blob: b5a207208728af2e07eeb73707379a1f463dbf44 [file] [log] [blame]
//===--- CapturePromotion.cpp - Promotes closure captures -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Promotes captures from 'inout' (i.e. by-reference) to by-value
// ==============================================================
//
// Swift's closure model is that all local variables are capture by reference.
// This produces a very simple programming model which is great to use, but
// relies on the optimizer to promote by-ref captures to by-value (i.e. by-copy)
// captures for decent performance. Consider this simple example:
//
// func foo(a : () -> ()) {} // assume this has an unknown body
//
// func bar() {
// var x = 42
//
// foo({ print(x) })
// }
//
// Since x is captured by-ref by the closure, x must live on the heap. By
// looking at bar without any knowledge of foo, we can know that it is safe to
// promote this to a by-value capture, allowing x to live on the stack under the
// following conditions:
//
// 1. If x is not modified in the closure body and is only loaded.
// 2. If we can prove that all mutations to x occur before the closure is
// formed.
//
// Under these conditions if x is loadable then we can even load the given value
// and pass it as a scalar instead of an address.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-capture-promotion"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SIL/Mangle.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/TypeSubstCloner.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/AST/GenericEnvironment.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include <tuple>
using namespace swift;
typedef llvm::SmallSet<unsigned, 4> IndicesSet;
typedef llvm::DenseMap<PartialApplyInst*, IndicesSet> PartialApplyIndicesMap;
STATISTIC(NumCapturesPromoted, "Number of captures promoted");
namespace {
/// \brief Transient reference to a block set within ReachabilityInfo.
///
/// This is a bitset that conveniently flattens into a matrix allowing bit-wise
/// operations without masking.
///
/// TODO: If this sticks around, maybe we'll make a BitMatrix ADT.
class ReachingBlockSet {
public:
enum { BITWORD_SIZE = (unsigned)sizeof(uint64_t) * CHAR_BIT };
static size_t numBitWords(unsigned NumBlocks) {
return (NumBlocks + BITWORD_SIZE - 1) / BITWORD_SIZE;
}
/// \brief Transient reference to a reaching block matrix.
struct ReachingBlockMatrix {
uint64_t *Bits;
unsigned NumBitWords; // Words per row.
ReachingBlockMatrix(): Bits(0), NumBitWords(0) {}
bool empty() const { return !Bits; }
};
static ReachingBlockMatrix allocateMatrix(unsigned NumBlocks) {
ReachingBlockMatrix M;
M.NumBitWords = numBitWords(NumBlocks);
M.Bits = new uint64_t[NumBlocks * M.NumBitWords];
memset(M.Bits, 0, NumBlocks * M.NumBitWords * sizeof(uint64_t));
return M;
}
static void deallocateMatrix(ReachingBlockMatrix &M) {
delete [] M.Bits;
M.Bits = 0;
M.NumBitWords = 0;
}
static ReachingBlockSet allocateSet(unsigned NumBlocks) {
ReachingBlockSet S;
S.NumBitWords = numBitWords(NumBlocks);
S.Bits = new uint64_t[S.NumBitWords];
return S;
}
static void deallocateSet(ReachingBlockSet &S) {
delete [] S.Bits;
S.Bits = 0;
S.NumBitWords = 0;
}
private:
uint64_t *Bits;
unsigned NumBitWords;
public:
ReachingBlockSet(): Bits(0), NumBitWords(0) {}
ReachingBlockSet(unsigned BlockID, ReachingBlockMatrix &M)
: Bits(&M.Bits[BlockID * M.NumBitWords]),
NumBitWords(M.NumBitWords) {}
bool test(unsigned ID) const {
assert(ID / BITWORD_SIZE < NumBitWords && "block ID out-of-bounds");
return Bits[ID / BITWORD_SIZE] & (1L << (ID % BITWORD_SIZE));
}
void set(unsigned ID) {
assert(ID / BITWORD_SIZE < NumBitWords && "block ID out-of-bounds");
Bits[ID / BITWORD_SIZE] |= 1L << (ID % BITWORD_SIZE);
}
ReachingBlockSet &operator|=(const ReachingBlockSet &RHS) {
for (size_t i = 0, e = NumBitWords; i != e; ++i)
Bits[i] |= RHS.Bits[i];
return *this;
}
void clear() {
memset(Bits, 0, NumBitWords * sizeof(uint64_t));
}
bool operator==(const ReachingBlockSet &RHS) const {
assert(NumBitWords == RHS.NumBitWords && "mismatched sets");
for (size_t i = 0, e = NumBitWords; i != e; ++i) {
if (Bits[i] != RHS.Bits[i])
return false;
}
return true;
}
bool operator!=(const ReachingBlockSet &RHS) const {
return !(*this == RHS);
}
const ReachingBlockSet &operator=(const ReachingBlockSet &RHS) {
assert(NumBitWords == RHS.NumBitWords && "mismatched sets");
for (size_t i = 0, e = NumBitWords; i != e; ++i)
Bits[i] = RHS.Bits[i];
return *this;
}
};
/// \brief Store the reachability matrix: ToBlock -> FromBlocks.
