blob: e90485b351e22546ba5daf006a5731c4c13f9e65 [file] [log] [blame]
//===--- CSDiagnostics.h - Constraint Diagnostics -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides necessary abstractions for constraint system diagnostics.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SEMA_CSDIAGNOSTICS_H
#define SWIFT_SEMA_CSDIAGNOSTICS_H
#include "Constraint.h"
#include "ConstraintSystem.h"
#include "OverloadChoice.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Identifier.h"
#include "swift/AST/Types.h"
#include "swift/Basic/SourceLoc.h"
#include "llvm/ADT/ArrayRef.h"
#include <tuple>
namespace swift {
namespace constraints {
class FunctionArgApplyInfo;
/// Base class for all of the possible diagnostics,
/// provides most basic information such as location of
/// the problem, parent expression and some utility methods.
class FailureDiagnostic {
Expr *E;
ConstraintSystem &CS;
ConstraintLocator *Locator;
/// The original anchor before any simplification.
Expr *RawAnchor;
/// Simplified anchor associated with the given locator.
Expr *Anchor;
/// Indicates whether locator could be simplified
/// down to anchor expression.
bool HasComplexLocator;
public:
FailureDiagnostic(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator)
: E(expr), CS(cs), Locator(locator), RawAnchor(locator->getAnchor()) {
std::tie(Anchor, HasComplexLocator) = computeAnchor();
}
virtual ~FailureDiagnostic();
/// Try to diagnose a problem given affected expression,
/// failure location, types and declarations deduced by
/// constraint system, and other auxiliary information.
///
/// \param asNote In ambiguity cases it's beneficial to
/// produce diagnostic as a note instead of an error if possible.
///
/// \returns true If the problem has been successfully diagnosed
/// and diagnostic message emitted, false otherwise.
bool diagnose(bool asNote = false);
/// Try to produce an error diagnostic for the problem at hand.
///
/// \returns true If anything was diagnosed, false otherwise.
virtual bool diagnoseAsError() = 0;
/// Instead of producing an error diagnostic, attempt to
/// produce a "note" to complement some other diagnostic
/// e.g. ambiguity error.
virtual bool diagnoseAsNote();
ConstraintSystem &getConstraintSystem() const {
return CS;
}
Expr *getParentExpr() const { return E; }
Expr *getRawAnchor() const { return RawAnchor; }
Expr *getAnchor() const { return Anchor; }
ConstraintLocator *getLocator() const { return Locator; }
Type getType(Expr *expr) const;
Type getType(const TypeLoc &loc) const;
/// Resolve type variables present in the raw type, if any.
Type resolveType(Type rawType, bool reconstituteSugar = false) const {
auto resolvedType = CS.simplifyType(rawType);
return reconstituteSugar
? resolvedType->reconstituteSugar(/*recursive*/ true)
: resolvedType;
}
/// Resolve type variables present in the raw type, using generic parameter
/// types where possible.
Type resolveInterfaceType(Type type, bool reconstituteSugar = false) const;
template <typename... ArgTypes>
InFlightDiagnostic emitDiagnostic(ArgTypes &&... Args) const;
protected:
TypeChecker &getTypeChecker() const { return CS.TC; }
DeclContext *getDC() const { return CS.DC; }
ASTContext &getASTContext() const { return CS.getASTContext(); }
Optional<std::pair<Type, ConversionRestrictionKind>>
getRestrictionForType(Type type) const {
for (auto &restriction : CS.ConstraintRestrictions) {
if (std::get<0>(restriction)->isEqual(type))
return std::pair<Type, ConversionRestrictionKind>(
std::get<1>(restriction), std::get<2>(restriction));
}
return None;
}
ValueDecl *getResolvedMemberRef(UnresolvedDotExpr *member) const {
auto locator = CS.getConstraintLocator(member, ConstraintLocator::Member);
return CS.findResolvedMemberRef(locator);
}
Optional<SelectedOverload>
getOverloadChoiceIfAvailable(ConstraintLocator *locator) const {
if (auto *overload = getResolvedOverload(locator))
return Optional<SelectedOverload>(
{overload->Choice, overload->OpenedFullType, overload->ImpliedType});
return None;
}
/// Retrieve overload choice resolved for given locator
/// by the constraint solver.
ResolvedOverloadSetListItem *
getResolvedOverload(ConstraintLocator *locator) const {
return CS.findSelectedOverloadFor(locator);
}
/// Retrive the constraint locator for the given anchor and
/// path, uniqued and automatically calculate the summary flags
ConstraintLocator *
getConstraintLocator(Expr *anchor,
ArrayRef<ConstraintLocator::PathElement> path) {
return CS.getConstraintLocator(anchor, path);
}
/// \returns true is locator hasn't been simplified down to expression.
bool hasComplexLocator() const { return HasComplexLocator; }
/// \returns A parent expression if sub-expression is contained anywhere
/// in the root expression or `nullptr` otherwise.
Expr *findParentExpr(Expr *subExpr) const;
/// If given expression is some kind of a member reference e.g.
/// `x.foo` or `x[0]` extract and return its base expression.
Expr *getBaseExprFor(Expr *anchor) const;
/// For a given locator describing an argument application, or a constraint
/// within an argument application, returns the argument list for that
/// application. If the locator is not for an argument application, or
/// the argument list cannot be found, returns \c nullptr.
Expr *getArgumentListExprFor(ConstraintLocator *locator) const;
/// \returns The overload choice made by the constraint system for the callee
/// of a given locator's anchor, or \c None if no such choice can be found.
Optional<SelectedOverload> getChoiceFor(ConstraintLocator *) const;
/// For a given locator describing a function argument conversion, or a
/// constraint within an argument conversion, returns information about the
/// application of the argument to its parameter. If the locator is not
/// for an argument conversion, returns \c None.
Optional<FunctionArgApplyInfo>
getFunctionArgApplyInfo(ConstraintLocator *locator) const;
/// \returns A new type with all of the type variables associated with
/// generic parameters substituted back into being generic parameter type.
Type restoreGenericParameters(
Type type,
llvm::function_ref<void(GenericTypeParamType *, Type)> substitution =
[](GenericTypeParamType *, Type) {});
private:
/// Compute anchor expression associated with current diagnostic.
std::pair<Expr *, bool> computeAnchor() const;
};
/// Provides information about the application of a function argument to a
/// parameter.
class FunctionArgApplyInfo {
Expr *ArgExpr;
unsigned ArgIdx;
Type ArgType;
unsigned ParamIdx;
Type FnInterfaceType;
FunctionType *FnType;
const ValueDecl *Callee;
public:
FunctionArgApplyInfo(Expr *argExpr, unsigned argIdx, Type argType,
unsigned paramIdx, Type fnInterfaceType,
FunctionType *fnType, const ValueDecl *callee)
: ArgExpr(argExpr), ArgIdx(argIdx), ArgType(argType), ParamIdx(paramIdx),
FnInterfaceType(fnInterfaceType), FnType(fnType), Callee(callee) {}
/// \returns The argument being applied.
Expr *getArgExpr() const { return ArgExpr; }
/// \returns The position of the argument, starting at 1.
unsigned getArgPosition() const { return ArgIdx + 1; }
/// \returns The position of the parameter, starting at 1.
unsigned getParamPosition() const { return ParamIdx + 1; }
/// \returns The type of the argument being applied, including any generic
/// substitutions.
///
/// \param withSpecifier Whether to keep the inout or @lvalue specifier of
/// the argument, if any.
