
friend class ExprContextAnalyzer;
Expr *ChildExpr;
std::function<bool(ParentTy, ParentTy)> Predicate;
bool arePositionsSame(Expr *E1, Expr *E2) {
return E1->getSourceRange().Start == E2->getSourceRange().Start &&
E1->getSourceRange().End == E2->getSourceRange().End;
}
public:
llvm::SmallVector<ParentTy, 5> Ancestors;
ExprParentFinder(Expr *ChildExpr,
std::function<bool(ParentTy, ParentTy)> Predicate)
: ChildExpr(ChildExpr), Predicate(Predicate) {}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
// Finish if we found the target. 'ChildExpr' might have been replaced
// with typechecked expression. In that case, match the position.
if (E == ChildExpr || arePositionsSame(E, ChildExpr))
return {false, nullptr};
if (E != ChildExpr && Predicate(E, Parent)) {
Ancestors.push_back(E);
return {true, E};
}
return {true, E};
}
Expr *walkToExprPost(Expr *E) override {
if (Predicate(E, Parent))
Ancestors.pop_back();
return E;
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
if (Predicate(S, Parent))
Ancestors.push_back(S);
return {true, S};
}
Stmt *walkToStmtPost(Stmt *S) override {
if (Predicate(S, Parent))
Ancestors.pop_back();
return S;
}
bool walkToDeclPre(Decl *D) override {
if (Predicate(D, Parent))
Ancestors.push_back(D);
return true;
}
bool walkToDeclPost(Decl *D) override {
if (Predicate(D, Parent))
Ancestors.pop_back();
return true;
}
std::pair<bool, Pattern *> walkToPatternPre(Pattern *P) override {
if (Predicate(P, Parent))
Ancestors.push_back(P);
return {true, P};
}
Pattern *walkToPatternPost(Pattern *P) override {
if (Predicate(P, Parent))
Ancestors.pop_back();
return P;
}
};
/// Collect function (or subscript) members with the given \p name on \p baseTy.
static void collectPossibleCalleesByQualifiedLookup(
DeclContext &DC, Type baseTy, DeclNameRef name,
SmallVectorImpl<FunctionTypeAndDecl> &candidates) {
auto baseInstanceTy = baseTy->getMetatypeInstanceType();
if (!baseInstanceTy->mayHaveMembers())
return;
bool isOnMetaType = baseTy->is<AnyMetatypeType>();
SmallVector<ValueDecl *, 2> decls;
if (!DC.lookupQualified(baseInstanceTy,
name.withoutArgumentLabels(),
NL_QualifiedDefault | NL_ProtocolMembers,
decls))
return;
llvm::DenseMap<std::pair<char, CanType>, size_t> known;
auto *baseNominal = baseInstanceTy->getAnyNominal();
for (auto *VD : decls) {
if ((!isa<AbstractFunctionDecl>(VD) && !isa<SubscriptDecl>(VD)) ||
VD->shouldHideFromEditor())
continue;
if (!isMemberDeclApplied(&DC, baseInstanceTy, VD))
continue;
Type declaredMemberType = VD->getInterfaceType();
if (!declaredMemberType->is<AnyFunctionType>())
continue;
if (VD->getDeclContext()->isTypeContext()) {
if (isa<FuncDecl>(VD)) {
if (!isOnMetaType && VD->isStatic())
continue;
if (isOnMetaType == VD->isStatic())
declaredMemberType =
declaredMemberType->castTo<AnyFunctionType>()->getResult();
} else if (isa<ConstructorDecl>(VD)) {
if (!isOnMetaType)
continue;
declaredMemberType =
declaredMemberType->castTo<AnyFunctionType>()->getResult();
} else if (isa<SubscriptDecl>(VD)) {
if (isOnMetaType != VD->isStatic())
continue;
}
}
auto subs = baseInstanceTy->getMemberSubstitutionMap(
DC.getParentModule(), VD,
VD->getInnermostDeclContext()->getGenericEnvironmentOfContext());
auto fnType = declaredMemberType.subst(subs);
if (!fnType || !fnType->is<AnyFunctionType>())
continue;
// If we are calling on a type alias type, replace the canonicalized type
// in the function type with the type alias.