class ReachabilityInfo {
SILFunction *F;
llvm::DenseMap<SILBasicBlock*, unsigned> BlockMap;
ReachingBlockSet::ReachingBlockMatrix Matrix;
public:
ReachabilityInfo(SILFunction *f) : F(f) {}
~ReachabilityInfo() { ReachingBlockSet::deallocateMatrix(Matrix); }
bool isComputed() const { return !Matrix.empty(); }
bool isReachable(SILBasicBlock *From, SILBasicBlock *To);
private:
void compute();
};
} // end anonymous namespace.
namespace {
/// \brief A SILCloner subclass which clones a closure function while converting
/// one or more captures from 'inout' (by-reference) to by-value.
class ClosureCloner : public TypeSubstCloner<ClosureCloner> {
public:
friend class SILVisitor<ClosureCloner>;
friend class SILCloner<ClosureCloner>;
ClosureCloner(SILFunction *Orig, IsFragile_t Fragile,
StringRef ClonedName,
SubstitutionMap &InterfaceSubs,
ArrayRef<Substitution> ApplySubs,
IndicesSet &PromotableIndices);
void populateCloned();
SILFunction *getCloned() { return &getBuilder().getFunction(); }
protected:
// FIXME: We intentionally call SILClonerWithScopes here to ensure
// the debug scopes are set correctly for cloned
// functions. TypeSubstCloner, SILClonerWithScopes, and
// SILCloner desperately need refactoring and/or combining so
// that the obviously right things are happening for cloning
// vs. inlining.
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
SILClonerWithScopes<ClosureCloner>::postProcess(Orig, Cloned);
}
private:
static SILFunction *initCloned(SILFunction *Orig, IsFragile_t Fragile,
StringRef ClonedName,
SubstitutionMap &InterfaceSubs,
IndicesSet &PromotableIndices);
void visitDebugValueAddrInst(DebugValueAddrInst *Inst);
void visitStrongReleaseInst(StrongReleaseInst *Inst);
void visitStructElementAddrInst(StructElementAddrInst *Inst);
void visitLoadInst(LoadInst *Inst);
void visitProjectBoxInst(ProjectBoxInst *Inst);
SILFunction *Orig;
IndicesSet &PromotableIndices;
llvm::DenseMap<SILArgument*, SILValue> BoxArgumentMap;
llvm::DenseMap<ProjectBoxInst*, SILValue> ProjectBoxArgumentMap;
};
} // end anonymous namespace.
/// \brief Compute ReachabilityInfo so that it can answer queries about
/// whether a given basic block in a function is reachable from another basic
/// block in the function.
///
/// FIXME: Computing global reachability requires initializing an N^2
/// bitset. This could be avoided by computing reachability on-the-fly
/// for each alloc_box by walking backward from mutations.
void ReachabilityInfo::compute() {
assert(!isComputed() && "already computed");
unsigned N = 0;
for (auto &BB : *F)
BlockMap.insert({ &BB, N++ });
Matrix = ReachingBlockSet::allocateMatrix(N);
ReachingBlockSet NewSet = ReachingBlockSet::allocateSet(N);
DEBUG(llvm::dbgs() << "Computing Reachability for " << F->getName()
<< " with " << N << " blocks.\n");
// Iterate to a fix point, two times for a topological DAG.
bool Changed;
do {
Changed = false;
// Visit all blocks in a predictable order, hopefully close to topological.
for (auto &BB : *F) {
ReachingBlockSet CurSet(BlockMap[&BB], Matrix);
if (!Changed) {
// If we have not detected a change yet, then calculate new
// reachabilities into a new bit vector so we can determine if any
// change has occurred.
NewSet = CurSet;
for (auto PI = BB.pred_begin(), PE = BB.pred_end(); PI != PE; ++PI) {
unsigned PredID = BlockMap[*PI];
ReachingBlockSet PredSet(PredID, Matrix);
NewSet |= PredSet;
NewSet.set(PredID);
}
if (NewSet != CurSet) {
CurSet = NewSet;
Changed = true;
}
} else {
// Otherwise, just update the existing reachabilities in-place.