Type getArgType(bool withSpecifier = false) const {
return withSpecifier ? ArgType : ArgType->getWithoutSpecifierType();
}
/// \returns The interface type for the function being applied. Note that this
/// may not a function type, for example it could be a generic parameter.
Type getFnInterfaceType() const { return FnInterfaceType; }
/// \returns The function type being applied, including any generic
/// substitutions.
FunctionType *getFnType() const { return FnType; }
/// \returns The callee for the application.
const ValueDecl *getCallee() const { return Callee; }
private:
Type getParamTypeImpl(AnyFunctionType *fnTy,
bool lookThroughAutoclosure) const {
auto param = fnTy->getParams()[ParamIdx];
auto paramTy = param.getPlainType();
if (lookThroughAutoclosure && param.isAutoClosure())
paramTy = paramTy->castTo<FunctionType>()->getResult();
return paramTy;
}
public:
/// \returns The type of the parameter which the argument is being applied to,
/// including any generic substitutions.
///
/// \param lookThroughAutoclosure Whether an @autoclosure () -> T parameter
/// should be treated as being of type T.
Type getParamType(bool lookThroughAutoclosure = true) const {
return getParamTypeImpl(FnType, lookThroughAutoclosure);
}
/// \returns The interface type of the parameter which the argument is being
/// applied to.
///
/// \param lookThroughAutoclosure Whether an @autoclosure () -> T parameter
/// should be treated as being of type T.
Type getParamInterfaceType(bool lookThroughAutoclosure = true) const {
auto interfaceFnTy = FnInterfaceType->getAs<AnyFunctionType>();
if (!interfaceFnTy) {
// If the interface type isn't a function, then just return the resolved
// parameter type.
return getParamType(lookThroughAutoclosure)->mapTypeOutOfContext();
}
return getParamTypeImpl(interfaceFnTy, lookThroughAutoclosure);
}
/// \returns The flags of the parameter which the argument is being applied
/// to.
ParameterTypeFlags getParameterFlags() const {
return FnType->getParams()[ParamIdx].getParameterFlags();
}
ParameterTypeFlags getParameterFlagsAtIndex(unsigned idx) const {
return FnType->getParams()[idx].getParameterFlags();
}
};
/// Base class for all of the diagnostics related to generic requirement
/// failures, provides common information like failed requirement,
/// declaration where such requirement comes from, etc.
class RequirementFailure : public FailureDiagnostic {
protected:
using PathEltKind = ConstraintLocator::PathElementKind;
using DiagOnDecl = Diag<DescriptiveDeclKind, DeclName, Type, Type>;
using DiagInReference = Diag<DescriptiveDeclKind, DeclName, Type, Type, Type>;
using DiagAsNote = Diag<Type, Type, Type, Type, StringRef>;
/// If this failure associated with one of the conditional requirements,
/// this field would represent conformance where requirement comes from.
const ProtocolConformance *Conformance = nullptr;
/// The source of the requirement, if available. One exception
/// is failure associated with conditional requirement where
/// underlying conformance is specialized.
GenericSignature Signature;
const ValueDecl *AffectedDecl;
/// If possible, find application expression associated
/// with current generic requirement failure, that helps
/// to diagnose failures related to arguments.
const ApplyExpr *Apply = nullptr;
/// Types associated with requirement constraint this
/// failure originates from.
Type LHS, RHS;
public:
RequirementFailure(ConstraintSystem &cs, Expr *expr, RequirementKind kind,
Type lhs, Type rhs, ConstraintLocator *locator)
: FailureDiagnostic(expr, cs, locator),
Conformance(getConformanceForConditionalReq(locator)),
Signature(getSignature(locator)), AffectedDecl(getDeclRef()),
LHS(resolveType(lhs)), RHS(resolveType(rhs)) {
assert(locator);
assert(isConditional() || Signature);
assert(AffectedDecl);
assert(getRequirementDC() &&
"Couldn't find where the requirement came from?");
assert(getGenericContext() &&
"Affected decl not within a generic context?");
auto reqElt = locator->castLastElementTo<LocatorPathElt::AnyRequirement>();
assert(reqElt.getRequirementKind() == kind);
// It's possible sometimes not to have no base expression.
if (!expr)
return;
if (auto *parentExpr = findParentExpr(getRawAnchor()))
Apply = dyn_cast<ApplyExpr>(parentExpr);
}
unsigned getRequirementIndex() const {
auto reqElt =
getLocator()->castLastElementTo<LocatorPathElt::AnyRequirement>();
return reqElt.getIndex();
}
/// The generic base type where failing requirement comes from.
Type getOwnerType() const;
/// Generic context associated with the failure.
const GenericContext *getGenericContext() const;
/// Generic requirement associated with the failure.
const Requirement &getRequirement() const;
Type getLHS() const { return LHS; }
Type getRHS() const { return RHS; }
bool diagnoseAsError() override;
bool diagnoseAsNote() override;
protected:
/// Determine whether this is a conditional requirement failure.
bool isConditional() const { return bool(Conformance); }
/// Check whether this requirement comes from the contextual type
/// that root expression is coerced/converted into.
bool isFromContextualType() const;
/// Retrieve declaration contextual where current
/// requirement has been introduced.
const DeclContext *getRequirementDC() const;
virtual DiagOnDecl getDiagnosticOnDecl() const = 0;
virtual DiagInReference getDiagnosticInRereference() const = 0;
virtual DiagAsNote getDiagnosticAsNote() const = 0;
static bool isOperator(const ApplyExpr *apply) {
return isa<PrefixUnaryExpr>(apply) || isa<PostfixUnaryExpr>(apply) ||
isa<BinaryExpr>(apply);
}
/// Determine whether given declaration represents a static
/// or instance property/method, excluding operators.
static bool isStaticOrInstanceMember(const ValueDecl *decl);
private:
/// Retrieve declaration associated with failing generic requirement.
ValueDecl *getDeclRef() const;
/// Retrieve generic signature where this parameter originates from.
GenericSignature getSignature(ConstraintLocator *locator);
void emitRequirementNote(const Decl *anchor, Type lhs, Type rhs) const;
/// If this is a failure in conditional requirement, retrieve
/// conformance information.
ProtocolConformance *
getConformanceForConditionalReq(ConstraintLocator *locator);
};
/// Diagnostics for failed conformance checks originating from
/// generic requirements e.g.
/// ```swift
/// struct S {}
/// func foo<T: Hashable>(_ t: T) {}
/// foo(S())
/// ```
class MissingConformanceFailure final : public RequirementFailure {
public:
MissingConformanceFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator,
std::pair<Type, Type> conformance)
: RequirementFailure(cs, expr, RequirementKind::Conformance,
conformance.first, conformance.second, locator) {}
bool diagnoseAsError() override;
protected:
/// Check whether this requirement is associated with one of the
/// operator overloads, in cases like that sometimes it makes more
/// sense to produce a generic diagnostic about operator reference
/// instead of conformance, because it could be something like
/// `true + true`, and it doesn't make much sense to suggest to
/// add a conformance from one library type to another.
bool diagnoseAsAmbiguousOperatorRef();
DiagOnDecl getDiagnosticOnDecl() const override {
return diag::type_does_not_conform_decl_owner;
}
DiagInReference getDiagnosticInRereference() const override {
return diag::type_does_not_conform_in_decl_ref;
}
DiagAsNote getDiagnosticAsNote() const override {
return diag::candidate_types_conformance_requirement;
}
private:
bool diagnoseTypeCannotConform(Expr *anchor, Type nonConformingType,
Type protocolType) const;
};
/// Diagnose failures related to same-type generic requirements, e.g.