if (isa<SugarType>(baseInstanceTy.getPointer())) {
auto canBaseTy = baseInstanceTy->getCanonicalType();
fnType = fnType.transform([&](Type t) -> Type {
if (t->getCanonicalType()->isEqual(canBaseTy))
return baseInstanceTy;
return t;
});
}
auto semanticContext = SemanticContextKind::CurrentNominal;
if (baseNominal &&
VD->getDeclContext()->getSelfNominalTypeDecl() != baseNominal)
semanticContext = SemanticContextKind::Super;
FunctionTypeAndDecl entry(fnType->castTo<AnyFunctionType>(), VD,
semanticContext);
// Remember the index of the entry.
auto knownResult = known.insert(
{{VD->isStatic(), fnType->getCanonicalType()}, candidates.size()});
if (knownResult.second) {
candidates.push_back(entry);
continue;
}
auto idx = knownResult.first->second;
if (AvailableAttr::isUnavailable(candidates[idx].Decl) &&
!AvailableAttr::isUnavailable(VD)) {
// Replace the previously found "unavailable" with the "available" one.
candidates[idx] = entry;
}
// Otherwise, skip redundant results.
}
}
/// Collect function (or subscript) members with the given \p name on
/// \p baseExpr expression.
static void collectPossibleCalleesByQualifiedLookup(
DeclContext &DC, Expr *baseExpr, DeclNameRef name,
SmallVectorImpl<FunctionTypeAndDecl> &candidates) {
ConcreteDeclRef ref = nullptr;
// Re-typecheck TypeExpr so it's typechecked without the arguments which may
// affects the inference of the generic arguments.
if (TypeExpr *tyExpr = dyn_cast<TypeExpr>(baseExpr)) {
if (!tyExpr->isImplicit())
tyExpr->setType(nullptr);
}
Type baseTy = baseExpr->getType();
if (!baseTy || baseTy->is<ErrorType>()) {
auto baseTyOpt = getTypeOfCompletionContextExpr(
DC.getASTContext(), &DC, CompletionTypeCheckKind::Normal, baseExpr,
ref);
if (!baseTyOpt)
return;
baseTy = *baseTyOpt;
}
baseTy = baseTy->getWithoutSpecifierType();
// Use metatype for lookup 'super.init' if it's inside constructors.
if (isa<SuperRefExpr>(baseExpr) && isa<ConstructorDecl>(DC) &&
name == DeclNameRef::createConstructor())
baseTy = MetatypeType::get(baseTy);
collectPossibleCalleesByQualifiedLookup(DC, baseTy, name, candidates);
// Add virtual 'subscript<Value>(keyPath: KeyPath<Root, Value>) -> Value'.
if (name.getBaseName() == DeclBaseName::createSubscript() &&
(baseTy->getAnyNominal() || baseTy->is<ArchetypeType>() ||
baseTy->is<TupleType>())) {
auto &Ctx = DC.getASTContext();
auto *kpDecl = Ctx.getKeyPathDecl();
Type kpTy = kpDecl->mapTypeIntoContext(kpDecl->getDeclaredInterfaceType());
Type kpValueTy = kpTy->castTo<BoundGenericType>()->getGenericArgs()[1];
kpTy = BoundGenericType::get(kpDecl, Type(), {baseTy, kpValueTy});
Type fnTy = FunctionType::get(
{AnyFunctionType::Param(kpTy, Ctx.Id_keyPath)}, kpValueTy);
candidates.emplace_back(fnTy->castTo<AnyFunctionType>(), nullptr);
}
}
/// For the given \p unresolvedMemberExpr, collect possible callee types and
/// declarations.
static bool collectPossibleCalleesForUnresolvedMember(
DeclContext &DC, UnresolvedMemberExpr *unresolvedMemberExpr,
SmallVectorImpl<FunctionTypeAndDecl> &candidates) {
auto collectMembers = [&](Type expectedTy) {
if (!expectedTy->mayHaveMembers())
return;
collectPossibleCalleesByQualifiedLookup(DC, MetatypeType::get(expectedTy),
unresolvedMemberExpr->getName(),
candidates);
};
// Get the context of the expression itself.