for (auto PI = BB.pred_begin(), PE = BB.pred_end(); PI != PE; ++PI) {
unsigned PredID = BlockMap[*PI];
ReachingBlockSet PredSet(PredID, Matrix);
CurSet |= PredSet;
CurSet.set(PredID);
}
}
DEBUG(llvm::dbgs() << " Block " << BlockMap[&BB] << " reached by ";
for (unsigned i = 0; i < N; ++i) {
if (CurSet.test(i))
llvm::dbgs() << i << " ";
}
llvm::dbgs() << "\n");
}
} while (Changed);
ReachingBlockSet::deallocateSet(NewSet);
}
/// \brief Return true if the To basic block is reachable from the From basic
/// block. A block is considered reachable from itself only if its entry can be
/// recursively reached from its own exit.
bool
ReachabilityInfo::isReachable(SILBasicBlock *From, SILBasicBlock *To) {
if (!isComputed())
compute();
auto FI = BlockMap.find(From), TI = BlockMap.find(To);
assert(FI != BlockMap.end() && TI != BlockMap.end());
ReachingBlockSet FromSet(TI->second, Matrix);
return FromSet.test(FI->second);
}
ClosureCloner::ClosureCloner(SILFunction *Orig, IsFragile_t Fragile,
StringRef ClonedName,
SubstitutionMap &InterfaceSubs,
ArrayRef<Substitution> ApplySubs,
IndicesSet &PromotableIndices)
: TypeSubstCloner<ClosureCloner>(
*initCloned(Orig, Fragile, ClonedName, InterfaceSubs,
PromotableIndices),
*Orig, ApplySubs),
Orig(Orig), PromotableIndices(PromotableIndices) {
assert(Orig->getDebugScope()->Parent != getCloned()->getDebugScope()->Parent);
}
/// Compute the SILParameterInfo list for the new cloned closure.
///
/// Our goal as a result of this transformation is to:
///
/// 1. Let through all arguments not related to a promotable box.
/// 2. Replace container box value arguments for the cloned closure with the
/// transformed address or value argument.
static void
computeNewArgInterfaceTypes(SILFunction *F,
IndicesSet &PromotableIndices,
SmallVectorImpl<SILParameterInfo> &OutTys) {
auto FunctionTy = F->getLoweredFunctionType();
auto Parameters = FunctionTy->getParameters();
auto NumIndirectResults = FunctionTy->getNumIndirectResults();
DEBUG(llvm::dbgs() << "Preparing New Args!\n");
// For each parameter in the old function...
for (unsigned Index : indices(Parameters)) {
auto &param = Parameters[Index];
// The PromotableIndices index is expressed as the argument index (num
// indirect result + param index). Add back the num indirect results to get
// the arg index when working with PromotableIndices.
unsigned ArgIndex = Index + NumIndirectResults;
DEBUG(llvm::dbgs() << "Index: " << Index << "; PromotableIndices: "
<< (PromotableIndices.count(ArgIndex)?"yes":"no")
<< " Param: "; param.dump());
if (!PromotableIndices.count(ArgIndex)) {
OutTys.push_back(param);
continue;
}
// Perform the proper conversions and then add it to the new parameter list
// for the type.
assert(!isIndirectParameter(param.getConvention()));
auto paramBoxedTy = param.getSILType().castTo<SILBoxType>()
->getBoxedAddressType();
auto &paramTL = F->getModule().Types.getTypeLowering(paramBoxedTy);
ParameterConvention convention;
if (paramTL.isPassedIndirectly()) {
convention = ParameterConvention::Indirect_In;
} else if (paramTL.isTrivial()) {
convention = ParameterConvention::Direct_Unowned;
} else {
convention = ParameterConvention::Direct_Owned;
}
OutTys.push_back(SILParameterInfo(paramBoxedTy.getSwiftRValueType(),
convention));
}
}
static std::string getSpecializedName(SILFunction *F,
IsFragile_t Fragile,
IndicesSet &PromotableIndices) {
Mangle::Mangler M;
auto P = SpecializationPass::CapturePromotion;
FunctionSignatureSpecializationMangler FSSM(P, M, Fragile, F);
CanSILFunctionType FTy = F->getLoweredFunctionType();
ArrayRef<SILParameterInfo> Parameters = FTy->getParameters();
auto NumIndirectResults = FTy->getNumIndirectResults();
for (unsigned Index : indices(Parameters)) {
// The PromotableIndices index is expressed as the argument index (num
// indirect result + param index). Add back the num indirect results to get
// the arg index when working with PromotableIndices.
unsigned ArgIndex = Index + NumIndirectResults;
if (!PromotableIndices.count(ArgIndex))
continue;
FSSM.setArgumentBoxToValue(Index);
}
FSSM.mangle();
return M.finalize();
}
/// \brief Create the function corresponding to the clone of the original
/// closure with the signature modified to reflect promotable captures (which
/// are given by PromotableIndices, such that each entry in the set is the
/// index of the box containing the variable in the closure's argument list, and
/// the address of the box's contents is the argument immediately following each
/// box argument); does not actually clone the body of the function
///
/// *NOTE* PromotableIndices only contains the container value of the box, not
/// the address value.