/// ```swift
/// protocol P {
/// associatedtype T
/// }
///
/// struct S : P {
/// typealias T = String
/// }
///
/// func foo<U: P>(_ t: [U]) where U.T == Int {}
/// foo([S()])
/// ```
///
/// `S.T` is not the same type as `Int`, which is required by `foo`.
class SameTypeRequirementFailure final : public RequirementFailure {
public:
SameTypeRequirementFailure(Expr *expr, ConstraintSystem &cs, Type lhs,
Type rhs, ConstraintLocator *locator)
: RequirementFailure(cs, expr, RequirementKind::SameType, lhs, rhs,
locator) {}
protected:
DiagOnDecl getDiagnosticOnDecl() const override {
return diag::types_not_equal_decl;
}
DiagInReference getDiagnosticInRereference() const override {
return diag::types_not_equal_in_decl_ref;
}
DiagAsNote getDiagnosticAsNote() const override {
return diag::candidate_types_equal_requirement;
}
};
/// Diagnose failures related to superclass generic requirements, e.g.
/// ```swift
/// class A {
/// }
///
/// class B {
/// }
///
/// func foo<T>(_ t: [T]) where T: A {}
/// foo([B()])
/// ```
///
/// `A` is not the superclass of `B`, which is required by `foo<T>`.
class SuperclassRequirementFailure final : public RequirementFailure {
public:
SuperclassRequirementFailure(Expr *expr, ConstraintSystem &cs, Type lhs,
Type rhs, ConstraintLocator *locator)
: RequirementFailure(cs, expr, RequirementKind::Superclass, lhs, rhs,
locator) {}
protected:
DiagOnDecl getDiagnosticOnDecl() const override {
return diag::types_not_inherited_decl;
}
DiagInReference getDiagnosticInRereference() const override {
return diag::types_not_inherited_in_decl_ref;
}
DiagAsNote getDiagnosticAsNote() const override {
return diag::candidate_types_inheritance_requirement;
}
};
/// Diagnose errors associated with missing, extraneous
/// or incorrect labels supplied by arguments, e.g.
/// ```swift
/// func foo(q: String, _ a: Int) {}
/// foo("ultimate quesiton", a: 42)
/// ```
/// Call to `foo` is going to be diagnosed as missing `q:`
/// and having extraneous `a:` labels, with appropriate fix-its added.
class LabelingFailure final : public FailureDiagnostic {
ArrayRef<Identifier> CorrectLabels;
public:
LabelingFailure(Expr *root, ConstraintSystem &cs, ConstraintLocator *locator,
ArrayRef<Identifier> labels)
: FailureDiagnostic(root, cs, locator), CorrectLabels(labels) {}
bool diagnoseAsError() override;
bool diagnoseAsNote() override;
};
/// Diagnose errors related to converting function type which
/// isn't explicitly '@escaping' to some other type.
class NoEscapeFuncToTypeConversionFailure final : public FailureDiagnostic {
Type ConvertTo;
public:
NoEscapeFuncToTypeConversionFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator,
Type toType = Type())
: FailureDiagnostic(expr, cs, locator), ConvertTo(toType) {}
bool diagnoseAsError() override;
private:
/// Emit tailored diagnostics for no-escape parameter conversions e.g.
/// passing such parameter as an @escaping argument, or trying to
/// assign it to a variable which expects @escaping function.
bool diagnoseParameterUse() const;
};
class MissingForcedDowncastFailure final : public FailureDiagnostic {
public:
MissingForcedDowncastFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator)
: FailureDiagnostic(expr, cs, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose failures related to attempting member access on optional base
/// type without optional chaining or force-unwrapping it first.
class MemberAccessOnOptionalBaseFailure final : public FailureDiagnostic {
DeclName Member;
bool ResultTypeIsOptional;
public:
MemberAccessOnOptionalBaseFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator,
DeclName memberName, bool resultOptional)
: FailureDiagnostic(expr, cs, locator), Member(memberName),
ResultTypeIsOptional(resultOptional) {}
bool diagnoseAsError() override;
};
/// Diagnose failures related to use of the unwrapped optional types,
/// which require some type of force-unwrap e.g. "!" or "try!".
class MissingOptionalUnwrapFailure final : public FailureDiagnostic {
Type BaseType;
Type UnwrappedType;
public:
MissingOptionalUnwrapFailure(Expr *expr, ConstraintSystem &cs, Type baseType,
Type unwrappedType, ConstraintLocator *locator)
: FailureDiagnostic(expr, cs, locator), BaseType(baseType),
UnwrappedType(unwrappedType) {}
bool diagnoseAsError() override;
private:
Type getBaseType() const {
return resolveType(BaseType, /*reconstituteSugar=*/true);
}
Type getUnwrappedType() const {
return resolveType(UnwrappedType, /*reconstituteSugar=*/true);
}
/// Suggest a default value via `?? <default value>`
void offerDefaultValueUnwrapFixIt(DeclContext *DC, Expr *expr) const;
/// Suggest a force optional unwrap via `!`
void offerForceUnwrapFixIt(Expr *expr) const;
};
/// Diagnose errors associated with rvalues in positions
/// where an lvalue is required, such as inout arguments.
class RValueTreatedAsLValueFailure final : public FailureDiagnostic {
public:
RValueTreatedAsLValueFailure(ConstraintSystem &cs, ConstraintLocator *locator)
: FailureDiagnostic(nullptr, cs, locator) {}
bool diagnoseAsError() override;
};
class TrailingClosureAmbiguityFailure final : public FailureDiagnostic {
ArrayRef<OverloadChoice> Choices;
public:
TrailingClosureAmbiguityFailure(Expr *root, ConstraintSystem &cs,
Expr *anchor,
ArrayRef<OverloadChoice> choices)
: FailureDiagnostic(root, cs, cs.getConstraintLocator(anchor)),
Choices(choices) {}
bool diagnoseAsError() override { return false; }
bool diagnoseAsNote() override;
};
/// Diagnose errors related to assignment expressions e.g.
/// trying to assign something to immutable value, or trying
/// to access mutating member on immutable base.
class AssignmentFailure final : public FailureDiagnostic {
SourceLoc Loc;
Diag<StringRef> DeclDiagnostic;
Diag<Type> TypeDiagnostic;
public:
AssignmentFailure(Expr *destExpr, ConstraintSystem &cs,
SourceLoc diagnosticLoc);
AssignmentFailure(Expr *destExpr, ConstraintSystem &cs,
SourceLoc diagnosticLoc, Diag<StringRef> declDiag,
Diag<Type> typeDiag)
: FailureDiagnostic(destExpr, cs, cs.getConstraintLocator(destExpr)),
Loc(diagnosticLoc), DeclDiagnostic(declDiag), TypeDiagnostic(typeDiag) {
}
bool diagnoseAsError() override;
private:
/// Given an expression that has a non-lvalue type, dig into it until
/// we find the part of the expression that prevents the entire subexpression
/// from being mutable. For example, in a sequence like "x.v.v = 42" we want
/// to complain about "x" being a let property if "v.v" are both mutable.