ExprContextInfo contextInfo(&DC, unresolvedMemberExpr);
for (auto expectedTy : contextInfo.getPossibleTypes()) {
collectMembers(expectedTy);
// If this is an optional type, let's also check its base type.
if (auto baseTy = expectedTy->getOptionalObjectType()) {
collectMembers(baseTy->lookThroughAllOptionalTypes());
}
}
return !candidates.empty();
}
/// For the given \c callExpr, collect possible callee types and declarations.
static bool collectPossibleCalleesForApply(
DeclContext &DC, ApplyExpr *callExpr,
SmallVectorImpl<FunctionTypeAndDecl> &candidates) {
auto *fnExpr = callExpr->getFn();
if (auto *DRE = dyn_cast<DeclRefExpr>(fnExpr)) {
if (auto *decl = DRE->getDecl()) {
Type declTy = fnExpr->getType();
if ((!declTy || declTy->hasError() || declTy->hasUnresolvedType()) &&
decl->hasInterfaceType()) {
declTy = decl->getInterfaceType();
declTy = decl->getInnermostDeclContext()->mapTypeIntoContext(declTy);
}
if (declTy) {
declTy = declTy->getWithoutSpecifierType();
if (auto *funcTy = declTy->getAs<AnyFunctionType>())
candidates.emplace_back(funcTy, decl);
}
}
} else if (auto *OSRE = dyn_cast<OverloadSetRefExpr>(fnExpr)) {
for (auto *decl : OSRE->getDecls()) {
if (decl->hasInterfaceType()) {
auto declTy = decl->getInterfaceType();
declTy = decl->getInnermostDeclContext()->mapTypeIntoContext(declTy);
if (auto *funcType = declTy->getAs<AnyFunctionType>())
candidates.emplace_back(funcType, decl);
}
}
} else if (auto *UDE = dyn_cast<UnresolvedDotExpr>(fnExpr)) {
collectPossibleCalleesByQualifiedLookup(DC, UDE->getBase(), UDE->getName(),
candidates);
} else if (auto *DSCE = dyn_cast<DotSyntaxCallExpr>(fnExpr)) {
if (auto *DRE = dyn_cast<DeclRefExpr>(DSCE->getFn())) {
collectPossibleCalleesByQualifiedLookup(
DC, DSCE->getArg(), DeclNameRef(DRE->getDecl()->getName()),
candidates);
}
} else if (auto CRCE = dyn_cast<ConstructorRefCallExpr>(fnExpr)) {
collectPossibleCalleesByQualifiedLookup(
DC, CRCE->getArg(), DeclNameRef::createConstructor(), candidates);
} else if (auto *UME = dyn_cast<UnresolvedMemberExpr>(fnExpr)) {
collectPossibleCalleesForUnresolvedMember(DC, UME, candidates);
}
if (!candidates.empty())
return true;
ConcreteDeclRef refDecl = nullptr;
Type fnType = fnExpr->getType();
if (fnType) {
refDecl = fnExpr->getReferencedDecl();
if (!refDecl)
if (auto apply = dyn_cast<ApplyExpr>(fnExpr))
refDecl = apply->getFn()->getReferencedDecl();
}
if (!fnType) {
auto fnTypeOpt = getTypeOfCompletionContextExpr(
DC.getASTContext(), &DC, CompletionTypeCheckKind::Normal, fnExpr,
refDecl);
if (fnTypeOpt)
fnType = *fnTypeOpt;
}
if (!fnType || fnType->hasUnresolvedType() || fnType->hasError())
return false;
fnType = fnType->getWithoutSpecifierType();
if (auto *AFT = fnType->getAs<AnyFunctionType>()) {
candidates.emplace_back(AFT, refDecl.getDecl());
} else if (auto *AMT = fnType->getAs<AnyMetatypeType>()) {
auto baseTy = AMT->getInstanceType();
if (isa<TypeExpr>(fnExpr) && baseTy->mayHaveMembers()) {
collectPossibleCalleesByQualifiedLookup(
DC, fnExpr, DeclNameRef::createConstructor(), candidates);
}
} else {
// Otherwise, look for `callAsFunction` (SE-0253).