SILFunction*
ClosureCloner::initCloned(SILFunction *Orig, IsFragile_t Fragile,
StringRef ClonedName,
SubstitutionMap &InterfaceSubs,
IndicesSet &PromotableIndices) {
SILModule &M = Orig->getModule();
// Compute the arguments for our new function.
SmallVector<SILParameterInfo, 4> ClonedInterfaceArgTys;
computeNewArgInterfaceTypes(Orig, PromotableIndices, ClonedInterfaceArgTys);
Module *SM = M.getSwiftModule();
SILFunctionType *OrigFTI = Orig->getLoweredFunctionType();
// Create the thin function type for the cloned closure.
auto ClonedTy =
SILFunctionType::get(OrigFTI->getGenericSignature(),
OrigFTI->getExtInfo(),
OrigFTI->getCalleeConvention(),
ClonedInterfaceArgTys,
OrigFTI->getAllResults(),
OrigFTI->getOptionalErrorResult(),
M.getASTContext());
auto SubstTy = SILType::substFuncType(M, SM, InterfaceSubs.getMap(), ClonedTy,
/* dropGenerics = */ false);
assert((Orig->isTransparent() || Orig->isBare() || Orig->getLocation())
&& "SILFunction missing location");
assert((Orig->isTransparent() || Orig->isBare() || Orig->getDebugScope())
&& "SILFunction missing DebugScope");
assert(!Orig->isGlobalInit() && "Global initializer cannot be cloned");
auto *Fn = M.createFunction(
Orig->getLinkage(), ClonedName, SubstTy, Orig->getGenericEnvironment(),
Orig->getLocation(), Orig->isBare(), IsNotTransparent, Fragile,
Orig->isThunk(), Orig->getClassVisibility(), Orig->getInlineStrategy(),
Orig->getEffectsKind(), Orig, Orig->getDebugScope());
for (auto &Attr : Orig->getSemanticsAttrs())
Fn->addSemanticsAttr(Attr);
Fn->setDeclCtx(Orig->getDeclContext());
return Fn;
}
/// \brief Populate the body of the cloned closure, modifying instructions as
/// necessary to take into consideration the promoted capture(s)
void
ClosureCloner::populateCloned() {
SILFunction *Cloned = getCloned();
SILModule &M = Cloned->getModule();
// Create arguments for the entry block
SILBasicBlock *OrigEntryBB = &*Orig->begin();
SILBasicBlock *ClonedEntryBB = new (M) SILBasicBlock(Cloned);
unsigned ArgNo = 0;
auto I = OrigEntryBB->bbarg_begin(), E = OrigEntryBB->bbarg_end();
while (I != E) {
if (PromotableIndices.count(ArgNo)) {
// Handle the case of a promoted capture argument.
auto BoxedTy = (*I)->getType().castTo<SILBoxType>()->getBoxedAddressType()
.getObjectType();
SILValue MappedValue =
new (M) SILArgument(ClonedEntryBB, BoxedTy, (*I)->getDecl());
BoxArgumentMap.insert(std::make_pair(*I, MappedValue));
// Track the projections of the box.
for (auto *Use : (*I)->getUses()) {
if (auto Proj = dyn_cast<ProjectBoxInst>(Use->getUser())) {
ProjectBoxArgumentMap.insert(std::make_pair(Proj, MappedValue));
}
}
} else {
// Otherwise, create a new argument which copies the original argument
SILValue MappedValue =
new (M) SILArgument(ClonedEntryBB, (*I)->getType(), (*I)->getDecl());
ValueMap.insert(std::make_pair(*I, MappedValue));
}
++ArgNo;
++I;
}
getBuilder().setInsertionPoint(ClonedEntryBB);
BBMap.insert(std::make_pair(OrigEntryBB, ClonedEntryBB));
// Recursively visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions other than terminators.
visitSILBasicBlock(OrigEntryBB);
// Now iterate over the BBs and fix up the terminators.
for (auto BI = BBMap.begin(), BE = BBMap.end(); BI != BE; ++BI) {
getBuilder().setInsertionPoint(BI->second);
visit(BI->first->getTerminator());
}
}
/// Handle a debug_value_addr instruction during cloning of a closure;
/// if its operand is the promoted address argument then lower it to a
/// debug_value, otherwise it is handled normally.
void ClosureCloner::visitDebugValueAddrInst(DebugValueAddrInst *Inst) {
SILValue Operand = Inst->getOperand();
if (auto *A = dyn_cast<ProjectBoxInst>(Operand)) {
auto I = ProjectBoxArgumentMap.find(A);
if (I != ProjectBoxArgumentMap.end()) {
getBuilder().setCurrentDebugScope(getOpScope(Inst->getDebugScope()));
getBuilder().createDebugValue(Inst->getLoc(), I->second,
Inst->getVarInfo());
return;
}
}
SILCloner<ClosureCloner>::visitDebugValueAddrInst(Inst);
}
/// \brief Handle a strong_release instruction during cloning of a closure; if
/// it is a strong release of a promoted box argument, then it is replaced with
/// a ReleaseValue of the new object type argument, otherwise it is handled
/// normally.