///
/// \returns The base subexpression that looks immutable (or that can't be
/// analyzed any further) along with an OverloadChoice extracted from it if we
/// could.
std::pair<Expr *, Optional<OverloadChoice>>
resolveImmutableBase(Expr *expr) const;
static Diag<StringRef> findDeclDiagonstic(ASTContext &ctx, Expr *destExpr);
/// Retrive an member reference associated with given member
/// looking through dynamic member lookup on the way.
Optional<OverloadChoice> getMemberRef(ConstraintLocator *locator) const;
};
/// Intended to diagnose any possible contextual failure
/// e.g. argument/parameter, closure result, conversions etc.
class ContextualFailure : public FailureDiagnostic {
ContextualTypePurpose CTP;
Type FromType, ToType;
public:
ContextualFailure(Expr *root, ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator)
: ContextualFailure(root, cs, cs.getContextualTypePurpose(), lhs, rhs,
locator) {}
ContextualFailure(Expr *root, ConstraintSystem &cs,
ContextualTypePurpose purpose, Type lhs, Type rhs,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), CTP(purpose),
FromType(resolve(lhs)->getRValueType()),
ToType(resolve(rhs)->getRValueType()) {}
Type getFromType() const { return FromType; }
Type getToType() const { return ToType; }
bool diagnoseAsError() override;
/// If we're trying to convert something to `nil`.
bool diagnoseConversionToNil() const;
// If we're trying to convert something of type "() -> T" to T,
// then we probably meant to call the value.
bool diagnoseMissingFunctionCall() const;
/// Produce a specialized diagnostic if this is an invalid conversion to Bool.
bool diagnoseConversionToBool() const;
/// Produce a specialized diagnostic if this is an attempt to initialize
/// or convert an array literal to a dictionary e.g. `let _: [String: Int] = ["A", 0]`
bool diagnoseConversionToDictionary() const;
/// Produce a specialized diagnostic if this is an attempt to throw
/// something with doesn't conform to `Error`.
bool diagnoseThrowsTypeMismatch() const;
/// Produce a specialized diagnostic if this is an attempt to `yield`
/// something of incorrect type.
bool diagnoseYieldByReferenceMismatch() const;
/// Attempt to attach any relevant fix-its to already produced diagnostic.
void tryFixIts(InFlightDiagnostic &diagnostic) const;
/// Attempts to add fix-its for these two mistakes:
///
/// - Passing an integer where a type conforming to RawRepresentable is
/// expected, by wrapping the expression in a call to the contextual
/// type's initializer
///
/// - Passing a type conforming to RawRepresentable where an integer is
/// expected, by wrapping the expression in a call to the rawValue
/// accessor
///
/// - Return true on the fixit is added, false otherwise.
///
/// This helps migration with SDK changes.
bool
tryRawRepresentableFixIts(InFlightDiagnostic &diagnostic,
KnownProtocolKind rawRepresentablePrococol) const;
/// Attempts to add fix-its for these two mistakes:
///
/// - Passing an integer with the right type but which is getting wrapped with
/// a different integer type unnecessarily. The fixit removes the cast.
///
/// - Passing an integer but expecting different integer type. The fixit adds
/// a wrapping cast.
///
/// - Return true on the fixit is added, false otherwise.
///
/// This helps migration with SDK changes.
bool tryIntegerCastFixIts(InFlightDiagnostic &diagnostic) const;
protected:
/// Try to add a fix-it when converting between a collection and its slice
/// type, such as String <-> Substring or (eventually) Array <-> ArraySlice
bool trySequenceSubsequenceFixIts(InFlightDiagnostic &diagnostic) const;
/// Try to add a fix-it that suggests to explicitly use `as` or `as!`
/// to coerce one type to another if type-checker can prove that such
/// conversion is possible.
bool tryTypeCoercionFixIt(InFlightDiagnostic &diagnostic) const;
/// Try to add a fix-it to conform the decl context (if it's a type) to the
/// protocol
bool tryProtocolConformanceFixIt(InFlightDiagnostic &diagnostic) const;
/// Check whether this contextual failure represents an invalid
/// conversion from array literal to dictionary.
static bool isInvalidDictionaryConversion(ConstraintSystem &cs, Expr *anchor,
Type contextualType);
private:
Type resolve(Type rawType) {
auto type = resolveType(rawType)->getWithoutSpecifierType();
if (auto *BGT = type->getAs<BoundGenericType>()) {
if (BGT->hasUnresolvedType())
return BGT->getDecl()->getDeclaredInterfaceType();
}
return type;
}
/// Try to add a fix-it to convert a stored property into a computed
/// property
void tryComputedPropertyFixIts(Expr *expr) const;
bool isIntegerType(Type type) const {
return conformsToKnownProtocol(
getConstraintSystem(), type,
KnownProtocolKind::ExpressibleByIntegerLiteral);
}
/// Return true if the conversion from fromType to toType is
/// an invalid string index operation.
bool isIntegerToStringIndexConversion() const;
protected:
ContextualTypePurpose getContextualTypePurpose() const { return CTP; }
static Optional<Diag<Type, Type>>
getDiagnosticFor(ContextualTypePurpose context, bool forProtocol);
};
/// Diagnostics for mismatched generic arguments e.g
/// ```swift
/// struct F<G> {}
/// let _:F<Int> = F<Bool>()
/// ```
class GenericArgumentsMismatchFailure final : public ContextualFailure {
ArrayRef<unsigned> Mismatches;
public:
GenericArgumentsMismatchFailure(Expr *expr, ConstraintSystem &cs,
Type actualType, Type requiredType,
ArrayRef<unsigned> mismatches,
ConstraintLocator *locator)
: ContextualFailure(expr, cs, actualType, requiredType, locator),
Mismatches(mismatches) {
assert(actualType->is<BoundGenericType>());
assert(requiredType->is<BoundGenericType>());
}
bool diagnoseAsError() override;
private:
void emitNotesForMismatches() {
for (unsigned position : Mismatches) {
emitNoteForMismatch(position);
}
}
void emitNoteForMismatch(int mismatchPosition);
Optional<Diag<Type, Type>> getDiagnosticFor(ContextualTypePurpose context);
/// The actual type being used.
BoundGenericType *getActual() const {
return getFromType()->castTo<BoundGenericType>();
}
/// The type needed by the generic requirement.
BoundGenericType *getRequired() const {
return getToType()->castTo<BoundGenericType>();
}
};
/// Diagnose failures related to conversion between throwing function type
/// and non-throwing one e.g.
///
/// ```swift
/// func foo<T>(_ t: T) throws -> Void {}
/// let _: (Int) -> Void = foo // `foo` can't be implictly converted to
/// // non-throwing type `(Int) -> Void`
/// ```
class ThrowingFunctionConversionFailure final : public ContextualFailure {
public:
ThrowingFunctionConversionFailure(Expr *root, ConstraintSystem &cs,
Type fromType, Type toType,
ConstraintLocator *locator)
: ContextualFailure(root, cs, fromType, toType, locator) {
auto fnType1 = fromType->castTo<FunctionType>();
auto fnType2 = toType->castTo<FunctionType>();
assert(fnType1->throws() != fnType2->throws());
}
bool diagnoseAsError() override;
};
/// Diagnose failures related attempt to implicitly convert types which
/// do not support such implicit converstion.