collectPossibleCalleesByQualifiedLookup(
DC, fnExpr, DeclNameRef(DC.getASTContext().Id_callAsFunction),
candidates);
}
return !candidates.empty();
}
/// For the given \c subscriptExpr, collect possible callee types and
/// declarations.
static bool collectPossibleCalleesForSubscript(
DeclContext &DC, SubscriptExpr *subscriptExpr,
SmallVectorImpl<FunctionTypeAndDecl> &candidates) {
if (subscriptExpr->hasDecl()) {
if (auto SD = dyn_cast<SubscriptDecl>(subscriptExpr->getDecl().getDecl())) {
auto declType = SD->getInterfaceType();
declType = declType.subst(subscriptExpr->getDecl().getSubstitutions());
if (auto *funcType = declType->getAs<AnyFunctionType>())
candidates.emplace_back(funcType, SD);
}
} else {
collectPossibleCalleesByQualifiedLookup(DC, subscriptExpr->getBase(),
DeclNameRef::createSubscript(),
candidates);
}
return !candidates.empty();
}
/// Get index of \p CCExpr in \p Args. \p Args is usually a \c TupleExpr
/// or \c ParenExpr.
/// \returns \c true if success, \c false if \p CCExpr is not a part of \p Args.
static bool getPositionInArgs(DeclContext &DC, Expr *Args, Expr *CCExpr,
unsigned &Position, bool &HasName) {
if (isa<ParenExpr>(Args)) {
HasName = false;
Position = 0;
return true;
}
auto *tuple = dyn_cast<TupleExpr>(Args);
if (!tuple)
return false;
auto &SM = DC.getASTContext().SourceMgr;
for (unsigned i = 0, n = tuple->getNumElements(); i != n; ++i) {
if (SM.isBeforeInBuffer(tuple->getElement(i)->getEndLoc(),
CCExpr->getStartLoc()))
continue;
HasName = tuple->getElementNameLoc(i).isValid();
Position = i;
return true;
}
return false;
}
/// Given an expression and its context, the analyzer tries to figure out the
/// expected type of the expression by analyzing its context.
class ExprContextAnalyzer {
DeclContext *DC;
Expr *ParsedExpr;
SourceManager &SM;
ASTContext &Context;
// Results populated by Analyze()
SmallVectorImpl<Type> &PossibleTypes;
SmallVectorImpl<PossibleParamInfo> &PossibleParams;
SmallVectorImpl<FunctionTypeAndDecl> &PossibleCallees;
Expr *&AnalyzedExpr;
bool &implicitSingleExpressionReturn;
void recordPossibleType(Type ty) {
if (!ty || ty->is<ErrorType>())
return;
PossibleTypes.push_back(ty->getRValueType());
}
void recordPossibleParam(const AnyFunctionType::Param *arg, bool isRequired) {
PossibleParams.emplace_back(arg, isRequired);
}
/// Collect context information at call argument position.
bool analyzeApplyExpr(Expr *E) {
// Collect parameter lists for possible func decls.
SmallVector<FunctionTypeAndDecl, 2> Candidates;
Expr *Arg = nullptr;
if (auto *applyExpr = dyn_cast<ApplyExpr>(E)) {
if (!collectPossibleCalleesForApply(*DC, applyExpr, Candidates))
return false;
Arg = applyExpr->getArg();
} else if (auto *subscriptExpr = dyn_cast<SubscriptExpr>(E)) {
if (!collectPossibleCalleesForSubscript(*DC, subscriptExpr, Candidates))
return false;
Arg = subscriptExpr->getIndex();
} else {
llvm_unreachable("unexpected expression kind");
}
assert(!Candidates.empty());
PossibleCallees.assign(Candidates.begin(), Candidates.end());
// Determine the position of code completion token in call argument.
unsigned Position;
bool HasName;
if (!getPositionInArgs(*DC, Arg, ParsedExpr, Position, HasName))
return false;
// Collect possible types (or labels) at the position.