void
ClosureCloner::visitStrongReleaseInst(StrongReleaseInst *Inst) {
SILValue Operand = Inst->getOperand();
if (SILArgument *A = dyn_cast<SILArgument>(Operand)) {
auto I = BoxArgumentMap.find(A);
if (I != BoxArgumentMap.end()) {
// Releases of the box arguments get replaced with ReleaseValue of the new
// object type argument.
SILFunction &F = getBuilder().getFunction();
auto &typeLowering = F.getModule().getTypeLowering(I->second->getType());
SILBuilderWithPostProcess<ClosureCloner, 1> B(this, Inst);
typeLowering.emitReleaseValue(B, Inst->getLoc(), I->second);
return;
}
}
SILCloner<ClosureCloner>::visitStrongReleaseInst(Inst);
}
/// \brief Handle a struct_element_addr instruction during cloning of a closure;
/// if its operand is the promoted address argument then ignore it, otherwise it
/// is handled normally.
void
ClosureCloner::visitStructElementAddrInst(StructElementAddrInst *Inst) {
SILValue Operand = Inst->getOperand();
if (auto *A = dyn_cast<ProjectBoxInst>(Operand)) {
auto I = ProjectBoxArgumentMap.find(A);
if (I != ProjectBoxArgumentMap.end())
return;
}
SILCloner<ClosureCloner>::visitStructElementAddrInst(Inst);
}
/// project_box of captured boxes can be eliminated.
void
ClosureCloner::visitProjectBoxInst(ProjectBoxInst *I) {
if (auto Arg = dyn_cast<SILArgument>(I->getOperand()))
if (BoxArgumentMap.count(Arg))
return;
SILCloner<ClosureCloner>::visitProjectBoxInst(I);
}
/// \brief Handle a load instruction during cloning of a closure; the two
/// relevant cases are a direct load from a promoted address argument or a load
/// of a struct_element_addr of a promoted address argument.
void
ClosureCloner::visitLoadInst(LoadInst *Inst) {
SILValue Operand = Inst->getOperand();
if (auto *A = dyn_cast<ProjectBoxInst>(Operand)) {
auto I = ProjectBoxArgumentMap.find(A);
if (I != ProjectBoxArgumentMap.end()) {
// Loads of the address argument get eliminated completely; the uses of
// the loads get mapped to uses of the new object type argument.
ValueMap.insert(std::make_pair(Inst, I->second));
return;
}
} else if (auto *SEAI = dyn_cast<StructElementAddrInst>(Operand)) {
if (auto *A = dyn_cast<ProjectBoxInst>(SEAI->getOperand())) {
auto I = ProjectBoxArgumentMap.find(A);
if (I != ProjectBoxArgumentMap.end()) {
// Loads of a struct_element_addr of an argument get replaced with
// struct_extract of the new object type argument.
SILBuilderWithPostProcess<ClosureCloner, 1> B(this, Inst);
SILValue V = B.emitStructExtract(Inst->getLoc(), I->second,
SEAI->getField(),
Inst->getType());
ValueMap.insert(std::make_pair(Inst, V));
return;
}
}
}
SILCloner<ClosureCloner>::visitLoadInst(Inst);
}
static SILArgument *getBoxFromIndex(SILFunction *F, unsigned Index) {
assert(F->isDefinition() && "Expected definition not external declaration!");
auto &Entry = F->front();
return Entry.getBBArg(Index);
}
/// \brief Given a partial_apply instruction and the argument index into its
/// callee's argument list of a box argument (which is followed by an argument
/// for the address of the box's contents), return true if the closure is known
/// not to mutate the captured variable.
static bool
isNonmutatingCapture(SILArgument *BoxArg) {
SmallVector<ProjectBoxInst*, 2> Projections;
// Conservatively do not allow any use of the box argument other than a
// strong_release or projection, since this is the pattern expected from
// SILGen.
for (auto *O : BoxArg->getUses()) {
if (isa<StrongReleaseInst>(O->getUser()))
continue;
if (auto Projection = dyn_cast<ProjectBoxInst>(O->getUser())) {
Projections.push_back(Projection);
continue;
}
return false;
}
// Only allow loads of projections, either directly or via
// struct_element_addr instructions.