/// "as" or "as!" has to be specified explicitly in cases like that.
class MissingExplicitConversionFailure final : public ContextualFailure {
public:
MissingExplicitConversionFailure(Expr *expr, ConstraintSystem &cs,
Type fromType, Type toType,
ConstraintLocator *locator)
: ContextualFailure(expr, cs, fromType, toType, locator) {}
bool diagnoseAsError() override;
private:
bool exprNeedsParensBeforeAddingAs(Expr *expr) {
auto *DC = getDC();
auto &TC = getTypeChecker();
auto asPG = TypeChecker::lookupPrecedenceGroup(
DC, DC->getASTContext().Id_CastingPrecedence, SourceLoc());
if (!asPG)
return true;
return exprNeedsParensInsideFollowingOperator(TC, DC, expr, asPG);
}
bool exprNeedsParensAfterAddingAs(Expr *expr, Expr *rootExpr) {
auto *DC = getDC();
auto &TC = getTypeChecker();
auto asPG = TypeChecker::lookupPrecedenceGroup(
DC, DC->getASTContext().Id_CastingPrecedence, SourceLoc());
if (!asPG)
return true;
return exprNeedsParensOutsideFollowingOperator(TC, DC, expr, rootExpr,
asPG);
}
};
/// Diagnose failures related to passing value of some type
/// to `inout` or pointer parameter, without explicitly specifying `&`.
class MissingAddressOfFailure final : public ContextualFailure {
public:
MissingAddressOfFailure(Expr *expr, ConstraintSystem &cs, Type argTy,
Type paramTy, ConstraintLocator *locator)
: ContextualFailure(expr, cs, argTy, paramTy, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose extraneous use of address of (`&`) which could only be
/// associated with arguments to inout parameters e.g.
///
/// ```swift
/// struct S {}
///
/// var a: S = ...
/// var b: S = ...
///
/// a = &b
/// ```
class InvalidUseOfAddressOf final : public ContextualFailure {
public:
InvalidUseOfAddressOf(Expr *root, ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator)
: ContextualFailure(root, cs, lhs, rhs, locator) {}
bool diagnoseAsError() override;
protected:
/// Compute location of the failure for diagnostic.
SourceLoc getLoc() const;
};
/// Diagnose mismatches relating to tuple destructuring.
class TupleContextualFailure final : public ContextualFailure {
public:
TupleContextualFailure(Expr *root, ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator)
: ContextualFailure(root, cs, lhs, rhs, locator) {}
bool diagnoseAsError() override;
bool isNumElementsMismatch() const {
auto lhsTy = getFromType()->castTo<TupleType>();
auto rhsTy = getToType()->castTo<TupleType>();
assert(lhsTy && rhsTy);
return lhsTy->getNumElements() != rhsTy->getNumElements();
}
};
/// Diagnose situations when @autoclosure argument is passed to @autoclosure
/// parameter directly without calling it first.
class AutoClosureForwardingFailure final : public FailureDiagnostic {
public:
AutoClosureForwardingFailure(ConstraintSystem &cs, ConstraintLocator *locator)
: FailureDiagnostic(nullptr, cs, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose invalid pointer conversions for an autoclosure result type.
///
/// \code
/// func foo(_ x: @autoclosure () -> UnsafePointer<Int>) {}
///
/// var i = 0
/// foo(&i) // Invalid conversion to UnsafePointer
/// \endcode
class AutoClosurePointerConversionFailure final : public ContextualFailure {
public:
AutoClosurePointerConversionFailure(Expr *root, ConstraintSystem &cs,
Type pointeeType, Type pointerType,
ConstraintLocator *locator)
: ContextualFailure(root, cs, pointeeType, pointerType, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose situations when there was an attempt to unwrap entity
/// of non-optional type e.g.
///
/// ```swift
/// let i: Int = 0
/// _ = i!
///
/// struct A { func foo() {} }
/// func foo(_ a: A) {
/// a?.foo()
/// }
/// ```
class NonOptionalUnwrapFailure final : public FailureDiagnostic {
Type BaseType;
public:
NonOptionalUnwrapFailure(Expr *root, ConstraintSystem &cs, Type baseType,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), BaseType(baseType) {}
bool diagnoseAsError() override;
};
class MissingCallFailure final : public FailureDiagnostic {
public:
MissingCallFailure(Expr *root, ConstraintSystem &cs,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator) {}
bool diagnoseAsError() override;
};
class PropertyWrapperReferenceFailure : public ContextualFailure {
VarDecl *Property;
bool UsingStorageWrapper;
public:
PropertyWrapperReferenceFailure(Expr *root, ConstraintSystem &cs,
VarDecl *property, bool usingStorageWrapper,
Type base, Type wrapper,
ConstraintLocator *locator)
: ContextualFailure(root, cs, base, wrapper, locator), Property(property),
UsingStorageWrapper(usingStorageWrapper) {}
VarDecl *getProperty() const { return Property; }
Identifier getPropertyName() const { return Property->getName(); }
bool usingStorageWrapper() const { return UsingStorageWrapper; }
ValueDecl *getReferencedMember() const {
auto *locator = getLocator();
if (auto overload = getOverloadChoiceIfAvailable(locator))
return overload->choice.getDeclOrNull();
return nullptr;
}
};
class ExtraneousPropertyWrapperUnwrapFailure final
: public PropertyWrapperReferenceFailure {
public:
ExtraneousPropertyWrapperUnwrapFailure(Expr *root, ConstraintSystem &cs,
VarDecl *property,
bool usingStorageWrapper, Type base,
Type wrapper,
ConstraintLocator *locator)
: PropertyWrapperReferenceFailure(root, cs, property, usingStorageWrapper,
base, wrapper, locator) {}
bool diagnoseAsError() override;
};
class MissingPropertyWrapperUnwrapFailure final
: public PropertyWrapperReferenceFailure {
public:
MissingPropertyWrapperUnwrapFailure(Expr *root, ConstraintSystem &cs,
VarDecl *property,
bool usingStorageWrapper, Type base,
Type wrapper, ConstraintLocator *locator)
: PropertyWrapperReferenceFailure(root, cs, property, usingStorageWrapper,
base, wrapper, locator) {}
bool diagnoseAsError() override;
};
class SubscriptMisuseFailure final : public FailureDiagnostic {
public:
SubscriptMisuseFailure(Expr *root, ConstraintSystem &cs,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator) {}
bool diagnoseAsError() override;
bool diagnoseAsNote() override;
};
class InvalidMemberRefFailure : public FailureDiagnostic {
Type BaseType;
DeclName Name;
public:
InvalidMemberRefFailure(Expr *root, ConstraintSystem &cs, Type baseType,
DeclName memberName, ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), BaseType(baseType->getRValueType()),
Name(memberName) {}
protected:
Type getBaseType() const { return BaseType; }
DeclName getName() const { return Name; }
};
/// Diagnose situations when member referenced by name is missing
/// from the associated base type, e.g.
///
/// ```swift
/// struct S {}
/// func foo(_ s: S) {
/// let _: Int = s.foo(1, 2) // expected type is `(Int, Int) -> Int`
/// }
/// ```
class MissingMemberFailure final : public InvalidMemberRefFailure {
public:
MissingMemberFailure(Expr *root, ConstraintSystem &cs, Type baseType,
DeclName memberName, ConstraintLocator *locator)
: InvalidMemberRefFailure(root, cs, baseType, memberName, locator) {}
bool diagnoseAsError() override;
private:
static DeclName findCorrectEnumCaseName(Type Ty,
TypoCorrectionResults &corrections,
DeclName memberName);
};
/// Diagnose cases where a member only accessible on generic constraints
/// requiring conformance to a protocol is used on a value of the
/// existential protocol type e.g.