// FIXME: Take variadic and optional parameters into account. We need to do
// something equivalent to 'constraints::matchCallArguments'
{
bool MayNeedName = !HasName && !E->isImplicit() &&
(isa<CallExpr>(E) | isa<SubscriptExpr>(E) ||
isa<UnresolvedMemberExpr>(E));
SmallPtrSet<CanType, 4> seenTypes;
llvm::SmallSet<std::pair<Identifier, CanType>, 4> seenArgs;
for (auto &typeAndDecl : Candidates) {
DeclContext *memberDC = nullptr;
if (typeAndDecl.Decl)
memberDC = typeAndDecl.Decl->getInnermostDeclContext();
auto Params = typeAndDecl.Type->getParams();
ParameterList *paramList = nullptr;
if (auto VD = typeAndDecl.Decl) {
paramList = getParameterList(VD);
if (paramList && paramList->size() != Params.size())
paramList = nullptr;
}
for (auto Pos = Position; Pos < Params.size(); ++Pos) {
const auto &paramType = Params[Pos];
Type ty = paramType.getPlainType();
if (memberDC && ty->hasTypeParameter())
ty = memberDC->mapTypeIntoContext(ty);
bool canSkip =
paramList && (paramList->get(Pos)->isDefaultArgument() ||
paramList->get(Pos)->isVariadic());
if (paramType.hasLabel() && MayNeedName) {
if (seenArgs.insert({paramType.getLabel(), ty->getCanonicalType()})
.second)
recordPossibleParam(&paramType, !canSkip);
} else {
auto argTy = ty;
if (paramType.isInOut())
argTy = InOutType::get(argTy);
else if (paramType.isAutoClosure() && argTy->is<AnyFunctionType>())
argTy = argTy->castTo<AnyFunctionType>()->getResult();
if (seenTypes.insert(argTy->getCanonicalType()).second)
recordPossibleType(argTy);
}
if (!canSkip)
break;
}
// If the argument position is out of expeceted number, indicate that
// with optional nullptr param.
if (Position >= Params.size()) {
if (seenArgs.insert({Identifier(), CanType()}).second)
recordPossibleParam(nullptr, /*isRequired=*/false);
}
}
}
return !PossibleTypes.empty() || !PossibleParams.empty();
}
void analyzeExpr(Expr *Parent) {
AnalyzedExpr = Parent;
switch (Parent->getKind()) {
case ExprKind::Call:
case ExprKind::Subscript:
case ExprKind::Binary:
case ExprKind::PrefixUnary: {
analyzeApplyExpr(Parent);
break;
}
case ExprKind::Array: {
if (auto type = ParsedExpr->getType()) {
if (!type->is<UnresolvedType>()) {
recordPossibleType(type);
break;
}
}
// Check context types of the array literal expression.
ExprContextInfo arrayCtxtInfo(DC, Parent);
for (auto arrayT : arrayCtxtInfo.getPossibleTypes()) {
if (auto boundGenericT = arrayT->getAs<BoundGenericType>()) {
// let _: [Element] = [#HERE#]
// In this case, 'Element' is the expected type.
if (boundGenericT->getDecl() == Context.getArrayDecl())
recordPossibleType(boundGenericT->getGenericArgs()[0]);
// let _: [Key : Value] = [#HERE#]
// In this case, 'Key' is the expected type.
if (boundGenericT->getDecl() == Context.getDictionaryDecl())
recordPossibleType(boundGenericT->getGenericArgs()[0]);
}
}
break;
}
case ExprKind::Dictionary: {
// Check context types of the dictionary literal expression.
ExprContextInfo dictCtxtInfo(DC, Parent);
for (auto dictT : dictCtxtInfo.getPossibleTypes()) {
if (auto boundGenericT = dictT->getAs<BoundGenericType>()) {
if (boundGenericT->getDecl() == Context.getDictionaryDecl()) {
if (ParsedExpr->isImplicit() && isa<TupleExpr>(ParsedExpr)) {
// let _: [Key : Value] = [#HERE#:]
// let _: [Key : Value] = [#HERE#:val]
// let _: [Key : Value] = [key:#HERE#]
// In this case, this is called by 'ExprKind::Tuple' case. Return
// '(Key,Value)' here, 'ExprKind::Tuple' branch can decide which
// type in the tuple type is the exprected type.