//
// TODO: This seems overly limited. Why not projections of tuples and other
// stuff? Also, why not recursive struct elements? This should be a helper
// function that mirrors isNonEscapingUse.
for (auto *Projection : Projections) {
for (auto *O : Projection->getUses()) {
if (auto *SEAI = dyn_cast<StructElementAddrInst>(O->getUser())) {
for (auto *UO : SEAI->getUses())
if (!isa<LoadInst>(UO->getUser()))
return false;
continue;
}
if (!isa<LoadInst>(O->getUser())
&& !isa<DebugValueAddrInst>(O->getUser())
&& !isa<MarkFunctionEscapeInst>(O->getUser()))
return false;
}
}
return true;
}
/// \brief Given a use of an alloc_box instruction, return true if the use
/// definitely does not allow the box to escape; also, if the use is an
/// instruction which possibly mutates the contents of the box, then add it to
/// the Mutations vector.
static bool
isNonescapingUse(Operand *O, SmallVectorImpl<SILInstruction*> &Mutations) {
auto *U = O->getUser();
if (U->isTypeDependentOperand(*O))
return true;
// Marking the boxed value as escaping is OK. It's just a DI annotation.
if (isa<MarkFunctionEscapeInst>(U))
return true;
// A store or assign is ok if the alloc_box is the destination.
if (isa<StoreInst>(U) || isa<AssignInst>(U)) {
if (O->getOperandNumber() != 1)
return false;
Mutations.push_back(cast<SILInstruction>(U));
return true;
}
// copy_addr is ok, but counts as a mutation if the use is as the
// destination or the copy_addr is a take.
if (auto *CAI = dyn_cast<CopyAddrInst>(U)) {
if (O->getOperandNumber() == 1 || CAI->isTakeOfSrc())
Mutations.push_back(CAI);
return true;
}
// Recursively see through struct_element_addr, tuple_element_addr, and
// open_existential_addr instructions.
if (isa<StructElementAddrInst>(U) || isa<TupleElementAddrInst>(U) ||
isa<InitEnumDataAddrInst>(U) ||
isa<OpenExistentialAddrInst>(U) || isa<UncheckedTakeEnumDataAddrInst>(U)) {
// UncheckedTakeEnumDataAddr is additionally a mutation.
if (isa<UncheckedTakeEnumDataAddrInst>(U))
Mutations.push_back(U);
for (auto *UO : U->getUses())
if (!isNonescapingUse(UO, Mutations))
return false;
return true;
}
// An apply is ok if the argument is used as an inout parameter or an
// indirect return, but counts as a possible mutation in both cases.
if (auto *AI = dyn_cast<ApplyInst>(U)) {
auto argIndex = O->getOperandNumber()-1;
auto convention =
AI->getSubstCalleeType()->getSILArgumentConvention(argIndex);
if (isIndirectConvention(convention)) {
Mutations.push_back(AI);
return true;
}
return false;
}
// These instructions are ok but count as mutations.
if (isa<DeallocBoxInst>(U)) {
Mutations.push_back(cast<SILInstruction>(U));
return true;
}
// These remaining instructions are ok and don't count as mutations.
if (isa<StrongRetainInst>(U) || isa<StrongReleaseInst>(U) ||
isa<LoadInst>(U))
return true;
return false;
}
static bool signatureHasDependentTypes(SILFunctionType &CalleeTy) {
for (auto Result : CalleeTy.getAllResults())
if (Result.getType()->hasTypeParameter())
return true;
for (auto ParamTy : CalleeTy.getParameterSILTypes())
if (ParamTy.hasTypeParameter())
return true;
return false;
}
/// \brief Examine an alloc_box instruction, returning true if at least one
/// capture of the boxed variable is promotable. If so, then the pair of the
/// partial_apply instruction and the index of the box argument in the closure's
/// argument list is added to IM.
static bool
examineAllocBoxInst(AllocBoxInst *ABI, ReachabilityInfo &RI,
llvm::DenseMap<PartialApplyInst*, unsigned> &IM) {
SmallVector<SILInstruction*, 32> Mutations;
// Scan the box for interesting uses.
for (Operand *O : ABI->getUses()) {
if (auto *PAI = dyn_cast<PartialApplyInst>(O->getUser())) {
unsigned OpNo = O->getOperandNumber();
assert(OpNo != 0 && "Alloc box used as callee of partial apply?");
// If we've already seen this partial apply, then it means the same alloc
// box is being captured twice by the same closure, which is odd and
// unexpected: bail instead of trying to handle this case.
if (IM.count(PAI))
return false;
auto Callee = PAI->getCallee();
auto CalleeTy = Callee->getType().castTo<SILFunctionType>();
// Bail if the signature has any dependent types as we do not
// currently support these.
if (signatureHasDependentTypes(*CalleeTy))
return false;
auto closureType = PAI->getType().castTo<SILFunctionType>();
// Calculate the index into the closure's argument list of the captured
// box pointer (the captured address is always the immediately following
// index so is not stored separately);
unsigned Index = OpNo - 1 + closureType->getNumSILArguments();
auto *Fn = PAI->getReferencedFunction();
if (!Fn || !Fn->isDefinition())
return false;
SILArgument *BoxArg = getBoxFromIndex(Fn, Index);
// For now, return false is the address argument is an address-only type,
// since we currently handle loadable types only.