///
/// ```swift
/// protocol P {
/// var foo: Self { get }
/// }
///
/// func bar<X : P>(p: X) {
/// p.foo
/// }
/// ```
class InvalidMemberRefOnExistential final : public InvalidMemberRefFailure {
public:
InvalidMemberRefOnExistential(Expr *root, ConstraintSystem &cs, Type baseType,
DeclName memberName, ConstraintLocator *locator)
: InvalidMemberRefFailure(root, cs, baseType, memberName, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose situations when we use an instance member on a type
/// or a type member on an instance
///
/// ```swift
/// class Bar {}
///
/// enum Foo {
///
/// static func f() {
/// g(Bar())
/// }
///
/// func g(_: Bar) {}
///
/// }
/// ```
class AllowTypeOrInstanceMemberFailure final : public FailureDiagnostic {
Type BaseType;
ValueDecl *Member;
DeclName Name;
public:
AllowTypeOrInstanceMemberFailure(Expr *root, ConstraintSystem &cs,
Type baseType, ValueDecl *member,
DeclName name, ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator),
BaseType(baseType->getRValueType()), Member(member), Name(name) {
assert(member);
}
bool diagnoseAsError() override;
};
class PartialApplicationFailure final : public FailureDiagnostic {
enum RefKind : unsigned {
MutatingMethod,
SuperInit,
SelfInit,
};
bool CompatibilityWarning;
public:
PartialApplicationFailure(Expr *root, bool warning, ConstraintSystem &cs,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), CompatibilityWarning(warning) {}
bool diagnoseAsError() override;
};
class InvalidInitRefFailure : public FailureDiagnostic {
protected:
Type BaseType;
const ConstructorDecl *Init;
SourceRange BaseRange;
InvalidInitRefFailure(Expr *root, ConstraintSystem &cs, Type baseTy,
const ConstructorDecl *init, SourceRange baseRange,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), BaseType(baseTy), Init(init),
BaseRange(baseRange) {}
public:
bool diagnoseAsError() override = 0;
};
/// Diagnose an attempt to construct an object of class type with a metatype
/// value without using 'required' initializer:
///
/// ```swift
/// class C {
/// init(value: Int) {}
/// }
///
/// func make<T: C>(type: T.Type) -> T {
/// return T.init(value: 42)
/// }
/// ```
class InvalidDynamicInitOnMetatypeFailure final : public InvalidInitRefFailure {
public:
InvalidDynamicInitOnMetatypeFailure(Expr *root, ConstraintSystem &cs,
Type baseTy, const ConstructorDecl *init,
SourceRange baseRange,
ConstraintLocator *locator)
: InvalidInitRefFailure(root, cs, baseTy, init, baseRange, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose an attempt to call initializer on protocol metatype:
///
/// ```swift
/// protocol P {
/// init(value: Int)
/// }
///
/// func make(type: P.Type) -> P {
/// return type.init(value: 42)
/// }
/// ```
class InitOnProtocolMetatypeFailure final : public InvalidInitRefFailure {
bool IsStaticallyDerived;
public:
InitOnProtocolMetatypeFailure(Expr *root, ConstraintSystem &cs, Type baseTy,
const ConstructorDecl *init,
bool isStaticallyDerived, SourceRange baseRange,
ConstraintLocator *locator)
: InvalidInitRefFailure(root, cs, baseTy, init, baseRange, locator),
IsStaticallyDerived(isStaticallyDerived) {}
bool diagnoseAsError() override;
};
/// Diagnose an attempt to construct an instance using non-constant
/// metatype base without explictly specifying `init`:
///
/// ```swift
/// let foo = Int.self
/// foo(0) // should be `foo.init(0)`
/// ```
class ImplicitInitOnNonConstMetatypeFailure final
: public InvalidInitRefFailure {
public:
ImplicitInitOnNonConstMetatypeFailure(Expr *root, ConstraintSystem &cs,
Type baseTy,
const ConstructorDecl *init,
ConstraintLocator *locator)
: InvalidInitRefFailure(root, cs, baseTy, init, SourceRange(), locator) {}
bool diagnoseAsError() override;
};
class MissingArgumentsFailure final : public FailureDiagnostic {
using Param = AnyFunctionType::Param;
SmallVector<Param, 4> SynthesizedArgs;
public:
MissingArgumentsFailure(Expr *root, ConstraintSystem &cs,
ArrayRef<Param> synthesizedArgs,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator),
SynthesizedArgs(synthesizedArgs.begin(), synthesizedArgs.end()) {
assert(!SynthesizedArgs.empty() && "No missing arguments?!");
}
bool diagnoseAsError() override;
bool diagnoseSingleMissingArgument() const;
private:
/// If missing arguments come from a closure,
/// let's produce tailored diagnostics.
bool diagnoseClosure(ClosureExpr *closure);
/// Diagnose cases when instead of multiple distinct arguments
/// call got a single tuple argument with expected arity/types.
bool diagnoseInvalidTupleDestructuring() const;
/// Determine whether missing arguments are associated with
/// an implicit call to a property wrapper initializer e.g.
/// `@Foo(answer: 42) var question = "ultimate question"`
bool isPropertyWrapperInitialization() const;
/// Gather informatioin associated with expression that represents
/// a call - function, arguments, # of arguments and whether it has
/// a trailing closure.
std::tuple<Expr *, Expr *, unsigned, bool> getCallInfo(Expr *anchor) const;
/// Transform given argument into format suitable for a fix-it
/// text e.g. `[<label>:]? <#<type#>`
void forFixIt(llvm::raw_svector_ostream &out,
const AnyFunctionType::Param &argument) const;
public:
/// Due to the fact that `matchCallArgument` can't and
/// doesn't take types into consideration while matching
/// arguments to parameters, for cases where both arguments
/// are un-labeled, it's impossible to say which one is missing:
///
/// func foo(_: Int, _: String) {}
/// foo("")
///
/// In this case first argument is missing, but we end up with
/// two fixes - argument mismatch (for #1) and missing argument
/// (for #2), which is incorrect so it has to be handled specially.
static bool isMisplacedMissingArgument(ConstraintSystem &cs,
ConstraintLocator *locator);
};
class OutOfOrderArgumentFailure final : public FailureDiagnostic {
using ParamBinding = SmallVector<unsigned, 1>;
unsigned ArgIdx;
unsigned PrevArgIdx;
SmallVector<ParamBinding, 4> Bindings;
public:
OutOfOrderArgumentFailure(Expr *root, ConstraintSystem &cs,
unsigned argIdx,
unsigned prevArgIdx,
ArrayRef<ParamBinding> bindings,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), ArgIdx(argIdx),
PrevArgIdx(prevArgIdx), Bindings(bindings.begin(), bindings.end()) {}
bool diagnoseAsError() override;
};
/// Diagnose an attempt to destructure a single tuple closure parameter
/// into a multiple (possibly anonymous) arguments e.g.
///
/// ```swift
/// let _: ((Int, Int)) -> Void = { $0 + $1 }
/// ```
class ClosureParamDestructuringFailure final : public FailureDiagnostic {
FunctionType *ContextualType;
public:
ClosureParamDestructuringFailure(Expr *root, ConstraintSystem &cs,
FunctionType *contextualType,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), ContextualType(contextualType) {}
bool diagnoseAsError() override;
private:
Type getParameterType() const {
const auto &param = ContextualType->getParams().front();
return resolveType(param.getPlainType());
}
};
/// Diagnose an attempt to reference inaccessible member e.g.