SmallVector<TupleTypeElt, 2> elts;
for (auto genericArg : boundGenericT->getGenericArgs())
elts.emplace_back(genericArg);
recordPossibleType(TupleType::get(elts, DC->getASTContext()));
} else {
// let _: [Key : Value] = [key: val, #HERE#]
// In this case, assume 'Key' is the expected type.
if (boundGenericT->getDecl() == Context.getDictionaryDecl())
recordPossibleType(boundGenericT->getGenericArgs()[0]);
}
}
}
}
break;
}
case ExprKind::If: {
auto *IE = cast<IfExpr>(Parent);
if (IE->isFolded() &&
SM.rangeContains(IE->getCondExpr()->getSourceRange(),
ParsedExpr->getSourceRange())) {
recordPossibleType(Context.getBoolDecl()->getDeclaredInterfaceType());
break;
}
ExprContextInfo ternaryCtxtInfo(DC, Parent);
for (auto ternaryT : ternaryCtxtInfo.getPossibleTypes())
recordPossibleType(ternaryT);
break;
}
case ExprKind::Assign: {
auto *AE = cast<AssignExpr>(Parent);
// Make sure code completion is on the right hand side.
if (SM.isBeforeInBuffer(AE->getEqualLoc(), ParsedExpr->getStartLoc())) {
// The destination is of the expected type.
auto *destExpr = AE->getDest();
if (auto type = destExpr->getType()) {
recordPossibleType(type);
} else if (auto *DRE = dyn_cast<DeclRefExpr>(destExpr)) {
if (auto *decl = DRE->getDecl()) {
if (decl->hasInterfaceType())
recordPossibleType(decl->getDeclContext()->mapTypeIntoContext(
decl->getInterfaceType()));
}
}
}
break;
}
case ExprKind::Tuple: {
TupleType *tupleT = nullptr;
if (Parent->getType() && Parent->getType()->is<TupleType>()) {
tupleT = Parent->getType()->castTo<TupleType>();
} else {
ExprContextInfo tupleCtxtInfo(DC, Parent);
for (auto possibleT : tupleCtxtInfo.getPossibleTypes()) {
if (auto possibleTupleT = possibleT->getAs<TupleType>()) {
tupleT = possibleTupleT;
break;
}
}
if (!tupleT)
return;
}
unsigned Position = 0;
bool HasName;
if (getPositionInArgs(*DC, Parent, ParsedExpr, Position, HasName)) {
// The expected type may have fewer number of elements.
if (Position < tupleT->getNumElements())
recordPossibleType(tupleT->getElementType(Position));
}
break;
}
case ExprKind::Closure: {
auto *CE = cast<ClosureExpr>(Parent);
assert(hasImplicitSingleExpressionReturn(CE->getBody()));
implicitSingleExpressionReturn = true;
SmallVector<Type, 2> candidates;
collectPossibleReturnTypesFromContext(CE, candidates);
for (auto ty : candidates)
recordPossibleType(ty);
break;
}
default:
llvm_unreachable("Unhandled expression kind.");
}
}
void analyzeStmt(Stmt *Parent) {
switch (Parent->getKind()) {
case StmtKind::Return: {
SmallVector<Type, 2> candidates;
collectPossibleReturnTypesFromContext(DC, candidates);
for (auto ty : candidates)
recordPossibleType(ty);
break;
}
case StmtKind::ForEach:
if (auto SEQ = cast<ForEachStmt>(Parent)->getSequence()) {
if (containsTarget(SEQ)) {
recordPossibleType(
Context.getSequenceDecl()->getDeclaredInterfaceType());
}
}
break;
case StmtKind::RepeatWhile:
case StmtKind::If:
case StmtKind::While:
case StmtKind::Guard:
if (isBoolConditionOf(Parent)) {
recordPossibleType(Context.getBoolDecl()->getDeclaredInterfaceType());
}
break;
default:
llvm_unreachable("Unhandled statement kind.");
}
}
bool isBoolConditionOf(Stmt *parent) {
if (auto *repeat = dyn_cast<RepeatWhileStmt>(parent)) {
return repeat->getCond() && containsTarget(repeat->getCond());
}
if (auto *conditional = dyn_cast<LabeledConditionalStmt>(parent)) {
for (StmtConditionElement cond : conditional->getCond()) {
if (auto *E = cond.getBooleanOrNull()) {
if (containsTarget(E)) {
return true;
}
}
}
}
return false;
}
bool containsTarget(Expr *E) {
assert(E && "expected parent expression");
return SM.rangeContains(E->getSourceRange(), ParsedExpr->getSourceRange());