// TODO: handle address-only types
SILModule &M = PAI->getModule();
if (BoxArg->getType().castTo<SILBoxType>()->getBoxedAddressType()
.isAddressOnly(M))
return false;
// Verify that this closure is known not to mutate the captured value; if
// it does, then conservatively refuse to promote any captures of this
// value.
if (!isNonmutatingCapture(BoxArg))
return false;
// Record the index and continue.
IM.insert(std::make_pair(PAI, Index));
continue;
}
if (auto *PBI = dyn_cast<ProjectBoxInst>(O->getUser())) {
// Check for mutations of the address component.
SILValue Addr = PBI;
// If the AllocBox is used by a mark_uninitialized, scan the MUI for
// interesting uses.
if (Addr->hasOneUse()) {
SILInstruction *SingleAddrUser = Addr->use_begin()->getUser();
if (isa<MarkUninitializedInst>(SingleAddrUser))
Addr = SILValue(SingleAddrUser);
}
for (Operand *AddrOp : Addr->getUses()) {
if (!isNonescapingUse(AddrOp, Mutations))
return false;
}
continue;
}
// Verify that this use does not otherwise allow the alloc_box to
// escape.
if (!isNonescapingUse(O, Mutations))
return false;
}
// Helper lambda function to determine if instruction b is strictly after
// instruction a, assuming both are in the same basic block.
auto isAfter = [](SILInstruction *a, SILInstruction *b) {
auto fIter = b->getParent()->begin();
auto bIter = b->getIterator();
auto aIter = a->getIterator();
while (bIter != fIter) {
--bIter;
if (aIter == bIter)
return true;
}
return false;
};
// Loop over all mutations to possibly invalidate captures.
for (auto *I : Mutations) {
auto Iter = IM.begin();
while (Iter != IM.end()) {
auto *PAI = Iter->first;
// The mutation invalidates a capture if it occurs in a block reachable
// from the block the partial_apply is in, or if it is in the same
// block is after the partial_apply.
if (RI.isReachable(PAI->getParent(), I->getParent()) ||
(PAI->getParent() == I->getParent() && isAfter(PAI, I))) {
auto Prev = Iter++;
IM.erase(Prev);
continue;
}
++Iter;
}
// If there are no valid captures left, then stop.
if (IM.empty())
return false;
}
return true;
}
static SILFunction *
constructClonedFunction(PartialApplyInst *PAI, FunctionRefInst *FRI,
IndicesSet &PromotableIndices) {
SILFunction *F = PAI->getFunction();
// Create the substitution maps.
auto ApplySubs = PAI->getSubstitutions();
SubstitutionMap InterfaceSubs;
if (auto genericSig = F->getLoweredFunctionType()->getGenericSignature())
InterfaceSubs = genericSig->getSubstitutionMap(ApplySubs);
// Create the Cloned Name for the function.
SILFunction *Orig = FRI->getReferencedFunction();
IsFragile_t Fragile = IsNotFragile;
if (F->isFragile() && Orig->isFragile())
Fragile = IsFragile;
auto ClonedName = getSpecializedName(Orig, Fragile, PromotableIndices);
// If we already have such a cloned function in the module then just use it.
if (auto *PrevF = F->getModule().lookUpFunction(ClonedName)) {
assert(PrevF->isFragile() == Fragile);
return PrevF;
}
// Otherwise, create a new clone.
ClosureCloner cloner(Orig, Fragile, ClonedName, InterfaceSubs,
ApplySubs, PromotableIndices);
cloner.populateCloned();
return cloner.getCloned();
}
/// \brief Given a partial_apply instruction and a set of promotable indices,
/// clone the closure with the promoted captures and replace the partial_apply
/// with a partial_apply of the new closure, fixing up reference counting as
/// necessary. Also, if the closure is cloned, the cloned function is added to
/// the worklist.
static void
processPartialApplyInst(PartialApplyInst *PAI, IndicesSet &PromotableIndices,
SmallVectorImpl<SILFunction*> &Worklist) {
SILModule &M = PAI->getModule();
auto *FRI = dyn_cast<FunctionRefInst>(PAI->getCallee());
// Clone the closure with the given promoted captures.
SILFunction *ClonedFn = constructClonedFunction(PAI, FRI, PromotableIndices);
Worklist.push_back(ClonedFn);
// Initialize a SILBuilder and create a function_ref referencing the cloned
// closure.