///
/// ```swift
/// struct S {
/// var foo: String
///
/// private init(_ v: String) {
/// self.foo = v
/// }
/// }
/// _ = S("ultimate question")
/// ```
class InaccessibleMemberFailure final : public FailureDiagnostic {
ValueDecl *Member;
public:
InaccessibleMemberFailure(Expr *root, ConstraintSystem &cs, ValueDecl *member,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), Member(member) {}
bool diagnoseAsError() override;
};
/// Diagnose an attempt to reference member marked as `mutating`
/// on immutable base e.g. `let` variable:
///
/// ```swift
/// struct S {
/// mutating func foo(_ i: Int) {}
/// func foo(_ f: Float) {}
/// }
///
/// func bar(_ s: S, _ answer: Int) {
/// s.foo(answer)
/// }
/// ```
class MutatingMemberRefOnImmutableBase final : public FailureDiagnostic {
ValueDecl *Member;
public:
MutatingMemberRefOnImmutableBase(Expr *root, ConstraintSystem &cs,
ValueDecl *member,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), Member(member) {}
bool diagnoseAsError() override;
};
// Diagnose an attempt to use AnyObject as the root type of a KeyPath
//
// ```swift
// let keyPath = \AnyObject.bar
// ```
class AnyObjectKeyPathRootFailure final : public FailureDiagnostic {
public:
AnyObjectKeyPathRootFailure(Expr *root, ConstraintSystem &cs,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose an attempt to reference subscript as a keypath component
/// where at least one of the index arguments doesn't conform to Hashable e.g.
///
/// ```swift
/// protocol P {}
///
/// struct S {
/// subscript<T: P>(x: Int, _ y: T) -> Bool { return true }
/// }
///
/// func foo<T: P>(_ x: Int, _ y: T) {
/// _ = \S.[x, y]
/// }
/// ```
class KeyPathSubscriptIndexHashableFailure final : public FailureDiagnostic {
Type NonConformingType;
public:
KeyPathSubscriptIndexHashableFailure(Expr *root, ConstraintSystem &cs,
Type type, ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), NonConformingType(type) {
assert(locator->isResultOfKeyPathDynamicMemberLookup() ||
locator->isKeyPathSubscriptComponent());
}
bool diagnoseAsError() override;
};
class InvalidMemberRefInKeyPath : public FailureDiagnostic {
ValueDecl *Member;
public:
InvalidMemberRefInKeyPath(Expr *root, ConstraintSystem &cs, ValueDecl *member,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), Member(member) {
assert(member->hasName());
assert(locator->isForKeyPathComponent() ||
locator->isForKeyPathDynamicMemberLookup());
}
DescriptiveDeclKind getKind() const { return Member->getDescriptiveKind(); }
DeclName getName() const { return Member->getFullName(); }
bool diagnoseAsError() override = 0;
protected:
/// Compute location of the failure for diagnostic.
SourceLoc getLoc() const;
bool isForKeyPathDynamicMemberLookup() const {
return getLocator()->isForKeyPathDynamicMemberLookup();
}
};
/// Diagnose an attempt to reference a static member as a key path component
/// e.g.
///
/// ```swift
/// struct S {
/// static var foo: Int = 42
/// }
///
/// _ = \S.Type.foo
/// ```
class InvalidStaticMemberRefInKeyPath final : public InvalidMemberRefInKeyPath {
public:
InvalidStaticMemberRefInKeyPath(Expr *root, ConstraintSystem &cs,
ValueDecl *member, ConstraintLocator *locator)
: InvalidMemberRefInKeyPath(root, cs, member, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose an attempt to reference a member which has a mutating getter as a
/// key path component e.g.
///
/// ```swift
/// struct S {
/// var foo: Int {
/// mutating get { return 42 }
/// }
///
/// subscript(_: Int) -> Bool {
/// mutating get { return false }
/// }
/// }
///
/// _ = \S.foo
/// _ = \S.[42]
/// ```
class InvalidMemberWithMutatingGetterInKeyPath final
: public InvalidMemberRefInKeyPath {
public:
InvalidMemberWithMutatingGetterInKeyPath(Expr *root, ConstraintSystem &cs,
ValueDecl *member,
ConstraintLocator *locator)
: InvalidMemberRefInKeyPath(root, cs, member, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose an attempt to reference a method as a key path component
/// e.g.
///
/// ```swift
/// struct S {
/// func foo() -> Int { return 42 }
/// static func bar() -> Int { return 0 }
/// }
///
/// _ = \S.foo
/// _ = \S.Type.bar
/// ```
class InvalidMethodRefInKeyPath final : public InvalidMemberRefInKeyPath {
public:
InvalidMethodRefInKeyPath(Expr *root, ConstraintSystem &cs, ValueDecl *method,
ConstraintLocator *locator)
: InvalidMemberRefInKeyPath(root, cs, method, locator) {
assert(isa<FuncDecl>(method));
}
bool diagnoseAsError() override;
};
/// Diagnose an attempt return something from a function which
/// doesn't have a return type specified e.g.
///
/// ```swift
/// func foo() { return 42 }
/// ```
class ExtraneousReturnFailure final : public FailureDiagnostic {
public:
ExtraneousReturnFailure(Expr *root, ConstraintSystem &cs,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose a contextual mismatch between expected collection element type
/// and the one provided (e.g. source of the assignment or argument to a call)
/// e.g.:
///
/// ```swift
/// let _: [Int] = ["hello"]
/// ```
class CollectionElementContextualFailure final : public ContextualFailure {
public:
CollectionElementContextualFailure(Expr *root, ConstraintSystem &cs,
Type eltType, Type contextualType,
ConstraintLocator *locator)
: ContextualFailure(root, cs, eltType, contextualType, locator) {}
bool diagnoseAsError() override;
};
class MissingContextualConformanceFailure final : public ContextualFailure {
ContextualTypePurpose Context;
public:
MissingContextualConformanceFailure(Expr *root, ConstraintSystem &cs,
ContextualTypePurpose context, Type type,
Type protocolType,
ConstraintLocator *locator)
: ContextualFailure(root, cs, type, protocolType, locator),
Context(context) {
assert(protocolType->is<ProtocolType>() ||
protocolType->is<ProtocolCompositionType>());
}
bool diagnoseAsError() override;
};
/// Diagnose a conversion mismatch between object types of `inout`
/// argument/parameter e.g. `'inout S' argument conv 'inout P'`.
///
/// Even if `S` conforms to `P` there is no subtyping rule for
/// argument type of `inout` parameter, they have to be equal.
class InOutConversionFailure final : public ContextualFailure {
public:
InOutConversionFailure(Expr *root, ConstraintSystem &cs, Type argType,
Type paramType, ConstraintLocator *locator)
: ContextualFailure(root, cs, argType, paramType, locator) {}
bool diagnoseAsError() override;
protected:
/// Suggest to change a type of the argument if possible.
void fixItChangeArgumentType() const;
};
/// Diagnose generic argument omission e.g.