}
void analyzeDecl(Decl *D) {
switch (D->getKind()) {
case DeclKind::PatternBinding: {
auto PBD = cast<PatternBindingDecl>(D);
for (unsigned I : range(PBD->getNumPatternEntries())) {
if (auto Init = PBD->getInit(I)) {
if (containsTarget(Init)) {
if (PBD->getPattern(I)->hasType()) {
recordPossibleType(PBD->getPattern(I)->getType());
break;
}
}
}
}
break;
}
default:
if (auto *FD = dyn_cast<FuncDecl>(D)) {
assert(hasImplicitSingleExpressionReturn(FD->getBody()));
implicitSingleExpressionReturn = true;
SmallVector<Type, 2> candidates;
collectPossibleReturnTypesFromContext(DC, candidates);
for (auto ty : candidates)
recordPossibleType(ty);
break;
}
llvm_unreachable("Unhandled decl kind.");
}
}
void analyzePattern(Pattern *P) {
switch (P->getKind()) {
case PatternKind::Expr: {
auto ExprPat = cast<ExprPattern>(P);
if (auto D = ExprPat->getMatchVar()) {
if (D->hasInterfaceType())
recordPossibleType(
D->getDeclContext()->mapTypeIntoContext(D->getInterfaceType()));
}
break;
}
default:
llvm_unreachable("Unhandled pattern kind.");
}
}
void analyzeInitializer(Initializer *initDC) {
switch (initDC->getInitializerKind()) {
case swift::InitializerKind::PatternBinding: {
auto initDC = cast<PatternBindingInitializer>(DC);
auto PBD = initDC->getBinding();
if (!PBD)
break;
auto pat = PBD->getPattern(initDC->getBindingIndex());
if (pat->hasType())
recordPossibleType(pat->getType());
break;
}
case InitializerKind::DefaultArgument: {
auto initDC = cast<DefaultArgumentInitializer>(DC);
auto AFD = dyn_cast<AbstractFunctionDecl>(initDC->getParent());
if (!AFD)
return;
auto param = AFD->getParameters()->get(initDC->getIndex());
recordPossibleType(AFD->mapTypeIntoContext(param->getInterfaceType()));
break;
}
}
}
/// Whether the given \c BraceStmt, which must be the body of a function or
/// closure, contains a single expression that would be implicitly returned if
/// the single-expression-body transform had been performed.
///
/// We cannot use hasSingleExpressionBody, because we explicitly do not use
/// the single-expression-body transform when there is a code-completion in
/// the expression in order to avoid a base expression affecting the type, and
/// need to distinguish whether the single expression body was explicitly
/// returned (in which case the expression's type *must* match the expected
/// return type) or not (in which case it *may* match, as the user could intend
/// it only as the first statement of many that they haven't finished writing
/// yet.
static bool hasImplicitSingleExpressionReturn(BraceStmt *body) {
if (body->getNumElements() == 2) {
if (auto *D = body->getFirstElement().dyn_cast<Decl *>()) {
// Step into nested active clause.
while (auto *ICD = dyn_cast<IfConfigDecl>(D)) {
auto ACE = ICD->getActiveClauseElements();
if (ACE.size() == 1) {
return body->getLastElement().is<Expr *>();
} else if (ACE.size() == 2) {
if (auto *ND = ACE.front().dyn_cast<Decl *>()) {
D = ND;
continue;
}
}
break;
}
}
}
return body->getNumElements() == 1 && body->getLastElement().is<Expr *>();
}
public:
ExprContextAnalyzer(
DeclContext *DC, Expr *ParsedExpr, SmallVectorImpl<Type> &PossibleTypes,
SmallVectorImpl<PossibleParamInfo> &PossibleArgs,
SmallVectorImpl<FunctionTypeAndDecl> &PossibleCallees,
Expr *&AnalyzedExpr, bool &implicitSingleExpressionReturn)
: DC(DC), ParsedExpr(ParsedExpr), SM(DC->getASTContext().SourceMgr),
Context(DC->getASTContext()), PossibleTypes(PossibleTypes),
PossibleParams(PossibleArgs), PossibleCallees(PossibleCallees),
AnalyzedExpr(AnalyzedExpr),
implicitSingleExpressionReturn(implicitSingleExpressionReturn) {}
void Analyze() {
// We cannot analyze without target.