SILBuilderWithScope B(PAI);
SILValue FnVal = B.createFunctionRef(PAI->getLoc(), ClonedFn);
SILType FnTy = FnVal->getType();
// Populate the argument list for a new partial_apply instruction, taking into
// consideration any captures.
auto CalleeFunctionTy = PAI->getCallee()->getType().castTo<SILFunctionType>();
auto CalleePInfo = CalleeFunctionTy->getParameters();
unsigned FirstIndex =
PAI->getType().castTo<SILFunctionType>()->getNumSILArguments();
unsigned OpNo = 1, OpCount = PAI->getNumOperands();
SmallVector<SILValue, 16> Args;
auto NumIndirectResults = CalleeFunctionTy->getNumIndirectResults();
while (OpNo != OpCount) {
unsigned Index = OpNo - 1 + FirstIndex;
if (PromotableIndices.count(Index)) {
SILValue BoxValue = PAI->getOperand(OpNo);
AllocBoxInst *ABI = cast<AllocBoxInst>(BoxValue);
SILParameterInfo CPInfo = CalleePInfo[Index - NumIndirectResults];
assert(CPInfo.getSILType() == BoxValue->getType() &&
"SILType of parameter info does not match type of parameter");
// Cleanup the captured argument.
releasePartialApplyCapturedArg(B, PAI->getLoc(), BoxValue,
CPInfo);
// Load and copy from the address value, passing the result as an argument
// to the new closure.
SILValue Addr;
for (Operand *BoxUse : ABI->getUses()) {
auto *PBI = dyn_cast<ProjectBoxInst>(BoxUse->getUser());
// If the address is marked uninitialized, load through the mark, so
// that DI can reason about it.
if (PBI && PBI->hasOneUse()) {
SILInstruction *PBIUser = PBI->use_begin()->getUser();
if (isa<MarkUninitializedInst>(PBIUser))
Addr = PBIUser;
break;
}
}
// We only reuse an existing project_box if it directly follows the
// alloc_box. This makes sure that the project_box dominates the
// partial_apply.
if (!Addr)
Addr = getOrCreateProjectBox(ABI, 0);
auto &typeLowering = M.getTypeLowering(Addr->getType());
Args.push_back(
typeLowering.emitLoadOfCopy(B, PAI->getLoc(), Addr, IsNotTake));
++NumCapturesPromoted;
} else {
Args.push_back(PAI->getOperand(OpNo));
}
++OpNo;
}
auto SubstFnTy = FnTy.substGenericArgs(M, PAI->getSubstitutions());
// Create a new partial apply with the new arguments.
auto *NewPAI = B.createPartialApply(PAI->getLoc(), FnVal, SubstFnTy,
PAI->getSubstitutions(), Args,
PAI->getType());
PAI->replaceAllUsesWith(NewPAI);
PAI->eraseFromParent();
if (FRI->use_empty()) {
FRI->eraseFromParent();
// TODO: If this is the last use of the closure, and if it has internal
// linkage, we should remove it from the SILModule now.
}
}
static void
constructMapFromPartialApplyToPromotableIndices(SILFunction *F,
PartialApplyIndicesMap &Map) {
ReachabilityInfo RS(F);
// This is a map from each partial apply to a single index which is a
// promotable box variable for the alloc_box currently being considered.
llvm::DenseMap<PartialApplyInst*, unsigned> IndexMap;
// Consider all alloc_box instructions in the function.
for (auto &BB : *F) {
for (auto &I : BB) {
if (auto *ABI = dyn_cast<AllocBoxInst>(&I)) {
IndexMap.clear();
if (examineAllocBoxInst(ABI, RS, IndexMap)) {
// If we are able to promote at least one capture of the alloc_box,
// then add the promotable index to the main map.
for (auto &IndexPair : IndexMap)
Map[IndexPair.first].insert(IndexPair.second);
}
}
}
}
}
static void
processFunction(SILFunction *F, SmallVectorImpl<SILFunction*> &Worklist) {
// This is a map from each partial apply to a set of indices of promotable
// box variables.
PartialApplyIndicesMap IndicesMap;
constructMapFromPartialApplyToPromotableIndices(F, IndicesMap);
// Do the actual promotions; all promotions on a single partial_apply are
// handled together.
for (auto &IndicesPair : IndicesMap)
processPartialApplyInst(IndicesPair.first, IndicesPair.second, Worklist);
}
namespace {
class CapturePromotionPass : public SILModuleTransform {
/// The entry point to the transformation.
void run() override {
SmallVector<SILFunction*, 128> Worklist;
for (auto &F : *getModule())
processFunction(&F, Worklist);
if (!Worklist.empty()) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Everything);
}
while (!Worklist.empty())
processFunction(Worklist.pop_back_val(), Worklist);
}
StringRef getName() override { return "Capture Promotion"; }
};
} // end anonymous namespace
SILTransform *swift::createCapturePromotion() {
return new CapturePromotionPass();
}