///
/// ```swift
/// struct S<T> {}
///
/// _ = S()
/// ```
class MissingGenericArgumentsFailure final : public FailureDiagnostic {
using Anchor = llvm::PointerUnion<TypeRepr *, Expr *>;
SmallVector<GenericTypeParamType *, 4> Parameters;
public:
MissingGenericArgumentsFailure(Expr *root, ConstraintSystem &cs,
ArrayRef<GenericTypeParamType *> missingParams,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator) {
assert(!missingParams.empty());
Parameters.append(missingParams.begin(), missingParams.end());
}
bool hasLoc(GenericTypeParamType *GP) const;
DeclContext *getDeclContext() const {
auto *GP = Parameters.front();
auto *decl = GP->getDecl();
return decl ? decl->getDeclContext() : nullptr;
}
bool diagnoseAsError() override;
bool diagnoseForAnchor(Anchor anchor,
ArrayRef<GenericTypeParamType *> params) const;
bool diagnoseParameter(Anchor anchor, GenericTypeParamType *GP) const;
private:
void emitGenericSignatureNote(Anchor anchor) const;
/// Retrieve representative locations for associated generic prameters.
///
/// \returns true if all of the parameters have been covered.
bool findArgumentLocations(
llvm::function_ref<void(TypeRepr *, GenericTypeParamType *)> callback);
};
class SkipUnhandledConstructInFunctionBuilderFailure final
: public FailureDiagnostic {
public:
using UnhandledNode = llvm::PointerUnion<Stmt *, Decl *>;
UnhandledNode unhandled;
NominalTypeDecl *builder;
void diagnosePrimary(bool asNote);
public:
SkipUnhandledConstructInFunctionBuilderFailure(Expr *root,
ConstraintSystem &cs,
UnhandledNode unhandled,
NominalTypeDecl *builder,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator),
unhandled(unhandled),
builder(builder) { }
bool diagnoseAsError() override;
bool diagnoseAsNote() override;
};
/// Diagnose situation when a single "tuple" parameter is given N arguments e.g.
///
/// ```swift
/// func foo<T>(_ x: (T, Bool)) {}
/// foo(1, false) // foo exptects a single argument of tuple type `(1, false)`
/// ```
class InvalidTupleSplatWithSingleParameterFailure final
: public FailureDiagnostic {
Type ParamType;
public:
InvalidTupleSplatWithSingleParameterFailure(Expr *root, ConstraintSystem &cs,
Type paramTy,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), ParamType(paramTy) {}
bool diagnoseAsError() override;
};
/// Diagnose situation when an array is passed instead of varargs.
///
/// ```swift
/// func foo(_ x: Int...) {}
/// foo([1,2,3]]) // foo expects varags like foo(1,2,3) instead.
/// ```
class ExpandArrayIntoVarargsFailure final : public ContextualFailure {
public:
ExpandArrayIntoVarargsFailure(Expr *root, ConstraintSystem &cs, Type lhs,
Type rhs, ConstraintLocator *locator)
: ContextualFailure(root, cs, lhs, rhs, locator) {}
bool diagnoseAsError() override;
bool diagnoseAsNote() override;
void tryDropArrayBracketsFixIt(Expr *anchor) const;
};
/// Diagnose a situation there is a mismatch between argument and parameter
/// types e.g.:
///
/// ```swift
/// func foo(_: String) {}
/// func bar(_ v: Int) { foo(v) } // `Int` is not convertible to `String`
/// ```
class ArgumentMismatchFailure : public ContextualFailure {
// FIXME: Currently ArgumentMismatchFailure can be used from CSDiag, in which
// case it's possible we're not able to resolve the arg apply info. Once
// the CSDiag logic has been removed, we should be able to store Info
// unwrapped.
Optional<FunctionArgApplyInfo> Info;
public:
ArgumentMismatchFailure(Expr *root, ConstraintSystem &cs, Type argType,
Type paramType, ConstraintLocator *locator)
: ContextualFailure(root, cs, argType, paramType, locator),
Info(getFunctionArgApplyInfo(getLocator())) {}
bool diagnoseAsError() override;
bool diagnoseAsNote() override;
/// If both argument and parameter are represented by `ArchetypeType`
/// produce a special diagnostic in case their names match.
bool diagnoseArchetypeMismatch() const;
/// Tailored diagnostic for pattern matching with `~=` operator.
bool diagnosePatternMatchingMismatch() const;
/// Tailored diagnostics for argument mismatches associated with
/// reference equality operators `===` and `!==`.
bool diagnoseUseOfReferenceEqualityOperator() const;
protected:
/// \returns The position of the argument being diagnosed, starting at 1.
unsigned getArgPosition() const { return Info->getArgPosition(); }
/// \returns The position of the parameter being diagnosed, starting at 1.
unsigned getParamPosition() const { return Info->getParamPosition(); }
/// Returns the argument expression being diagnosed.
///
/// Note this may differ from \c getAnchor(), which will return a smaller
/// sub-expression if the failed constraint is for a sub-expression within
/// an argument. For example, in an argument conversion from (T, U) to (U, U),
/// the conversion from T to U may fail. In this case, \c getArgExpr() will
/// return the (T, U) expression, whereas \c getAnchor() will return the T
/// expression.
Expr *getArgExpr() const { return Info->getArgExpr(); }
/// Returns the argument type for the conversion being diagnosed.
///
/// \param withSpecifier Whether to keep the inout or @lvalue specifier of
/// the argument, if any.
///
/// Note this may differ from \c getFromType(), which will give the source
/// type of a failed constraint for the argument conversion. For example in
/// an argument conversion from T? to U?, the conversion from T to U may fail.
/// In this case, \c getArgType() will return T?, whereas \c getFromType()
/// will return T.
Type getArgType(bool withSpecifier = false) const {
return Info->getArgType(withSpecifier);
}
/// \returns The interface type for the function being applied.
Type getFnInterfaceType() const { return Info->getFnInterfaceType(); }
/// \returns The function type being applied, including any generic
/// substitutions.
FunctionType *getFnType() const { return Info->getFnType(); }
/// \returns The callee for the argument conversion, if any.
const ValueDecl *getCallee() const {
return Info ? Info->getCallee() : nullptr;
}
/// \returns The full name of the callee, or a null decl name if there is no
/// callee.
DeclName getCalleeFullName() const {
return getCallee() ? getCallee()->getFullName() : DeclName();
}
/// Returns the type of the parameter involved in the mismatch, including any
/// generic substitutions.
///
/// \param lookThroughAutoclosure Whether an @autoclosure () -> T parameter
/// should be treated as being of type T.
///
/// Note this may differ from \c getToType(), see the note on \c getArgType().
Type getParamType(bool lookThroughAutoclosure = true) const {
return Info->getParamType(lookThroughAutoclosure);
}
/// Returns the type of the parameter involved in the mismatch.
///
/// \param lookThroughAutoclosure Whether an @autoclosure () -> T parameter
/// should be treated as being of type T.
///
/// Note this may differ from \c getToType(), see the note on \c getArgType().
Type getParamInterfaceType(bool lookThroughAutoclosure = true) const {
return Info->getParamInterfaceType(lookThroughAutoclosure);
}
/// \returns The flags of the parameter involved in the mismatch.
ParameterTypeFlags getParameterFlags() const {
return Info->getParameterFlags();
}
/// \returns The flags of a parameter at a given index.
ParameterTypeFlags getParameterFlagsAtIndex(unsigned idx) const {
return Info->getParameterFlagsAtIndex(idx);
}
/// Situations like this:
///
/// func foo(_: Int, _: String) {}
/// foo("")
///
/// Are currently impossible to fix correctly,
/// so we have to attend to that in diagnostics.
bool diagnoseMisplacedMissingArgument() const;
SourceLoc getLoc() const { return getAnchor()->getLoc(); }
};
} // end namespace constraints
} // end namespace swift
#endif // SWIFT_SEMA_CSDIAGNOSTICS_H