if (!ParsedExpr)
return;
ExprParentFinder Finder(ParsedExpr, [&](ASTWalker::ParentTy Node,
ASTWalker::ParentTy Parent) {
if (auto E = Node.getAsExpr()) {
switch (E->getKind()) {
case ExprKind::Call: {
// Iff the cursor is in argument position.
auto call = cast<CallExpr>(E);
auto fnRange = call->getFn()->getSourceRange();
auto argsRange = call->getArg()->getSourceRange();
auto exprRange = ParsedExpr->getSourceRange();
return !SM.rangeContains(fnRange, exprRange) &&
SM.rangeContains(argsRange, exprRange);
}
case ExprKind::Subscript: {
// Iff the cursor is in index position.
auto argsRange = cast<SubscriptExpr>(E)->getIndex()->getSourceRange();
return SM.rangeContains(argsRange, ParsedExpr->getSourceRange());
}
case ExprKind::Binary:
case ExprKind::PrefixUnary:
case ExprKind::Assign:
case ExprKind::Dictionary:
case ExprKind::If:
return true;
case ExprKind::Array:
return (!Parent.getAsExpr() ||
!isa<VarargExpansionExpr>(Parent.getAsExpr()));
case ExprKind::Tuple: {
auto ParentE = Parent.getAsExpr();
return !ParentE ||
(!isa<CallExpr>(ParentE) && !isa<SubscriptExpr>(ParentE) &&
!isa<BinaryExpr>(ParentE));
}
case ExprKind::Closure:
return hasImplicitSingleExpressionReturn(
cast<ClosureExpr>(E)->getBody());
default:
return false;
}
} else if (auto S = Node.getAsStmt()) {
switch (S->getKind()) {
case StmtKind::Return:
case StmtKind::ForEach:
case StmtKind::RepeatWhile:
case StmtKind::If:
case StmtKind::While:
case StmtKind::Guard:
return true;
default:
return false;
}
} else if (auto D = Node.getAsDecl()) {
switch (D->getKind()) {
case DeclKind::PatternBinding:
return true;
default:
if (auto *FD = dyn_cast<FuncDecl>(D))
if (auto *body = FD->getBody())
return hasImplicitSingleExpressionReturn(body);
return false;
}
} else if (auto P = Node.getAsPattern()) {
switch (P->getKind()) {
case PatternKind::Expr:
return true;
default:
return false;
}
} else
return false;
});
// For 'Initializer' context, we need to look into its parent.
auto analyzeDC = isa<Initializer>(DC) ? DC->getParent() : DC;
analyzeDC->walkContext(Finder);
if (Finder.Ancestors.empty()) {
// There's no parent context in DC. But still, the parent of the
// initializer might constrain the initializer's type.
if (auto initDC = dyn_cast<Initializer>(DC))
analyzeInitializer(initDC);
return;
}
auto &P = Finder.Ancestors.back();
if (auto Parent = P.getAsExpr()) {
analyzeExpr(Parent);
} else if (auto Parent = P.getAsStmt()) {
analyzeStmt(Parent);
} else if (auto Parent = P.getAsDecl()) {
analyzeDecl(Parent);
} else if (auto Parent = P.getAsPattern()) {
analyzePattern(Parent);
}
}
};
} // end anonymous namespace
ExprContextInfo::ExprContextInfo(DeclContext *DC, Expr *TargetExpr) {
ExprContextAnalyzer Analyzer(DC, TargetExpr, PossibleTypes, PossibleParams,
PossibleCallees, AnalyzedExpr,
implicitSingleExpressionReturn);
Analyzer.Analyze();
}